Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T10:32:34.651Z Has data issue: false hasContentIssue false

7 - Biologically targeted therapies for myelodysplastic syndromes

Published online by Cambridge University Press:  22 August 2009

Andrew J. Buresh
Affiliation:
University of Arizona Medical Center, Tucson, AZ, USA
Alan F. List
Affiliation:
University of South Florida, Tampa, FL, USA
Peter L. Greenberg
Affiliation:
Stanford University School of Medicine, California
Get access
Type
Chapter
Information
Myelodysplastic Syndromes
Clinical and Biological Advances
, pp. 173 - 208
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Greenberg, P., Cox, C., Beau, M.et al. (1997). International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood, 89, 2079–88Google ScholarPubMed
Cheson, B. D., Bennett, J. M., Kantarjian, H.et al. (2000). Report of an international working group to standardize response criteria for myelodysplastic syndromes. Blood, 96, 3671–4Google Scholar
Molldrem, J., Jiang, Y. Z., Stetler-Stevenson, M.et al. (2000). Haematological response of patients with myelodysplastic syndrome to antithymocyte globulin is associated with a loss of lymphocyte-mediated inhibition of CFU-GM and alterations in T-cell receptor V-beta profiles. Br. J. Haematol., 28, 148–55Google Scholar
Saunthararajah, Y., Molldrem, J. L., Rivera, M.et al. (2001). Coincidence of myelodysplastic syndrome with large granular lymphocytic leukemia. Br. J. Haematol., 112, 195–200CrossRefGoogle Scholar
Bagby, G. C. Jr, Gabourel, J. D., and Linman, J. W. (1980). Glucocorticoid therapy in the preleukemic syndrome (hemopoietic dysplasia): identification of responsive patients using in-vitro techniques. Ann. Intern. Med., 92, 55–8CrossRefGoogle ScholarPubMed
Flores-Figueroa, E., Gutierrez-Espindola, G., Montesinos, J. J.et al. (2002). In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome. Leuk. Res., 26, 677–86CrossRefGoogle ScholarPubMed
Biesma, D. H., Tweel, J. G., Verdonck, L. F. (1997). Immunosuppressive therapy for hypoplastic myelodysplastic syndrome. Cancer, 79, 1548–513.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Jonasova, A., Neuwirtova, R., Cermak, J.et al. (1998). Cyclosporin A therapy in hypoplastic MDS patients and certain refractory anemias without hypoplastic bone marrow. Br. J. Hematol., 100, 304–9CrossRefGoogle ScholarPubMed
Molldrem, J. J., Caples, M., Mavroudis, D.et al. (1997). Antithymocyte globulin for patients with myelodysplastic syndrome. Br. J. Hematol., 99, 699–705CrossRefGoogle ScholarPubMed
Okada, M., Okamoto, T., Yamada, S.et al. (1999). Good response to cyclosporine therapy in patients with myelodysplastic syndromes having the HLA-DRB1–1501 allele. Blood, 94, (suppl. 1), 306aGoogle Scholar
Molldrem, J. J., Leifer, E., Baheci, E.et al. (2002). Antithymocyte globulin for treatment of bone marrow failure associated with myelodysplastic syndrome. Ann. Intern. Med., 137, 156–63CrossRefGoogle Scholar
Barrett, A. J., Molldrem, J. J., Saunthrajarian, Y.et al. (1998). Prolonged transfusion independence and disease stability in patients with myelodysplastic syndrome responding to antithymocyte globulin. Blood, 92 (suppl. 1), 713a, abstract 2932Google Scholar
Cheson, B. D., Zwiebel, J. A., Dancey, J., and Murgo, A. (2000). Novel therapeutic agents for the treatment of myelodysplastic syndromes. Semin. Oncol., 27, 560–77Google ScholarPubMed
Steensma, D. P., Dispenzieri, A., Moore, S. B.et al. (2003). Antithymocyte globulin has limited efficacy and substantial toxicity in un-selected anemic patients with myelodysplastic syndrome. Blood, 101, 2156–8CrossRefGoogle Scholar
Saunthararajah, Y., Nakamura, R., Nam, J. M.et al. (2002). HLA-DR15 (DR2) is over-represented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood, 100, 1570–4Google Scholar
Saunthararajah, Y., Nakamura, R., Wesley, R., Wang, Q., and Barret, A. J. (2003). A simple method to predict response to immunosuppressive therapy in patients with myelodysplastic syndrome. Blood, 102, 3025–7CrossRefGoogle ScholarPubMed
Stadler, M., Germing, U., Kliche, K.-O.et al. (2004). A prospective, randomised, Phase II study of horse antithymocyte globulin vs rabbit antithymocyte globulin as immune-modulating therapy in patients with low-risk myelodysplastic syndromes. Leukemia, 18, 449–59CrossRefGoogle ScholarPubMed
