Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T05:00:39.668Z Has data issue: false hasContentIssue false

Section 2 - Anatomical Studies

Published online by Cambridge University Press:  12 January 2021

Sudhakar Selvaraj
Affiliation:
UTHealth School of Medicine, USA
Paolo Brambilla
Affiliation:
Università degli Studi di Milano
Jair C. Soares
Affiliation:
UT Harris County Psychiatric Center, USA
Get access
Type
Chapter
Information
Mood Disorders
Brain Imaging and Therapeutic Implications
, pp. 7 - 38
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Bromet, E, Andrade, LH, Hwang, I, et al. Cross-national epidemiology of DSM-IV major depressive episode. BMC Med. 2011 July; 26(9): 90.CrossRefGoogle Scholar
WHO. World Health: Reducing Risks, Promoting Health Life. WHO, Geneva, Switzerland; 2002.Google Scholar
Cleare, A, Pariante, CM, Young, AH, et al. Evidence-based guidelines for treating depressive disorders with antidepressants: a revision of the 2008 British Association for Psychopharmacology guidelines. J Psychopharmacol Oxf Engl. 2015 May; 29(5): 459525.CrossRefGoogle ScholarPubMed
Lee, AL, Ogle, WO, Sapolsky, RM. Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord. 2002 April; 4(2): 117128.CrossRefGoogle ScholarPubMed
Arnone, D, McIntosh, AM, Ebmeier, KP, Munafò, MR, Anderson, IM. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2012 January; 22(1): 116.CrossRefGoogle ScholarPubMed
Koolschijn, PCMP, van Haren, NEM, Lensvelt-Mulders, GJLM, Hulshoff Pol, HE, Kahn, RS. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp. 2009 November; 30(11): 37193735.CrossRefGoogle ScholarPubMed
Arnone, D, Cavanagh, J, Gerber, D, et al. Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatry J Ment Sci. 2009 September; 195(3): 194201.CrossRefGoogle ScholarPubMed
Bora, E, Fornito, A, Pantelis, C, Yücel, M. Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J Affect Disord. 2012 April; 138(1–2): 918.CrossRefGoogle ScholarPubMed
Schmaal, L, Hibar, DP, Sämann, PG, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. Mol Psychiatry. 2017; 22(6): 900909.CrossRefGoogle ScholarPubMed
Arnone, D, Job, D, Selvaraj, S, et al. Computational meta-analysis of statistical parametric maps in major depression. Hum Brain Mapp. 2016 April; 37(4): 13931404.CrossRefGoogle ScholarPubMed
Adolphs, R. Neural systems for recognizing emotion. Curr Opin Neurobiol. 2002 April; 12(2): 169177.CrossRefGoogle ScholarPubMed
Phillips, ML, Ladouceur, CD, Drevets, WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008 September; 13(9): 829, 833857.CrossRefGoogle ScholarPubMed
Kempton, MJ, Salvador, Z, Munafò, MR, et al. Structural neuroimaging studies in major depressive disorder: meta-analysis and comparison with bipolar disorder. Arch Gen Psychiatry. 2011 July; 68(7): 675690.CrossRefGoogle ScholarPubMed
Wise, T, Radua, J, Nortje, G, et al. Voxel-based meta-analytical evidence of structural disconnectivity in major depression and bipolar disorder. Biol Psychiatry. 2016 February 15; 79(4): 293302.CrossRefGoogle ScholarPubMed
Liao, Y, Huang, X, Wu, Q, et al. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J Psychiatry Neurosci JPN. 2013 January; 38(1): 4956.CrossRefGoogle ScholarPubMed
Arnone, D, McIntosh, AM, Chandra, P, Ebmeier, KP. Meta-analysis of magnetic resonance imaging studies of the corpus callosum in bipolar disorder. Acta Psychiatr Scand. 2008 November; 118(5): 357362.CrossRefGoogle ScholarPubMed
Ongür, D, Drevets, WC, Price, JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A. 1998 October 27; 95(22): 1329013295.CrossRefGoogle ScholarPubMed
Cotter, D, Mackay, D, Chana, G, et al. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex N Y N 1991. 2002 April; 12(4): 386394.Google ScholarPubMed
Uranova, NA, Vostrikov, VM, Orlovskaya, DD, Rachmanova, VI. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res. 2004 April 1; 67(2–3): 269275.CrossRefGoogle ScholarPubMed
Rajkowska, G, Miguel-Hidalgo, JJ, Wei, J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999 May 1; 45(9): 10851098.CrossRefGoogle ScholarPubMed
Cotter, D, Mackay, D, Landau, S, Kerwin, R, Everall, I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001 June; 58(6): 545553.CrossRefGoogle ScholarPubMed
Stockmeier, CA, Mahajan, GJ, Konick, LC, et al. Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry. 2004 November 1; 56(9): 640650.CrossRefGoogle ScholarPubMed
Tsopelas, C, Stewart, R, Savva, GM, et al. Neuropathological correlates of late-life depression in older people. Br J Psychiatry J Ment Sci. 2011 February; 198(2): 109114.CrossRefGoogle ScholarPubMed
Bowley, MP, Drevets, WC, Ongür, D, Price, JL. Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry. 2002 September 1; 52(5): 404412.CrossRefGoogle ScholarPubMed
Bielau, H, Brisch, R, Gos, T, et al. Volumetric analysis of the hypothalamus, amygdala and hippocampus in non-suicidal and suicidal mood disorder patients–a post-mortem study. CNS Neurol Disord Drug Targets. 2013 November; 12(7): 914920.CrossRefGoogle ScholarPubMed
Baumann, B, Bielau, H, Krell, D, et al. Circumscribed numerical deficit of dorsal raphe neurons in mood disorders. Psychol Med. 2002 January; 32(1): 93103.CrossRefGoogle ScholarPubMed
Oh, DH, Son, H, Hwang, S, Kim, SH. Neuropathological abnormalities of astrocytes, GABAergic neurons, and pyramidal neurons in the dorsolateral prefrontal cortices of patients with major depressive disorder. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2012 May; 22(5): 330338.CrossRefGoogle ScholarPubMed
Bernard, R, Kerman, IA, Thompson, RC, et al. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry. 2011 June; 16(6): 634646.CrossRefGoogle ScholarPubMed
Cowen, PJ. Not fade away: the HPA axis and depression. Psychol Med. 2010 January; 40(1): 14.CrossRefGoogle ScholarPubMed