Peddie, C. M., Wolf, C. R., McLellan, L. I.et al. (1997). Oxidative DNA damage in CD34+ myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumor necrosis factor-α concentration. Br. J. Haematol., 99, 625–31CrossRefGoogle Scholar
Gersuk, G. M., Lee, J. W., Beckham, C. A.et al. (1998). Fax (CD95) receptor and fas ligand expression in bone marrow cells from patients with myelodysplastic syndrome. Blood, 88, 1122–3Google Scholar
Mundle, S. D., Reza, S., Ali, A.et al. (1999). Correlation of tumor necrosis factor alpha (TNF alpha) with high caspase 3-like activity in myelodysplastic syndromes. Cancer Lett., 140, 201–7CrossRefGoogle ScholarPubMed
Romano, M. F., Lamberti, A., Bisogni, R.et al. (1999). Amifostine inhibits hematopoietic progenitor cell apoptosis by activating NF-kB/Rel transcription factors. Blood, 94, 4060–6Google ScholarPubMed
Farquhar, M. J. and Bowen, D. T. (2003). Oxidative stress and the myelodysplastic syndromes. Int. J. Hematol., 77, 342–50CrossRefGoogle ScholarPubMed
Santini, V. (2001). Amifostine: chemotherapeutic and radiotherapeutic protective effects. Expert Opini. Pharmacother., 2, 479CrossRefGoogle ScholarPubMed
List, A. F., Heaton, R., Glinsmann-Gibson, B., and Capizzi, R. L. (1998). Amifostine stimulates formation of multipotent and erythroid bone marrow progenitors. Leukemia, 12, 1596–602CrossRefGoogle ScholarPubMed
List, A. F., Brasfield, F., Heaton, R.et al. (1997). Stimulation of hematopoiesis by amifostine in patients with myelodysplastic syndrome. Blood, 90, 3364–9Google ScholarPubMed
List, A. F. (2002). New approaches to the treatment of myelodysplasia. Oncologist, 7 (suppl. 1), 39–49CrossRefGoogle ScholarPubMed
Grossi, A., Fabbri, A., Santini, V.et al. (2000). Amifostine in the treatment of low-risk myelodysplastic syndromes. Haematologica, 85, 367–71Google ScholarPubMed
Hofmann, W. K., Seipelt, G., Ottmann, O. G.et al. (2000). Effect of treatment with amifostine used as a single agent in patients with refractory anemia on clinical outcome and serum tumor necrosis factor alpha levels. Ann. Hematol., 79, 255–8CrossRefGoogle ScholarPubMed
Tsiara, S. N., Kapsali, H. D., Panteli, K., Christou, L., and Bourantas, K. L. (2001). Preliminary results of amifostine administration in combination with recominant human erythropoietin in patients with myelodysplastic syndrome. J. Exp. Clin. Cancer Res., 20, 35–8Google Scholar
Invernizzi, R., Pecci, A., Travaglino, E.et al. (2002). Clinical and biological effects of treatment with amifostine in myelodysplastic syndromes. Br. J. Haematol., 118, 246–50CrossRefGoogle ScholarPubMed
Viniou, N., Terpos, E., Galanopoulos, A.et al. (2002). Treatment of anemia in low-risk myelodysplastic syndromes with amifostine: in vitro testing of response. Ann. Hematol., 81, 182–6Google Scholar
Raza, A., Qavi, H., Lisak, L.et al. (2000). Patients with myelodysplastic syndrome benefit from palliative therapy with amifostine, pentoxyfylline, and ciprofloxacin with or without dexamethasone. Blood, 95, 580–7Google ScholarPubMed
Grossi, A., Musto, P., Santini, V.et al. (2002). Combined therapy with amifostine plus erythropoietin for the treatment of myelodysplastic syndrome. Haematologica, 87, 322–3Google Scholar
Neumeister, P., Jaeger, G., Eibl, M.et al. (2001). Amifostine in combination with erythropoietin and G-CSF promotes multilineage hematopoiesis in patients with myelodysplastic syndrome. Leuk. Lymphoma, 40, 345–9CrossRefGoogle ScholarPubMed
Tefferi, A., Elliot, M. A., and Hook, C. C. (2001). Amifostine alone and in combination with erythropoietin for the treatment of favorable myelodysplastic syndrome. Leuk. Res., 25, 183–5CrossRefGoogle ScholarPubMed
Fleischmann, R. M., Baumgartner, S. W., Tindall, E. A.et al. (2003). Response to etanercept (enbrel) in elderly patients with rheumatoid arthritis: a retrospective analysis of clinical trial results. J. Rheumatol., 30, 691Google ScholarPubMed
Deeg, H. J., Gotlib, J., Beckham, C.et al. (2002). Soluble TNF receptor fusion protein (etanercept) for the treatment of myelodysplastic syndrome: a pilot study. Leukemia, 16, 162CrossRefGoogle ScholarPubMed
Maciejewski, J. P., Risitano, A. M., Sloand, E. M.et al. (2002). A pilot study of the recombinant soluble human tumour necrosis factor receptor (p75)-Fc fusion protein in patients with myelodysplastic syndrome. Br. J. Haematol., 117, 119CrossRefGoogle ScholarPubMed