Duman, RS, Monteggia, LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006 June 15; 59(12): 11161127.CrossRefGoogle ScholarPubMed
Lanfumey, L, Mongeau, R, Cohen-Salmon, C, Hamon, M. Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev. 2008 August; 32(6): 11741184.CrossRefGoogle ScholarPubMed
Manji, HK, Drevets, WC, Charney, DS. The cellular neurobiology of depression. Nat Med. 2001 May; 7(5): 541547.CrossRefGoogle ScholarPubMed
Sapolsky, RM. Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry. 2000 October; 57(10): 925935.CrossRefGoogle ScholarPubMed
Young, LT, Bakish, D, Beaulieu, S. The neurobiology of treatment response to antidepressants and mood stabilizing medications. J Psychiatry Neurosci JPN. 2002 July; 27(4): 260265.Google ScholarPubMed
Campbell, S, Macqueen, G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci JPN. 2004 November; 29(6): 417426.Google ScholarPubMed
Leal, G, Comprido, D, de Luca, P, et al. The RNA-binding protein hnRNP K mediates the effect of BDNF on dendritic mRNA metabolism and regulates synaptic NMDA receptors in hippocampal neurons. eNeuro. 2017 December 12; 4(6): ENEURO.0268–17.2017.CrossRefGoogle ScholarPubMed
Arnone, D, Mumuni, AN, Jauhar, S, Condon, B, Cavanagh, J. Indirect evidence of selective glial involvement in glutamate-based mechanisms of mood regulation in depression: meta-analysis of absolute prefrontal neuro-metabolic concentrations. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2015 August; 25(8): 11091117.CrossRefGoogle ScholarPubMed
MacQueen, GM, Campbell, S, McEwen, BS, et al. Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci U S A. 2003 February 4; 100(3): 13871392.CrossRefGoogle ScholarPubMed
Stewart, RJ, Chen, B, Dowlatshahi, D, MacQueen, GM, Young, LT. Abnormalities in the cAMP signaling pathway in post-mortem brain tissue from the Stanley Neuropathology Consortium. Brain Res Bull. 2001 July 15; 55(5): 625629.CrossRefGoogle ScholarPubMed
Dowlatshahi, D, MacQueen, GM, Wang, JF, Young, LT. Increased temporal cortex CREB concentrations and antidepressant treatment in major depression. Lancet Lond Engl. 1998 November 28; 352(9142): 17541755.Google ScholarPubMed
Eker, C, Kitis, O, Taneli, F, et al. Correlation of serum BDNF levels with hippocampal volumes in first episode, medication-free depressed patients. Eur Arch Psychiatry Clin Neurosci. 2010 October; 260(7): 527533.CrossRefGoogle ScholarPubMed
Aydemir, O, Deveci, A, Taneli, F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2005 February; 29(2): 261265.CrossRefGoogle ScholarPubMed
Frodl, T, Meisenzahl, EM, Zill, P, et al. Reduced hippocampal volumes associated with the long variant of the serotonin transporter polymorphism in major depression. Arch Gen Psychiatry. 2004 February; 61(2): 177183.CrossRefGoogle Scholar
Lai, C-H, Hsu, Y-Y. A subtle grey-matter increase in first-episode, drug-naive major depressive disorder with panic disorder after 6 weeks’ duloxetine therapy. Int J Neuropsychopharmacol. 2011 March; 14(2): 225235.CrossRefGoogle ScholarPubMed
Vakili, K, Pillay, SS, Lafer, B, et al. Hippocampal volume in primary unipolar major depression: a magnetic resonance imaging study. Biol Psychiatry. 2000 June 15; 47(12): 10871090.CrossRefGoogle ScholarPubMed
Hsieh, M-H, McQuoid, DR, Levy, RM, et al. Hippocampal volume and antidepressant response in geriatric depression. Int J Geriatr Psychiatry. 2002 June; 17(6): 519525.CrossRefGoogle ScholarPubMed
MacQueen, GM, Yucel, K, Taylor, VH, Macdonald, K, Joffe, R. Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry. 2008 November 15; 64(10): 880883.CrossRefGoogle ScholarPubMed
Chen, RW, Chuang, DM. Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity.J Biol Chem. 1999 March 5; 274(10): 60396042.CrossRefGoogle ScholarPubMed
Manji, HK, Moore, GJ, Chen, G. Lithium at 50: have the neuroprotective effects of this unique cation been overlooked? Biol Psychiatry. 1999 October 1; 46(7): 929940.CrossRefGoogle ScholarPubMed
Goodwin, GM, Haddad, PM, Ferrier, IN, et al. Evidence-based guidelines for treating bipolar disorder: revised third edition recommendations from the British Association for Psychopharmacology. J Psychopharmacol Oxf Engl. 2016; 30(6): 495553.CrossRefGoogle ScholarPubMed
Manji, HK, Bebchuk, JM, Moore, GJ, et al. Modulation of CNS signal transduction pathways and gene expression by mood-stabilizing agents: therapeutic implications. J Clin Psychiatry. 1999; 60(Suppl. 2): 2739;discussion 4041, 113116.Google ScholarPubMed
Chen, G, Hasanat, KA, Bebchuk, JM, et al. Regulation of signal transduction pathways and gene expression by mood stabilizers and antidepressants. Psychosom Med. 1999 October; 61(5): 599617.CrossRefGoogle ScholarPubMed
Abe, O, Yamasue, H, Kasai, K, et al. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Psychiatry Res. 2010 January 30; 181(1): 6470.CrossRefGoogle ScholarPubMed
Bell-McGinty, S, Butters, MA, Meltzer, CC, et al. Brain morphometric abnormalities in geriatric depression: long-term neurobiological effects of illness duration. Am J Psychiatry. 2002 August; 159(8): 14241427.CrossRefGoogle ScholarPubMed
Bergouignan, L, Chupin, M, Czechowska, Y, Kinkingnéhun, S, Lemogne, C, Le Bastard, G, et al. Can voxel based morphometry, manual segmentation and automated segmentation equally detect hippocampal volume differences in acute depression? NeuroImage. 2009 March 1; 45(1): 2937.CrossRefGoogle ScholarPubMed
Kim, MJ, Hamilton, JP, Gotlib, IH. Reduced caudate gray matter volume in women with major depressive disorder. Psychiatry Res. 2008 November 30; 164(2): 114122.CrossRefGoogle ScholarPubMed
Mak, AKY, Wong, MMC, Han, S-H, Lee, TMC. Gray matter reduction associated with emotion regulation in female outpatients with major depressive disorder: A voxel-based morphometry study. Prog Neuropsychopharmacol Biol Psychiatry. 2009 October 1; 33(7): 11841190.CrossRefGoogle ScholarPubMed