Rosenfeld, C. and Bedell, C. (2002). Pilot study of recombinant human soluble tumor necrosis factor receptor (TNFR: Fc) in patients with low risk myelodysplastic syndrome. Leuk. Res., 26, 721CrossRefGoogle ScholarPubMed
St Clair, E. W. (2002). Infliximab treatment for rheumatic disease: clinical and radiological efficacy. Ann. Rheum. Dis., 61 (suppl. 2), ii67CrossRefGoogle ScholarPubMed
Braun, J., Sieper, J., Breban, M.et al. (2002). Anti-tumour necrosis factor alpha therapy for ankylosing spondylitis: international experience. Ann. Rheum. Dis., 61 (suppl. 3), ⅲ51CrossRefGoogle ScholarPubMed
Stasi, R. and Amadori, S. (2002). Infliximab chimaeric anti-tumour necrosis factor alpha monoclonal antibody treatment for patients with myelodysplastic syndromes. Br. J. Haematol., 116, 334CrossRefGoogle ScholarPubMed
Bellamy, W. T., Richter, L., Sirjani, D.et al. (2001). Vascular endothelial cell growth factor is an autocrine promoter of abnormal localized immature myeloid precursors and leukemia progenitor formation in myelodysplastic syndromes. Blood, 97, 1427–34CrossRefGoogle ScholarPubMed
Korkolopoulou, P., Apostolidou, E., Pavlopoulos, P. M.et al. (2001). Prognostic evaluation of the mircovascular network in myelodysplastic syndromes. Leukemia, 15, 1369–76CrossRefGoogle Scholar
Aguayo, A., O'Brien, S., Keating, M.et al. (2000). Clinical relevance of intracellular vascular endothelial growth factor levels in B-cell chronic lymphocytic leukemia. Blood, 96, 768–70Google ScholarPubMed
Pruneri, G., Bertolini, F., Soligo, D.et al. (1999). Angiogenesis in myelodysplastic syndromes. Br. J. Cancer, 81, 1398–401CrossRefGoogle ScholarPubMed
Aguayo, A., Kantarjian, H., Manshouri, T.et al. (2000). Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood, 96, 2240–5Google ScholarPubMed
Sampaio, E. P., Sarno, E. N., Gallily, R., Cohn, Z. A., and Kaplan, G. (1991). Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J. Exp. Med., 173, 699–703CrossRefGoogle ScholarPubMed
Moreira, A. L., Sampaio, E. P., Zmuidzinas, A.et al. (1993). Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J. Exp. Med., 177, 1675CrossRefGoogle ScholarPubMed
Turk, B. E., Jiang, H., and Liu, J. O. (1996). Binding of thalidomide to alpha1-acid glycoprotein may be involved in its inhibition of tumor necrosis factor alpha production. Proc. Natl Acad. Sci. U.S.A., 93, 7552CrossRefGoogle ScholarPubMed
Raza, A., Meyer, P., Dutt, D.et al. (2001). Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood, 98, 958–65CrossRefGoogle ScholarPubMed
Moreno-Aspitia, A., Geyer, S., Li, C.et al. (2002). N998B: multicenter Phase II trial of thalidomide (Thal) in adult patients with myelodysplastic syndromes (MDS). Blood, 100, 96aGoogle Scholar
Zorat, F., Shetty, V., Dutt, D.et al. (2001). The clinical and biological effects of thalidomide in patients with myelodysplastic syndrome. Br. J. Haematol., 115, 881–94CrossRefGoogle Scholar
Steins, M. B., Padro, T., Bieker, R.et al. (2002). Efficacy and safety of thalidomide in patients with acute myeloid leukemia. Blood, 99, 834CrossRefGoogle ScholarPubMed
Corral, L. G., Haslett, P. A., Muller, G. W.et al. (1999). Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF alpha. J. Immunol., 163, 380–6Google Scholar
Davies, F. E., Raje, N., Hideshima, T.et al. (2001). Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood, 98, 210–16CrossRefGoogle ScholarPubMed
Richardson, P. G., Schlossman, R. L., Weller, E.et al. (2002). Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood, 100, 3063CrossRefGoogle ScholarPubMed
List, A. F., Kurtin, S. E., Glinsmann-Gibson, B. J.et al. (2002). High erythropoietic remitting activity of the immunomodulatory thalidomide analog, CC5013, in patients with myelodysplastic syndrome (MDS). Blood, 100, 96aGoogle Scholar
List, A. F., Tate, W., Glinsmann-Gibson, B., and Baker, A. (2002). The immunomodulatory thalidomide analog CC5013 inhibits trophic response to VEGF in AML cells by abolishing cytokine-induced PI3-Akt activation. Blood, 100, 139aGoogle Scholar
List, A. F., Kurtin, S. E., Roe, D. J.et al. (2005). Efficacy of lenalidomide in myelodysplastic syndromes. N. Engl. J. Med., 352, 11–19CrossRefGoogle ScholarPubMed