Peng, J, Liu, J, Nie, B, et al. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: A voxel-based morphometry study. Eur J Radiol. 2011 November; 80(2): 395399.CrossRefGoogle ScholarPubMed
Shah, PJ, Ebmeier, KP, Glabus, MF, Goodwin, GM. Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry J Ment Sci. 1998 June; 172: 527532.CrossRefGoogle ScholarPubMed
Wagner, G, Koch, K, Schachtzabel, C, et al. Structural brain alterations in patients with major depressive disorder and high risk for suicide: Evidence for a distinct neurobiological entity? NeuroImage. 2011 January 15; 54(2): 16071614.CrossRefGoogle ScholarPubMed
Cheng, Y-Q, Xu, J, Chai, P, et al. Brain volume alteration and the correlations with the clinical characteristics in drug-naïve first-episode MDD patients: A voxel-based morphometry study. Neurosci Lett. 2010 August 9; 480(1): 3034.CrossRefGoogle ScholarPubMed
Lai, C-H, Hsu, Y-Y, Wu, Y-T. First episode drug-naïve major depressive disorder with panic disorder: Gray matter deficits in limbic and default network structures. Eur Neuropsychopharmacol J Eur Coll Neuropsychopharmacol. 2010 October; 20(10): 676682.CrossRefGoogle ScholarPubMed
Zou, K, Deng, W, Li, T, et al. Changes of brain morphometry in first-episode, drug-naïve, non-late-life adult patients with major depression: An optimized voxel-based morphometry study. Biol Psychiatry. 2010 January 15; 67(2): 186188.CrossRefGoogle ScholarPubMed
Arnone, D, et al. State-dependent changes in hippocampal grey matter in depression. 2013; Available from: http://doi.org/10.1038/mp.2012.150CrossRefGoogle Scholar
McKinnon, MC, Yucel, K, Nazarov, A, MacQueen, GM. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci JPN. 2009 January; 34(1): 4154.Google ScholarPubMed
Gerritsen, L, Comijs, HC, van der Graaf, Y, et al. Depression, hypothalamic pituitary adrenal axis, and hippocampal and entorhinal cortex volumes–the SMART Medea study. Biol Psychiatry. 2011 August 15; 70(4): 373380.CrossRefGoogle ScholarPubMed
Hickie, I, Naismith, S, Ward, PB, et al. Reduced hippocampal volumes and memory loss in patients with early- and late-onset depression. Br J Psychiatry J Ment Sci. 2005 March; 186: 197202.CrossRefGoogle ScholarPubMed
Videbech, P, Ravnkilde, B. Hippocampal volume and depression: A meta-analysis of MRI studies. Am J Psychiatry. 2004 November; 161(11): 19571966.CrossRefGoogle ScholarPubMed
Salvadore, G, Nugent, AC, Lemaitre, H, et al. Prefrontal cortical abnormalities in currently depressed versus currently remitted patients with major depressive disorder. NeuroImage. 2011 February 14; 54(4): 26432651.CrossRefGoogle ScholarPubMed
Wise, T, Radua, J, Via, E, et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Mol Psychiatry. 2017 October; 22(10): 14551463.CrossRefGoogle ScholarPubMed
Rao, U, Chen, L-A, Bidesi, AS, et al. Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry. 2010 February 15; 67(4): 357364.CrossRefGoogle ScholarPubMed
Amico, F, Meisenzahl, E, Koutsouleris, N, et al. Structural MRI correlates for vulnerability and resilience to major depressive disorder. J Psychiatry Neurosci JPN. 2011 January; 36(1): 1522.CrossRefGoogle ScholarPubMed
Vythilingam, M, Vermetten, E, Anderson, GM, et al. Hippocampal volume, memory, and cortisol status in major depressive disorder: Effects of treatment. Biol Psychiatry. 2004 July 15; 56(2): 101112.CrossRefGoogle ScholarPubMed
Kaufman, J, Yang, B-Z, Douglas-Palumberi, H, et al. Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biol Psychiatry. 2006 April 15; 59(8): 673680.CrossRefGoogle ScholarPubMed
Soetanto, A, Wilson, RS, Talbot, K, et al. Association of anxiety and depression with microtubule-associated protein 2- and synaptopodin-immunolabeled dendrite and spine densities in hippocampal CA3 of older humans. Arch Gen Psychiatry. 2010 May; 67(5): 448457.CrossRefGoogle ScholarPubMed
Wise, T, Cleare, AJ, Herane, A, Young, AH, Arnone, D. Diagnostic and therapeutic utility of neuroimaging in depression: An overview. Neuropsychiatr Dis Treat. 2014; 10: 15091522.Google ScholarPubMed
Antonio, Damasio. Descartes’ Error: Emotion, Reason and the Human Brain. Random House; 2008.Google Scholar
Damasio, AR, Tranel, D, Damasio, H. Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behav Brain Res. 1990 December 14; 41(2): 8194.CrossRefGoogle ScholarPubMed
Bechara, A, Damasio, H, Damasio, AR. Emotion, decision making and the orbitofrontal cortex. Cereb Cortex N Y N 1991. 2000 March; 10(3): 295307.Google ScholarPubMed
Saleem, KS, Kondo, H, Price, JL. Complementary circuits connecting the orbital and medial prefrontal networks with the temporal, insular, and opercular cortex in the macaque monkey. J Comp Neurol. 2008 February 1; 506(4): 659693.CrossRefGoogle ScholarPubMed
Price, JL, Drevets, WC. Neurocircuitry of mood disorders. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2010 January; 35(1): 192216.CrossRefGoogle ScholarPubMed
Spencer, SJ, Fox, JC, Day, TA. Thalamic paraventricular nucleus lesions facilitate central amygdala neuronal responses to acute psychological stress. Brain Res. 2004 February 6; 997(2): 234237.CrossRefGoogle ScholarPubMed
Mayberg, HS. Limbic-cortical dysregulation: A proposed model of depression. J Neuropsychiatry Clin Neurosci. 1997; 9(3): 471481.Google ScholarPubMed
Mayberg, HS. Targeted electrode-based modulation of neural circuits for depression. J Clin Invest. 2009 April; 119(4): 717725.CrossRefGoogle ScholarPubMed
Adolphs, R. Neural systems for recognizing emotion. Curr Opin Neurobiol. 2002 April; 12(2): 169177.CrossRefGoogle ScholarPubMed

References

Panizzon, MS, Fennema-Notestine, C, Eyler, LT, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex. 2009; 19(11): 27282735.CrossRefGoogle ScholarPubMed