Smolich, B. D., Yuen, H. A., West, K. A.et al. (2001). The antiangiogenic protein kinase inhibitors SU5416 and SU6668 inhibit the SCF receptor (c-kit) in a human myeloid leukemia cell line and in acute myeloid leukemia blasts. Blood, 97, 1413–21CrossRefGoogle Scholar
Spiekermann, K., Dirschinger, R. J., Schwab, R.et al. (2003). The protein tyrosine kinase inhibitor SU5614 inhibits FLT3 and induces growth arrest and apoptosis in AML-derived cell lines expressing a constitutively activated FLT3. Blood, 101, 1494CrossRefGoogle ScholarPubMed
Giles, F. J., Stopeck, A. T., Silverman, L. R.et al. (2003). SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood, 102, 795–801CrossRefGoogle ScholarPubMed
Albitar, M., Smolich, B. D., Cherrington, J. M.et al. (2001). Effects of SU5416 on angiogenic factors, proliferation and apoptosis in patients with hematological malignancies. Blood, 98, 110a (abstract)Google Scholar
Foran, J., Paquette, R., Copper, M.et al. (2002). A phase I study of repeated oral dosing with SU11248 for the treatment of patients with acute myeloid leukemia who have failed or are not eligible for conventional chemotherapy. Blood, 100, 558aGoogle Scholar
Raza, A., Gezer, S., Mundle, S.et al. (1995). Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood, 86, 268–76Google ScholarPubMed
Dai, C., Price, J. O., Brunner, T.et al. (1998). Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon α to produce erythroid cell apoptosis. Blood, 85, 1243–55Google Scholar
Maciejewski, J., Selleri, C., Anderson, S.et al. (1995). Fas antigen expression on CD34+ human marrow cells is induced by interferon-α and tumor necrosis factor-α and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood, 85, 3183–90Google ScholarPubMed
Raza, A., Mundle, S., Shetty, V.et al. (1996). Novel insights into biology of myelodysplastic syndromes: excessive apoptosis and the role of cytokines. Int. J. Hematol., 63, 265–78CrossRefGoogle ScholarPubMed
Kitagawa, M., Saito, I., Kuwata, T.et al. (1991). Overexpression of tumor necrosis factor ((TNF)-α and interferon (INF)-γ by bone marrow cells from patients with myelodysplastic syndromes. Leukemia, 11, 2049–54CrossRefGoogle Scholar
Tauro, S., Hepburn, M. D., Peddie, C. M.et al. (2002). Functional disturbance of marrow stromal microenvironment in the myelodysplastic syndromes. Leukemia, 16, 785–90CrossRefGoogle ScholarPubMed
Liekens, S., DeClercq, E., and Neyts, J. (2001). Angiogenesis: regulators and clinical applications. Biochem. Pharmacol., 61, 253–70CrossRefGoogle ScholarPubMed
Gearing, A. J. H., Beckett, P., Christodoulou, M.et al. (1994). Processing of tumor necrosis factor-α precursor by metalloproteinases. Nature, 370, 555–7CrossRefGoogle Scholar
Black, R. A., Rauch, C. T., Kozlosky, C. J.et al. (1997). A metalloproteinase disintegrin that releases tumor necrosis factor-alpha from cells. Nature, 385, 729–33CrossRefGoogle ScholarPubMed
Kayagaki, N., Kawasaki, A., Ebata, T.et al. (1995). Metalloproteinase-mediated release of human Fas ligand. J. Exp. Med., 182, 1777–83CrossRefGoogle ScholarPubMed
Price, A., Shi, Q., Morris, D.et al. (1999). Marked inhibition of tumor growth in a malignant glioma tumor model by a novel synthetic matrix metalloproteinase inhibitor AG3340. Clin. Cancer Res., 5, 845–54Google Scholar
List, A. F., Kurtin, S., Callander, N.et al. (2002). Randomized, double-blind Phase II study of the matrix metalloprotease (MMP) inhibitor, AG3340 (Prinomastat) in patients with myelodysplastic syndrome. Blood, 100, 789aGoogle Scholar
Gotlib, J., Jamieson, C., List, A.et al. (2003). Phase II study of bevacizumab (anti-VEGF humanized monoclonal antibody) in patients with myelodysplastic syndrome (MDS). Blood, 102 (suppl. 1), 425aGoogle Scholar
Miller, W. H. Jr, Schipper, H. M., Lee, J. S., Singer, J., and Waxman, S. (2002). Mechanisms of action of arsenic trioxide. Cancer Res., 62, 3893Google ScholarPubMed
Lehmann, S., Bengtzen, S., Paul, A., Christensson, B., and Paul, C. (2001). Effects of arsenic trioxide (As2O3) on leukemic cells from patients with non-M3 acute myelogenous leukemia: studies of cytotoxicity, apoptosis and the pattern of resistance. Eur. J. Haematol., 66, 357CrossRefGoogle Scholar
Li, Y. M. and Broome, J. D. (1999). Arsenic targets tubulins to induce apoptosis in myeloid leukemia cells. Cancer Res., 59, 776Google ScholarPubMed