Pearlson, GD, Garbacz, DJ, Moberg, PJ, et al. Symptomatic, familial, perinatal, and social correlates of computerized axial tomography (CAT) changes in schizophrenics and bipolars. Journal of Nervous and Mental Disease. 1985; 173: 4250.CrossRefGoogle ScholarPubMed
Strakowski, SM, DelBello, MP, Adler, CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry. 2005; 10(1): 105116.CrossRefGoogle ScholarPubMed
McDonald, C, Zanelli, J, Rabe-Hesketh, S, et al. Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder. Biol Psychiatry. 2004; 56(6): 411417.CrossRefGoogle ScholarPubMed
Kempton, MJ, Geddes, JR, Ettinger, U, et al. Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch Gen Psychiatry. 2008; 65(9): 10171032.CrossRefGoogle ScholarPubMed
Arnone, D, Cavanagh, J, Gerber, D, et al. Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. Br J Psychiatry. 2009; 195(3): 194201.CrossRefGoogle ScholarPubMed
Hallahan, B, Newell, J, Soares, JC, et al. Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biol Psychiatry. 2011; 69(4): 326335.CrossRefGoogle ScholarPubMed
Hibar, DP, Westlye, LT, Van Erp, TGM, et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry. 2016; 21(12): 17101716.CrossRefGoogle ScholarPubMed
Wright, IC, Rabe-Hesketh, S, Woodruff, PWR, et al. Meta – analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry. 2000 January; 157(1): 1625.CrossRefGoogle ScholarPubMed
Starkstein, SE, Fedoroff, P, Berthier, ML, et al. Manic-depressive and pure manic states after brain lesions. Biol Psychiatry. 1991; 29(2): 149158.CrossRefGoogle ScholarPubMed
Arnone, D, McIntosh, AM, Chandra, P, et al. Meta-analysis of magnetic resonance imaging studies of the corpus callosum in bipolar disorder. Acta Psychiatr Scand. 2008; 118(5): 357362.CrossRefGoogle ScholarPubMed
Ganzola, R, Duchesne, S. Voxel-based morphometry meta-analysis of gray and white matter finds significant areas of differences in bipolar patients from healthy controls. Bipolar Disord. 2017; 19(2): 7483.CrossRefGoogle ScholarPubMed
Akudjedu, TN, Nabulsi, L, Makelyte, M, et al. A comparative study of segmentation techniques for the quantification of brain subcortical volume. Brain Imaging Behav. 2018 December; 12(6): 16781695.CrossRefGoogle ScholarPubMed
Otten, M, Meeter, M. Hippocampal structure and function in individuals with bipolar disorder: a systematic review. J Affect Disord. 2015; 174: 113125.CrossRefGoogle ScholarPubMed
Ellison-Wright, I, Bullmore, E. Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophr Res. 2010; 117(1): 112.CrossRefGoogle ScholarPubMed
Bora, E, Fornito, A, Yücel, M, et al. Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry. 2010; 67(11): 10971105.CrossRefGoogle ScholarPubMed
Bora, E, Fornito, A, Yücel, M, et al. The effects of gender on grey matter abnormalities in major psychoses: a comparative voxelwise meta-analysis of schizophrenia and bipolar disorder. Psychol Med. 2012; 42(2): 295307.CrossRefGoogle ScholarPubMed
Houenou, J, Frommberger, J, Carde, S, et al. Neuroimaging-based markers of bipolar disorder: evidence from two meta-analyses. J Affect Disord. 2011; 132(3): 344355.CrossRefGoogle ScholarPubMed
Selvaraj, S, Arnone, D, Job, D, et al. Grey matter differences in bipolar disorder: a meta-analysis of voxel-based morphometry studies. Bipolar Disord. 2012; 14(2): 135145.CrossRefGoogle ScholarPubMed
Hanford, LC, Nazarov, A, Hall, GB, et al. Cortical thickness in bipolar disorder: a systematic review. Bipolar Disord. 2016; 18(1): 418.CrossRefGoogle ScholarPubMed
Hibar, DP, Westlye, LT, Doan, NT, et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018; 23(4): 932942.CrossRefGoogle ScholarPubMed
Altshuler, LL, Curran, J, Hauser, P, et al. T2 hyperintensities in bipolar disorder: magnetic resonance imaging comparison and literature meta-analysis. Am J Psychiatry. 1995; 152: 11391144.Google ScholarPubMed
Swayze, VW, Andreasen, NC, Alliger, RJ, et al. Structural brain abnormalities in bipolar affective disorder: ventricular enlargement and focal signal hyperintensities. Arch Gen Psychiatry. 1990; 47(11): 10541059.CrossRefGoogle ScholarPubMed
Beyer, JL, Young, R, Kuchibhatla, M, et al. Hyperintense MRI lesions in bipolar disorder: a meta-analysis and review. Int Rev Psychiatry. 2009; 21(4): 394409.CrossRefGoogle ScholarPubMed
Sarrazin, S, d’Albis, MA, McDonald, C, et al. Corpus callosum area in patients with bipolar disorder with and without psychotic features: an international multicentre study. J Psychiatry Neurosci. 2015; 40(5): 352359.CrossRefGoogle ScholarPubMed
Pezzoli, S, Emsell, L, Yip, SW, et al. Meta-analysis of regional white matter volume in bipolar disorder with replication in an independent sample using coordinates, T-maps, and individual MRI data. Neurosci Biobehav Rev. 2018; 84: 162170.CrossRefGoogle Scholar
Le Bihan, D, Mangin, J-F, Poupon, C, et al. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001; 13(4): 534546.CrossRefGoogle ScholarPubMed
Jones, DK. Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging Med. 2010; 2(3): 341355.CrossRefGoogle Scholar
Vederine, FE, Wessa, M, Leboyer, M, et al. A meta-analysis of whole-brain diffusion tensor imaging studies in bipolar disorder. Prog Neuro-Psychopharmacology Biol Psychiatry. 2011; 35(8): 18201826.CrossRefGoogle ScholarPubMed
Phillips, ML, Ladouceur, CD, Drevets, WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008; 13(9): 833857.CrossRefGoogle ScholarPubMed
Phillips, ML, Drevets, WC, Rauch, SL, et al. Neurobiology of emotion perception II: implications for major psychiatric disorders. Biol Psychiatry. 2003; 54(5): 515528.CrossRefGoogle ScholarPubMed
Nortje, G, Stein, DJ, Radua, J, et al. Systematic review and voxel-based meta-analysis of diffusion tensor imaging studies in bipolar disorder. J Affect Disord. 2013; 150(2): 192200.CrossRefGoogle ScholarPubMed