Kroemer, G. and The, H. (1999). Arsenic trioxide, a novel mitochondriotoxic anticancer agent?J. Natl Cancer Inst., 91, 743CrossRefGoogle ScholarPubMed
Jing, Y., Dai, J., Chalmers-Redman, R. M. E., Tatton, W. G., and Waxman, S. (1999). Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood, 94, 2102Google Scholar
Rojewski, M. T., Baldus, C., Knauf, W., Thiel, E., and Schrezenmeier, H. (2002). Dual effects of arsenic trioxide (As2O3) on non-acute promyelocytic leukaemia myeloid cell lines: induction of apoptosis and inhibition of proliferation. Br. J. Haematol., 116, 555CrossRefGoogle ScholarPubMed
Lehmann, S., Bengtzen, S., Paul, A., Christensson, B., and Paul, C. (2001). Effects of arsenic trioxide (As2O3) on leukemic cells from patients with non-M3 acute myelogenous leukemia: studies of cytotoxicity, apoptosis and the pattern of resistance. Eur. J. Haematol., 66, 357CrossRefGoogle Scholar
Roboz, G. J., Dias, S., Lam, G.et al. (2000). Arsenic trioxide induces dose- and time-dependent apoptosis of endothelium and may exert an antileukemic effect via inhibition of angiogenesis. Blood, 96, 1525Google ScholarPubMed
Donelli, A., Chiodino, C., Panissidi, T., Roncaglia, R., and Torelli, G. (2000). Might arsenic trioxide be useful in the treatment of advanced myelodysplastic syndromes?Haematologica, 85, 1002–3Google ScholarPubMed
List, A. F., Schiller, G. J., Mason, J., Douer, D., and Paradise, C. (2002). Trisenox® (arsenic trioxide, ATO) in patients (pts) with myelodysplastic syndromes (MDS): preliminary findings in a Phase II clinical study. Blood, 100, 790aGoogle Scholar
Raza, A., Lisak, L. A., Tahir, S.et al. (2002). Trilineage responses to arsenic trioxide (Trisenox®) and thalidomide in patients with myelodysplastic syndromes (MDS), particularly those with inv(3)(q21q26.2). Blood, 100, 795aGoogle Scholar
Vey, N., Dreyfus, F., Guerci, A.et al. (2003). Trisenox (arsenic trioxide) in patients (pts) with myelodysplastic syndromes (MDS): preliminary results of a phase I/II study. Blood, 104, 401aGoogle Scholar
Flotho, C., Valcamonica, S., Mach-Pascual, S.et al. (1999). RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia, 13, 32CrossRefGoogle Scholar
Tomasson, M. H., Sternberg, D. W., Williams, I. R.et al. (2000). Fatal myeloproliferation, induced in mice by TEL/PDGFbetaR expression, depends on PDGFbetaR tyrosines 579/581. J. Clin. Invest., 105, 423–32CrossRefGoogle ScholarPubMed
Ross, T. S., Bernard, O. A., Berger, R.et al. (1998). Fusion of huntingtin interacting protein 1 to platelet-derived growth factor beta receptor (PDGFbetaR) in chronic myelomonocytic leukemia with t(5:7)(q33;q11.2). Blood, 91, 4419–26Google Scholar
Schwaller, J., Anastasiadou, E., Cain, D.et al. (2001). H4(D10S170), a gene frequently rearranged in papillary thyroid carcinoma, is fused to the platelet-derived growth factor receptor beta gene in atypical chronic myeloid leukemia with t(5;10)(q33;q22). Blood, 97, 3918CrossRefGoogle Scholar
Magnusson, M. K., Meade, K. E., Brown, K. E.et al. (2001). Rabaptin-5 is a novel fusion partner to platelet-derived growth factor beta receptor in chronic myelomonocytic leukemia. Blood, 98, 2518–25CrossRefGoogle ScholarPubMed
Cross, N. C. P. and Reiter, A. (2002). Tyrosine kinase fusion genes in chronic myeloproliferative diseases. Leukemia, 16, 1207–12CrossRefGoogle ScholarPubMed
Golub, T. R., Barker, G. F., Lovett, M., and Gilliland, D. G. (1994). Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5; 12) chromosomal translocation. Cell, 77, 307–16CrossRefGoogle Scholar
Tomasson, M. H., Williamson, I. R., Hasserjian, R.et al. (1999). TEL/PDGFbetaR induces hematologic malignancies in mice that respond to a specific tyrosine kinase inhibitor. Blood, 93, 1707–14Google ScholarPubMed
Apperley, J. F., Gardembas, M., Melo, J. V.et al. (2002). Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. N. Engl. J. Med., 347, 481–7CrossRefGoogle ScholarPubMed
Wattel, E., Botton, S., Lai, J. L.et al. (1997). Long-term follow-up of de novo myelodysplastic syndromes treated with intensive chemotherapy; incidence of long-term survivors and outcome of partial responders. Br. J. Haematol., 98, 983–91CrossRefGoogle ScholarPubMed