Wise, T, Radua, J, Nortje, G, et al. Voxel-based meta-analytical evidence of structural disconnectivity in major depression and bipolar disorder. Biol Psychiatry. 2016; 79(4): 293302.CrossRefGoogle ScholarPubMed
Leow, A, Ajilore, O, Zhan, L, et al. Impaired inter-hemispheric integration in bipolar disorder revealed with brain network analyses. Biol Psychiatry. 2013; 73(2): 183193.CrossRefGoogle ScholarPubMed
Emsell, L, Leemans, A, Langan, C, et al. Limbic and callosal white matter changes in euthymic bipolar I disorder: an advanced diffusion magnetic resonance imaging tractography study. Biol Psychiatry. 2013; 73(2): 194201.CrossRefGoogle ScholarPubMed
Sarrazin, S, Poupon, C, Linke, J, et al. A multicenter tractography study of deep white matter tracts in bipolar I disorder: psychotic features and interhemispheric disconnectivity. JAMA Psychiatry. 2014; 71(4): 388396.CrossRefGoogle ScholarPubMed
Emsell, L, McDonald, C. The structural neuroimaging of bipolar disorder. Int Rev Psychiatry. 2009; 21(4): 297313.CrossRefGoogle ScholarPubMed
Mahon, K, Burdick, KE, Szeszko, PR. A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neurosci Biobehav Rev. 2010; 34(4): 533554.CrossRefGoogle ScholarPubMed
Stephan, KE, Friston, KJ, Frith, CD. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009; 35(3): 509527.CrossRefGoogle ScholarPubMed
O’Donoghue, S, Cannon, DM, Perlini, C, et al. Applying neuroimaging to detect neuroanatomical dysconnectivity in psychosis. Epidemiol Psychiatr Sci. 2015; 24(4): 298302.CrossRefGoogle ScholarPubMed
Collin, G, van den Heuvel, MP, Abramovic, L, et al. Brain network analysis reveals affected connectome structure in bipolar I disorder. Hum Brain Mapp. 2016; 37(1): 122134.CrossRefGoogle ScholarPubMed
O’Donoghue, S, Kilmartin, L, O’Hora, D, et al. Anatomical integration and rich-club connectivity in euthymic bipolar disorder. Psychol Med. 2017; 47(9): 16091623.CrossRefGoogle ScholarPubMed
Wang, Y, Deng, F, Jia, Y, et al. Disrupted rich club organization and structural brain connectome in unmedicated bipolar disorder. 2019 February; 49(3): 510518.CrossRefGoogle Scholar
Forde, NJ, O’Donoghue, S, Scanlon, C, et al. Structural brain network analysis in families multiply affected with bipolar I disorder. Psychiatry Res – Neuroimaging. 2015; 234(1): 4451.CrossRefGoogle ScholarPubMed
Ajilore, O, Vizueta, N, Walshaw, P, et al. Connectome signatures of neurocognitive abnormalities in euthymic bipolar I disorder. J Psychiatr Res. 2015; 68: 3744.CrossRefGoogle ScholarPubMed
Gadelkarim, JJ, Ajilore, O, Schonfeld, D, et al. Investigating brain community structure abnormalities in bipolar disorder using path length associated community estimation. Hum Brain Mapp. 2014; 35(5): 22532264.CrossRefGoogle ScholarPubMed
van den Heuvel, MP, Sporns, O. An anatomical substrate for integration among functional networks in human cortex. J Neurosci. 2013; 33(36): 1448914500.CrossRefGoogle ScholarPubMed
Van Erp, TGM, Hibar, DP, Rasmussen, JM, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2016; 21(4): 547553.CrossRefGoogle ScholarPubMed
Schmaal, L, Veltman, DJ, van Erp, TGM, et al. Subcortical brain alterations in major depressive disorder: Findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry. 2016; 21(6): 806812.CrossRefGoogle ScholarPubMed
van Erp, TG, Walton, E, Hibar, DP, et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 controls via the ENIGMA consortium. Biol Psychiatry. 2018 November 1; 84(9): 644654.CrossRefGoogle ScholarPubMed
Schmaal, L, Hibar, DP, Sämann, PG, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. Mol Psychiatry. 2017; 22(6): 900909.CrossRefGoogle ScholarPubMed
Maggioni, E, Crespo-Facorro, B, Nenadic, I, et al. Common and distinct structural features of schizophrenia and bipolar disorder: The European network on psychosis, affective disorders and cognitive trajectory (ENPACT) study. PLoS One. 2017; 12(11): 122.CrossRefGoogle ScholarPubMed
Wise, T, Radua, J, Via, E, et al. Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Mol Psychiatry. 2016 October; 22(10): 14551463.CrossRefGoogle ScholarPubMed
Kempton, M, Salvador, Z, R Munafò, M, et al. Structural neuroimaging studies in major depressive disorder: Meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry. 2011; 68: 675690CrossRefGoogle ScholarPubMed
Sussmann, JE, Lymer, GKS, McKirdy, J, et al. White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging. Bipolar Disord. 2009 February; 11(1): 1118.CrossRefGoogle ScholarPubMed
Skudlarski, P, Schretlen, DJ, Thaker, GK, et al. Diffusion tensor imaging white matter endophenotypes in patients with schizophrenia or psychotic bipolar disorder and their relatives. Am J Psychiatry. 2013; 170(8): 886898.CrossRefGoogle ScholarPubMed
Kumar, J, Iwabuchi, S, Oowise, S, et al. Europe PMC Funders Group. Shared white matter dysconnectivity in schizophrenia and bipolar disorder with psychosis. Psychoogical Medicine. 2015; 45(4): 759770.CrossRefGoogle ScholarPubMed
Squarcina, L, Bellani, M, Rossetti, MG, et al. Similar white matter changes in schizophrenia and bipolar disorder: A tract-based spatial statistics study. PLoS One. 2017; 12(6): 117.CrossRefGoogle ScholarPubMed
O’Donoghue, S, Holleran, L, Cannon, DM, et al. Anatomical dysconnectivity in bipolar disorder compared with schizophrenia: A selective review of structural network analyses using diffusion MRI. J Affect Disord. 2017; 209: 217228.CrossRefGoogle ScholarPubMed
Liberg, B, Rahm, C, Panayiotou, A, et al. Brain change trajectories that differentiate the major psychoses. Eur J Clin Invest. 2016; 46(7): 658674.CrossRefGoogle ScholarPubMed
Quiroz, JA, MacHado-Vieira, R, Zarate, CA, et al. Novel insights into lithium’s mechanism of action: Neurotrophic and neuroprotective effects. Neuropsychobiology. 2010; 62(1): 5060.CrossRefGoogle ScholarPubMed