Estey, E. H., Thall, P. F., Cortes, J. E.et al. (2001). Comparison of idarubicin + ara-C, fludarabine + ara-C, and topotecan + ara-C based regimens in treatment of newly diagnosed acute myeloid leukemia, refractory anemia with excess blasts in transformation, or refractory anemia with excess blasts. Blood, 98, 3575–83CrossRefGoogle ScholarPubMed
Guilhot, F., Bouabdallah, R., Desablens, B.et al. (2002). Topotecan, cytosine arabinoside and G-CSF (TAG) versus idarubicin, cytosine arabinoside and G-CSF (IDAG) in patients with myelodysplastic syndrome (MDS) or MDS in transformation: a randomized Phase III study. Blood, 100, 98aGoogle Scholar
Raza, A., Fenaux, P., Erba, H.et al. (2002). Preliminary analysis of a randomized phase 2 study of the safety and efficacy of 1 vs. 2 doses of gemtuzumab ozogamicin (Mylotarg) in patients with high risk myelodysplastic syndrome. Blood, 100, (suppl. 1), 793aGoogle Scholar
Estey, E. H., Thall, P. F., Giles, F. J.et al. (2002). Gemtuzumab ozogamicin with or without interleukin-11 in patients 65 years of age or older with untreated acute myeloid leukemia and high-risk myelodysplastic syndrome: comparison with idarubicin plus continuous-infusion, high-dose cytosine arabinoside. Blood, 99, 4343CrossRefGoogle ScholarPubMed
Miller, K. B., Kim, K., Morrison, F. S.et al. (1992). The evaluation of low-dose cytarabine in the treatment of myelodysplastic syndromes: a phase-III intergroup study. Ann. Hematol., 65, 162–8 (erratum appears in Ann. Hematol. 1993; 66, 164)CrossRefGoogle ScholarPubMed
Hellstrom-Lindberg, E., Robert, K. H., Gahrton, G.et al. (1992). A predictive model for the clinical response to low dose ara-C: a study of 102 patients with myelodysplastic syndrome or acute leukemia. Br. J. Haematol., 81, 503–11CrossRefGoogle ScholarPubMed
Denzlinger, C., Bowen, D., Benz, D.et al. (2000). Low-dose melphalan induces favourable responses in elderly patients with high-risk myelodysplastic syndromes or secondary acute myeloid leukaemia. Br. J. Hematol., 108, 93–5CrossRefGoogle ScholarPubMed
Omoto, E., Deguchi, S., Takaba, S.et al. (1996). Low-dose melphalan for treatment of high-risk myelodysplastic syndromes. Leukemia, 10, 609–14Google ScholarPubMed
Ueda, K., Cardarelli, C., Gottesman, M. M., and Pastan, I. (1987). Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc. Natl Acad. Sci. U.S.A., 84, 3004–8CrossRefGoogle ScholarPubMed
Naito, M., Tsuge, H., Kuroko, C.et al. (1993). Enhancement of cellular accumulation of cyclosporine by anti-P-glycoprotein monoclonal antibody MRK-16 and synergistic modulation of multidrug resistance. J. Natl Cancer Inst., 85, 311–16CrossRefGoogle ScholarPubMed
Pallis, M. and Russell, N. (2000). P-glycoprotein plays a drug-efflux-independent role in augmenting cell survival in acute myeloblastic leukemia and is associated with modulation of a sphingomyelin-ceramide apoptotic pathway. Blood, 95, 2897–904Google Scholar
Johnstone, R. W., Cretney, E., and Smyth, M. J. (1999). P-glycoprotein protects leukemia cells against caspase-dependent, but not caspase-independent, cell death. Blood, 93, 1075–85Google Scholar
Smyth, M. J., Krasovskis, E., Sutton, V. R., and Johnstone, R. W. (1998). The drug efflux protein, P-glycoprotein, additionally protects drug-resistant tumor cells from multiple forms of caspase-dependent apoptosis. Proc. Natl Acad. Sci. U.S.A., 95, 7024–9CrossRefGoogle ScholarPubMed
List, A. F., Spier, C. M., Cline, A.et al. (1991). Expression of the multidrug resistance gene product (P-glycoprotein) in myelodysplasia is associated with a stem cell phenotype. Br. J. Haematol., 78, 28–34CrossRefGoogle ScholarPubMed
Samdani, A., Vijapurkar, U., Grimm, M. A.et al. (1996). Cytogenetics and p-glycoprotein (PGP) are independent predictors of treatment outcome in acute myeloid leukemia (AML). Leuk. Res., 202, 175–80CrossRefGoogle Scholar
Leith, C. P., Kopecky, K. J., Godwin, J.et al. (1997). Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest oncology group study. Blood, 89, 3323–9Google ScholarPubMed
List, A. F., Kopecky, K. J., Willman, C. L.et al. (2001). Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest oncology group study. Blood, 98, 3212–20CrossRefGoogle ScholarPubMed
Wattel, E., Solary, E., Hecquet, B.et al. (1998). Quinine improves the results of intensive chemotherapy in myelodysplastic syndromes expressing p-glycoprotein: results of a randomized study. Br. J. Haematol., 102, 1015–24CrossRefGoogle ScholarPubMed