Sun, YR, Herrmann, N, Scott, CJM, et al. Global grey matter volume in adult bipolar patients with and without lithium treatment: A meta-analysis. J Affect Disord. 2018; 225: 599606.CrossRefGoogle ScholarPubMed
Abramovic, L, Boks, MPM, Vreeker, A, et al. The association of antipsychotic medication and lithium with brain measures in patients with bipolar disorder. Eur Neuropsychopharmacol. 2016; 26(11): 17411751.CrossRefGoogle ScholarPubMed
Yucel, K, McKinnon, MC, Taylor, VH, et al. Bilateral hippocampal volume increases after long-term lithium treatment in patients with bipolar disorder: A longitudinal MRI study. Psychopharmacology. 2007; 195(3): 357367.CrossRefGoogle ScholarPubMed
Lyoo, IK, Dager, SR, Kim, JE, et al. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: A longitudinal brain imaging study. Neuropsychopharmacology. 2010; 35(8): 17431750.CrossRefGoogle ScholarPubMed
Selek, S, Nicoletti, M, Zunta-Soares, GB, et al. A longitudinal study of fronto-limbic brain structures in patients with bipolar I disorder during lithium treatment. J Affect Disord. 2013; 150(2): 629633.CrossRefGoogle ScholarPubMed
Hafeman, DM, Chang, KD, Garrett, AS, et al. Effects of medication on neuroimaging findings in bipolar disorder: An updated review. Bipolar Disord. 2012; 14(4): 375410.CrossRefGoogle ScholarPubMed
McDonald, C. Brain structural effects of psychopharmacological treatment in bipolar disorder. Curr Neuropharmacol. 2015; 13(4): 445457.CrossRefGoogle ScholarPubMed
Vernon, AC, Natesan, S, Modo, M, et al. Effect of chronic antipsychotic treatment on brain structure: A serial magnetic resonance imaging study with ex vivo and postmortem confirmation. Biol Psychiatry. 2011; 69(10): 936944.CrossRefGoogle ScholarPubMed
Ho, B-C, Andreasen, N, Ziebel, S, et al. Long-term antipsychotic treatment and brain volumes: A longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry. 2012; 68(2): 128137.CrossRefGoogle Scholar
Abramovic, L, Boks, MPM, Vreeker, A, et al. White matter disruptions in patients with bipolar disorder. Eur Neuropsychopharmacol. 2018; 28(6): 743751.CrossRefGoogle ScholarPubMed
Cropley, VL, Klauser, P, Lenroot, RK, et al. Accelerated gray and white matter deterioration with age in schizophrenia. Am J Psychiatry. 2017; 174(3): 286295.CrossRefGoogle ScholarPubMed
Nenadić, I, Dietzek, M, Langbein, K, et al. BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder. Psychiatry Res – Neuroimaging. 2017; 266: 8689.CrossRefGoogle Scholar
Amelia, Versace, Almeida, Jorge RC, Stefanie, Hassel, et al. Elevated left and reduced right orbitomedial prefrontal fractional anisotropy in adults with bipolar disorder revealed by tract-based spatial statistics. Arch Gen Psychiatry. 2008 September; 65(9): 10411052. DOI:10.1001/archpsyc.65.9.1041.Google Scholar
Schneider, MR, Delbello, MP, McNamara, RK, et al. Neuroprogression in bipolar disorder. Bipolar Disord. 2012; 14(4):356374.CrossRefGoogle ScholarPubMed
Lim, CS, Baldessarini, RJ, Vieta, E, et al. Longitudinal neuroimaging and neuropsychological changes in bipolar disorder patients: Review of the evidence. Neurosci Biobehav Rev. 2013; 37(3): 418435.CrossRefGoogle ScholarPubMed
Kozicky, JM, McGirr, A, Bond, DJ, et al. Neuroprogression and episode recurrence in bipolar I disorder: A study of gray matter volume changes in first-episode mania and association with clinical outcome. Bipolar Disord. 2016; 18(6): 511519.CrossRefGoogle ScholarPubMed
Abé, C, Ekman, CJ, Sellgren, C, et al. Manic episodes are related to changes in frontal cortex: A longitudinal neuroimaging study of bipolar disorder 1. Brain. 2015; 138(11): 34403448.CrossRefGoogle ScholarPubMed

References

Strakowski, SM (ed.). The Bipolar Brain: Integrating Neuroimaging with Genetics. New York: Oxford University Press; 2012.CrossRefGoogle Scholar
Gotlib, IH, Ordaz, SJ. The importance of assessing neural trajectories in pediatric depression. JAMA Psychiatry. 2016; 73(1): 910.CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention. CDC/National Center for Health Statistics [Internet]. 2017; available from: www.cdc.gov/datastatistics/index.htmlGoogle Scholar
Axelson, D, Birmaher, B, Strober, M, et al. Phenomenology of children and adolescents with bipolar spectrum disorders. Arch Gen Psychiatry. 2006; 63(10): 11391148.CrossRefGoogle ScholarPubMed
Strawn, JR, Adler, CM, Fleck, DE, et al. Post-traumatic stress symptoms and trauma exposure in youth with first episode bipolar disorder. Early Interv Psychiatry. 2010; 4(2): 169173.CrossRefGoogle ScholarPubMed
Rao, U, Chen, L-A, Bidesi, AS, et al. Hippocampal changes associated with early-life adversity and vulnerability to depression. Biol Psychiatry. 2010; 67(4): 357364.CrossRefGoogle ScholarPubMed
Verboom, CE, Sijtsema, JJ, Verhulst, FC, Penninx, BWJH, Ormel, J. Longitudinal associations between depressive problems, academic performance, and social functioning in adolescent boys and girls. Dev Psychol. 2014; 50(1): 247257.CrossRefGoogle ScholarPubMed
DelBello, MP, Zimmerman, ME, Mills, NP, Getz, GE, Strakowski, SM. Magnetic resonance imaging analysis of amygdala and other subcortical brain regions in adolescents with bipolar disorder. Bipolar Disord. 2004; 6(1): 4352.CrossRefGoogle ScholarPubMed
Whitton, AE, Treadway, MT, Pizzagalli, DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry. 2015; 28(1): 712.CrossRefGoogle ScholarPubMed
Pfeifer, JC, Welge, J, Strakowski, SM, Adler, CM, DelBello, MP. Meta-analysis of amygdala volumes in children and adolescents with bipolar disorder. J Am Acad Child Adolesc Psychiatry. 2008; 47(11): 12891298.CrossRefGoogle ScholarPubMed
Caetano, SC, Olvera, RL, Glahn, D, et al. Fronto-limbic brain abnormalities in juvenile onset bipolar disorder. Biol Psychiatry. 2005; 58(7): 525531.CrossRefGoogle ScholarPubMed
Usher, J, Leucht, S, Falkai, P, Scherk, H. Correlation between amygdala volume and age in bipolar disorder – a systematic review and meta-analysis of structural MRI studies. Psychiatry Res. 2010; 182(1): 18.CrossRefGoogle ScholarPubMed
Janiri, D, Sani, G, Rossi, PD, et al. Amygdala and hippocampus volumes are differently affected by childhood trauma in patients with bipolar disorders and healthy controls. Bipolar Disord. 2017; 19(5): 353362.CrossRefGoogle ScholarPubMed
Frazier, JA, Breeze, JL, Makris, N, et al. Cortical gray matter differences identified by structural magnetic resonance imaging in pediatric bipolar disorder. Bipolar Disord. 2005; 7(6): 555569.CrossRefGoogle ScholarPubMed
Singh, MK, Kelley, RG, Chang, KD, Gotlib, IH. Intrinsic amygdala functional connectivity in youth with bipolar I disorder. J Am Acad Child Adolesc Psychiatry. 2015; 54(9): 763770.CrossRefGoogle ScholarPubMed
Caetano, SC, Fonseca, M, Hatch, JP, et al. Medial temporal lobe abnormalities in pediatric unipolar depression. Neurosci Lett. 2007; 427(3): 142147.CrossRefGoogle ScholarPubMed
Videbech, P, Ravnkilde, B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry. 2004; 161(11): 19571966.CrossRefGoogle ScholarPubMed
Kelley, R, Chang, KD, Garrett, A, et al. Deformations of amygdala morphology in familial pediatric bipolar disorder. Bipolar Disord. 2013; 15(7): 795802.CrossRefGoogle ScholarPubMed
Tannous, J, Amaral-Silva, H, Cao, B, et al. Hippocampal subfield volumes in children and adolescents with mood disorders. J Psychiatr Res. 2018; 101: 5762.CrossRefGoogle ScholarPubMed
Singh, MK, Chang, KD, Kelley, RG, et al. Reward processing in adolescents with bipolar I disorder. J Am Acad Child Adolesc Psychiatry. 2013; 52(1): 6883.CrossRefGoogle ScholarPubMed
Rich, BA, Schmajuk, M, Perez-Edgar, KE, et al. The impact of reward, punishment, and frustration on attention in pediatric bipolar disorder. Biol Psychiatry. 2005; 58(7): 532539.CrossRefGoogle ScholarPubMed
Keren, H, O’Callaghan, G, Vidal-Ribas, P, et al. Reward processing in depression: a conceptual and meta-analytic review across fMRI and EEG studies. Am J Psychiatry. 2014 January; 9(1): 94108. DOI:10.1177/1745691613513469.Google Scholar
Salvadore, G, Quiroz, JA, Machado-Vieira, R, et al. The neurobiology of the switch process in bipolar disorder: a review. J Clin Psychiatry. 2010; 71(11): 14881501.CrossRefGoogle ScholarPubMed
Gotlib, IH, Joormann, J, Foland-Ross, LC. Understanding familial risk for depression: a 25-year perspective. Perspect Psychol Sci. 2014; 9(1): 94108.CrossRefGoogle ScholarPubMed
Pagliaccio, D, Luby, J, Gaffrey, M, et al. Anomalous functional brain activation following negative mood induction in children with pre-school onset major depression. Dev Cogn Neurosci. 2012; 2(2): 256267.CrossRefGoogle ScholarPubMed
Kerestes, R, Davey, CG, Stephanou, K, Whittle, S, Harrison, BJ. Functional brain imaging studies of youth depression: a systematic review. NeuroImage: Clin. 2014; 4: 209231.CrossRefGoogle ScholarPubMed
Singh, MK, Leslie, SM, Packer, MM, et al. Brain and behavioral correlates of insulin resistance in youth with depression and obesity. Hormones and Behavior. [Internet] 2018 [cited 2018 September 11]; available from: https://linkinghub.elsevier.com/retrieve/pii/S0018506X17305019Google Scholar
Sun, KL, Watson, KT, Angal, S, et al. Neural and endocrine correlates of early life abuse in youth with depression and obesity. Front Psychiatry. 2018; 9: 721.CrossRefGoogle ScholarPubMed
Luby, JL, Belden, AC, Jackson, JJ, Lessov-Schlaggar, CN, Harms, MP, Tillman, R, et al. Early childhood depression and alterations in the trajectory of gray matter maturation in middle childhood and early ddolescence. JAMA Psychiatry. 2016; 73(1): 31.CrossRefGoogle Scholar
Nimarko, AF, Garrett, AS, Carlson, GA, Singh, MK. Neural correlates of emotion processing predict resilience in youth at familial risk for mood disorders. Dev Psychopathol. 2019 August; 31(3): 10371052. DOI:10.1017/S0954579419000579.CrossRefGoogle ScholarPubMed
Gogtay, N, Rapoport, JL. Childhood-onset schizophrenia: Insights from neuroimaging studies. J Am Acad Child Adolesc Psychiatry. 2008; 47(10): 11201124.Google ScholarPubMed
Singh, MK, Leslie, SM, Packer, MM, Weisman, EF, Gotlib, IH. Limbic intrinsic connectivity in depressed and high-risk youth. Journal of Am Acad Child Adolesc Psychiatry. 2018 October; 57(10): 775–785.e3. DOI:10.1016/j.jaac.2018.06.017.CrossRefGoogle ScholarPubMed
Singh, MK, Garrett, AS, Chang, KD. Using neuroimaging to evaluate and guide pharmacological and psychotherapeutic treatments for mood disorders in children. CNS Spectr. 2015; 20(4): 359368.CrossRefGoogle ScholarPubMed
Kafantaris, V, Spritzer, L, Doshi, V, Saito, E, Szeszko, PR. Changes in white matter microstructure predict lithium response in adolescents with bipolar disorder. Bipolar Disord. 2017; 19(7): 587594.CrossRefGoogle ScholarPubMed
Baykara, B, Inal-Emiroglu, N, Karabay, N, et al. Increased hippocampal volumes in lithium treated adolescents with bipolar disorders: A structural MRI study. J Affect Disord. 2012; 138(3): 433439.CrossRefGoogle ScholarPubMed
Mitsunaga, MM, Garrett, A, Howe, M, et al. Increased subgenual cingulate cortex volume in pediatric bipolar disorder associated with mood stabilizer exposure. J Child Adolesc Psychopharmacol. 2011; 21(2): 149155.CrossRefGoogle ScholarPubMed
Chang, K, Barnea-Goraly, N, Karchemskiy, A, et al. Cortical magnetic resonance imaging findings in familial pediatric bipolar disorder. Biological Psychiatry. 2005; 58(3): 197203.CrossRefGoogle ScholarPubMed
Yang, H, Lu, LH, Wu, M, et al. Time course of recovery showing initial prefrontal cortex changes at 16 weeks, extending to subcortical changes by 3 years in pediatric bipolar disorder. J Affect Disord 2013; 150(2): 571577.CrossRefGoogle ScholarPubMed