Mahadevan, D. and List, A. F. (2004). Targeting the multidrug resistance-1 transporter: molecular regulation and implications for trials in AML. Blood, 104, 1940–51CrossRefGoogle Scholar
Uchida, T., Kinoshita, T., Nagai, H.et al. (1997). Hypermethylation of the P151NK3B gene in myelodysplastic syndromes. Blood, 90, 1403–9Google ScholarPubMed
Quesnel, B., Guillerm, G., Vereecque, R.et al. (1998). Methylation of the p15INK4B gene in myelodysplastic syndromes is frequent and acquired during disease progression. Blood, 91, 2985–90Google Scholar
Saiki, J. H., McCredie, K. B., Vietti, T. J.et al. (1978). 5-Azacytidine in acute leukemia. Cancer, 42, 2111–143.0.CO;2-I>CrossRefGoogle ScholarPubMed
Silverman, L. R., Holland, J. F., Weinberg, R. S.et al. (1993). Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia, 7 (suppl. 1), 21–9Google ScholarPubMed
Silverman, L. R., Holland, J. F., Nelson, D.et al. (1991). Trilineage response of myelodysplastic syndromes to subcutaneous azacytidine. Proc. Am. Soc. Clin. Oncol., 10, 222a (abstract)Google Scholar
Chitambar, C. R., Libnoch, J. A., Matthaeus, W. G.et al. (1991). Evaluation of continuous infusion of low-dose 5-azacytidine in the treatment of myelodysplastic syndromes. Am. J. Hematol., 37, 100–4CrossRefGoogle ScholarPubMed
Silverman, L. R., Demakos, E., Peterson, B.et al. (2002). Randomized controlled trial of azacytidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J. Clin. Oncol, 20, 2429–40CrossRefGoogle ScholarPubMed
Daskalakis, M., Nguyen, T. T., Nguyen, C.et al. (2002). Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-aza-2'-deoxycytidine (decitabine) treatment. Blood, 100, 2957–64CrossRefGoogle ScholarPubMed
Silverman, L. R., Davis, R. B., Holland, J. F.et al. (1989). 5-Azacytidine as a low-dose continuous infusion is an effective therapy for patients with myelodysplastic syndromes. Proc. Am. Soc. Clin. Oncol., 8, 198 (abstract 768)Google Scholar
Kornblith, A. B., Herndon, J. E. II, Silverman, L. R.et al. (2002). Impact of azacytidine on the quality of life of patients with myelodysplastic syndrome treated in a randomized Phase III trial: a cancer and leukemia group B study. J. Clin. Oncol., 20, 2441–52CrossRefGoogle Scholar
Kosugi, H., Towatari, M., Hatano, S.et al. (1999). Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: a new approach to anti-leukemia therapy. Leukemia, 13, 1316CrossRefGoogle ScholarPubMed
Ferrara, F. F., Fazi, F., Bianchini, A.et al. (2001). Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res., 61, 2Google ScholarPubMed
Piekarz, R. L., Robey, R., Sandor, V.et al. (2001). Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood, 98, 2865CrossRefGoogle ScholarPubMed
Cote, S., Rosenauer, A., Bianchini, A.et al. (2002). Response to histone deacetylase inhibition of novel PML/RARalpha mutants detected in retinoic acid-resistant APL cells. Blood, 100, 2586CrossRefGoogle ScholarPubMed
Gottlicher, M., Minucci, S., Zhu, P.et al. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J., 20, 6969CrossRefGoogle ScholarPubMed
Phiel, C. J., Zhang, F., Huang, E. Y.et al. (2001). Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J. Biol. Chem., 276, 36734CrossRefGoogle ScholarPubMed
Koyama, N., Koschmieder, S., Tyagi, S.et al. (2002). Differential effects of histone deacetylase inhibitors on interleukin-18 gene expression in myeloid cells. Biochem. Biophys. Res. Commun., 292, 937CrossRefGoogle ScholarPubMed
Jiemjit, A., Trujillo, M., and Gore, S. (2002). Induction of re-expression of silenced genes in acute myeliod leukaemia by valproic acid. Blood, 100, 540a (abstract)Google Scholar
Ferrero, D., Campa, E., Campana, S., Dellacasa, C., and Boccadoro, M. (2002). Preliminary experience with valproic acid in association to differentiative agents and low dose chemotherapy in poor prognosis AML. Blood, 100, 267b (abstract)Google Scholar
Castleberry, R. P., Emanuel, P. D., Zuckerman, K. S.et al. (1994). A pilot study of isotretinoin in the treatment of juvenile chronic myelogenous leukemia. N. Engl. J. Med., 331, 1680–4CrossRefGoogle ScholarPubMed
Stasi, R., Brunetti, M., Terzoli, E., and Amadori, S. (2002). Sustained response to recombinant human erythropoietin and intermittent all-trans retinoic acid in patients with myelodysplastic syndromes. Blood, 99, 1578CrossRefGoogle ScholarPubMed