Diler, RS, Segreti, AM, Ladouceur, CD, et al. Neural correlates of treatment in adolescents with bipolar depression during response inhibition. J Child Adolesc Psychopharmacol. 2013; 23(3): 214221.CrossRefGoogle ScholarPubMed
Garrett, AS, Miklowitz, DJ, Howe, ME, et al. Changes in brain activation following psychotherapy for youth with mood dysregulation at familial risk for bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2015; 56: 215220.CrossRefGoogle ScholarPubMed
Strawn, JR, Cotton, S, Luberto, CM, et al. Neural function before and after mindfulness-based cognitive therapy in anxious adolescents at risk for developing bipolar disorder. J Child Adolesc Psychopharmacol. 2016; 26(4): 372379.CrossRefGoogle ScholarPubMed
Buchheim, A, Viviani, R, Kessler, H, et al. Changes in prefrontal-limbic function in major depression after 15 months of long-term psychotherapy. PLoS ONE. 2012; 7(3): e33745.CrossRefGoogle ScholarPubMed
Goldapple, K, Segal, Z, Garson, C, et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry. 2004; 61(1): 3441.CrossRefGoogle ScholarPubMed
Tao, R, Calley, CS, Hart, J, et al. Brain activity in adolescent major depressive disorder before and after fluoxetine treatment. Am J Psychiatry. 2012; 169(4): 381388.CrossRefGoogle ScholarPubMed
Frazier, JA, Breeze, JL, Makris, N, et al. Cortical gray matter differences identified by structural magnetic resonance imaging in pediatric bipolar disorder. Bipolar Disord. 2005; 7(6): 555569.CrossRefGoogle ScholarPubMed
Bearden, CE, Thompson, PM, Dutton, RA, et al. Three-dimensional mapping of hippocampal anatomy in unmedicated and lithium-treated patients with bipolar disorder. Neuropsychopharmacology. 2008; 33(6): 12291238.CrossRefGoogle ScholarPubMed
Ahn, W-Y, Rass, O, Fridberg, DJ, et al. Temporal discounting of rewards in patients with bipolar disorder and schizophrenia. J Abnorm Psychol. 2011; 120(4): 911921.CrossRefGoogle ScholarPubMed
Dickstein, DP, Leibenluft, E. Emotion regulation in children and adolescents: Boundaries between normalcy and bipolar disorder. Development and Psychopathology. 2006; 18(4): 11051131.CrossRefGoogle ScholarPubMed
Geller, B, Tillman, R, Bolhofner, K, Zimerman, B. Child bipolar I disorder: Prospective continuity with adult bipolar I disorder; characteristics of second and third episodes; predictors of 8-year outcome. Arch Gen Psychiatry. 2008; 65(10): 11251133.CrossRefGoogle ScholarPubMed
Matsuo, K, R Rosenberg, D, C Easter, P, et al. Striatal volume abnormalities in treatment-naïve patients diagnosed with pediatric major depressive disorder. Journal of Child and Adolescent Psychopharmacology. 2008; 18: 121131.CrossRefGoogle ScholarPubMed
Pan, PM, Sato, JR, Salum, GA, et al. Ventral striatum functional connectivity as a predictor of adolescent depressive disorder in a longitudinal community-based sample. AJP. 2017; 174(11): 11121119.CrossRefGoogle Scholar
Chen, HH, Nicoletti, MA, Hatch, JP, et al. Abnormal left superior temporal gyrus volumes in children and adolescents with bipolar disorder: A magnetic resonance imaging study. Neurosci Lett. 2004; 363(1): 6568.CrossRefGoogle ScholarPubMed
Peterson, BS, Warner, V, Bansal, R, et al. Cortical thinning in persons at increased familial risk for major depression. PNAS. 2009; 106(15): 62736278.CrossRefGoogle ScholarPubMed
Fallucca, E, MacMaster, FP, Haddad, J, et al. Distinguishing between major depressive disorder and obsessive-compulsive disorder in children by measuring regional cortical thickness. Arch Gen Psychiatry. 2011; 68(5): 527533.Google Scholar
Steingard, RJ, Renshaw, PF, Yurgelun-Todd, D, et al. Structural abnormalities in brain magnetic resonance images of depressed children. J Am Acad Child Adolesc Psychiatry. 1996; 35(3): 307311.CrossRefGoogle ScholarPubMed
Steingard, RJ, Renshaw, PF, Hennen, J, et al. Smaller frontal lobe white matter volumes in depressed adolescents. Biological Psychiatry. 2002; 52(5): 413417.CrossRefGoogle ScholarPubMed
Blumberg, HP, Krystal, JH, Bansal, R, et al. Age, rapid-cycling, and pharmacotherapy effects on ventral prefrontal cortex in bipolar disorder: A cross-sectional study. Biol Psychiatry. 2006; 59(7): 611618.CrossRefGoogle ScholarPubMed
Chiu, S, Widjaja, F, Bates, M, et al. Anterior cingulate volume in pediatric bipolar disorder and autism. Journal of Affective Disorders. 2008; 105: 9399.CrossRefGoogle ScholarPubMed
Gogtay, N, Ordonez, A, Herman, DH, et al. Dynamic mapping of cortical development before and after the onset of pediatric bipolar illness. J Child Psychol Psychiatry. 2007; 48(9): 852862.CrossRefGoogle ScholarPubMed
Baloch, HA, Hatch, JP, Olvera, RL, et al. Morphology of the subgenual prefrontal cortex in pediatric bipolar disorder. J Psychiatr Res. 2010; 44(15): 11061110.CrossRefGoogle ScholarPubMed
Boes, AD, McCormick, LM, Coryell, WH, Nopoulos, P. Rostral anterior cingulate cortex volume correlates with depressed mood in normal healthy children. Biol Psychiatry. 2008; 63(4): 391397.CrossRefGoogle ScholarPubMed
Goodman, M, Hazlett, EA, Avedon, JB, et al. Anterior cingulate volume reduction in adolescents with borderline personality disorder and co-morbid major depression. Journal of Psychiatric Research. 2011; 45(6): 803807.CrossRefGoogle ScholarPubMed
Nolan, CL, Moore, GJ, Madden, R, et al. Prefrontal cortical volume in childhood-onset major depression: Preliminary findings. Arch Gen Psychiatry. 2002; 59(2): 173179.CrossRefGoogle ScholarPubMed
Shad, MU, Muddasani, S, Rao, U. Gray matter differences between healthy and depressed adolescents: A voxel-based morphometry study. J Child Adolesc Psychopharmacol. 2012; 22(3): 190197.CrossRefGoogle ScholarPubMed
Belden, AC, Irvin, K, Hajcak, G, et al. Neural correlates of reward processing in depressed and healthy preschool-age children. Journal of the American Academy of Child & Adolescent Psychiatry. 2016; 55(12): 10811089.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×