Lyttle, M. H., Hocker, M. D., Hui, H. C.et al. (1994). Isozyme-specific glutathione-S-transferase inhibitors: design and synthesis. J. Med. Chem., 37, 189–94CrossRefGoogle ScholarPubMed
Ruscoe, J. E., Rosario, L. A., Wang, T.et al. (2001). Pharmacologic or genetic manipulation of glutathione S-transferase P1–1 (GSTpi) influences cell proliferation pathways. J. Pharmacol. Exp. Ther., 298, 339–45Google ScholarPubMed
Morgan, A. S., Stanboli, A., and Sanderson, P. E. (1996). TER199 increases bone marrow (BM) CFU-GM and peripheral platelet and neutrophil counts in myelosuppressed rodents. Blood, 88, 134bGoogle Scholar
Tew, K. D. (1994). Glutathione-associated enzymes in anticancer drug resistance. Cancer Res., 54, 4313–20Google ScholarPubMed
Meng, F., Broxmeyer, H. E., Toavs, D. K.et al. (2001). TLK199: a novel, small molecule myelostimulant. Proc. Annu. Meeting Am. Assoc. Cancer Res., 42, 214 (abstract 1144)Google Scholar
Faderl, S., Kantarjian, H., Estey, E.et al. (2003). Hematologic improvement following treatment with TLK199 (a novel glutathione analog inhibitor of GST (1–1) in myelodysplastic synrome: interim results of a phase I/IIa study. Blood, 102 (suppl. 1), 426aGoogle Scholar
Reuter, C. W. M., Morgan, M. A., and Bergmann, L. (2000). Targeting the ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies?Blood, 96, 1655–69Google ScholarPubMed
Tobal, K., Pagluca, A., Bhatt, B.et al. (1990). Mutation of the human FMS gene (M-CSF receptor) in myelodysplastic syndromes and acute myeloid leukemia. Leukemia, 4, 486–9Google ScholarPubMed
Hirsch-Ginsberg, C., LeMaistre, A. C., Kantarjian, H.et al. (1990). Ras mutations are rare events in Philadelphia chromosome-negative bcr gene rearrangement-negative chronic myelogenous leukemia, but are prevalent in chronic myelomonocytic leukemia. Blood, 76, 1214–19Google ScholarPubMed
Melani, C., Haliassos, A., Chomel, J. C.et al. (1990). Ras activation in myelodysplastic syndromes: clinical and molecular study of the chronic phase of the disease. Br. J. Haematol., 74, 408CrossRefGoogle ScholarPubMed
Padua, R. A., Guinn, B. A., Al-Sabah, A. I.et al. (1998). RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia, 12, 887CrossRefGoogle ScholarPubMed
Side, L. E., Emanuel, P. D., Taylor, B.et al. (1998). Mutations of the NF1 gene in children with juvenile myelomonocytic leukemia without clinical evidence of neurofibromatosis, type 1. Blood, 92, 267–72Google ScholarPubMed
Karp, J. E., Lancet, J. E., Kaufmann, S. H.et al. (2001). Clinical and biologic activity of the farnesyl transferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase I clinical-laboratory correlative trial. Blood, 97, 3361–9CrossRefGoogle ScholarPubMed
Kurzrock, R., Albitar, M., Cortes, J. E.et al. (2004). Phase II study of R115777, a farnesyl transferase inhibitor, in myelodysplastic syndrome. J. Clin. Oncol., 22, 1287–92CrossRefGoogle ScholarPubMed
Kurzrock, R., Kantarjian, H. M., Cortes, J. E.et al. (2003). Farnesyltransferase inhibitor R115777 in myelodysplastic syndrome: clinical and biologic activities in the phase 1 setting. Blood, 102, 4527–34CrossRefGoogle ScholarPubMed
Liu, M., Bryant, M. S., Chen, J.et al. (1998). Antitumor activity of SCH 66336, an orally bioavailable tricyclic inhibitor of farnesyl protein transferase, in human tumor xenograft models and Wap-ras transgenic mice. Cancer Res., 58, 4947–56Google ScholarPubMed
Buresh, A., Perentesis, J., Rimsza, L.et al. (2004). Hyperleukoytosis complicating treatment with lonafarnib in patients with chronic myelomonocytic leukemia. Leukemia, 19, 308–10CrossRefGoogle Scholar
Cortes, J., Holyoake, T., Silver, R.et al. (2002). Continuous oral lonafarnib (Sarasar™) for the treatment of patients with advanced hematologic malignancies: a Phase II study. Blood, 100, 793aGoogle Scholar
Feldman, E., Cortes, J., Holyoake, T.et al. (2003). Continuous oral lonafarnib (Sarasar ™) for the treatment of patients with myelodysplastic syndrome. Blood, 102, abstract 1531Google Scholar
List, A. F., Tache-Tallmadge, C., Tate, W.et al. (2003). Lonafarnib (Sarasar™) modulates integrin affinity to promote homotypic and heterotypic adhesion of chronic myelomonocytic leukemia (CMML) cells. Proc. Am. Assoc. Cancer Res., 44, 39aGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×