Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-20T06:12:47.778Z Has data issue: false hasContentIssue false

Section 3 - Functional and Neurochemical Brain Studies

Published online by Cambridge University Press:  12 January 2021

Sudhakar Selvaraj
Affiliation:
UTHealth School of Medicine, USA
Paolo Brambilla
Affiliation:
Università degli Studi di Milano
Jair C. Soares
Affiliation:
UT Harris County Psychiatric Center, USA
Get access
Type
Chapter
Information
Mood Disorders
Brain Imaging and Therapeutic Implications
, pp. 39 - 134
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Insel, T, Cuthbert, B, Garvey, M, et al. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. The American Journal of Psychiatry. 2010; 167(7): 748751. https://doi.org/10.1176/appi.ajp.2010.09091379CrossRefGoogle Scholar
Positive Valence systems workshop proceedings - National Institute of Mental Health. (2011b). Positive valence systems: Workshop proceedings. Retrieved from www.nimh.nih.gov/research/research-funded-by-nimh/rdoc/positive-valence-systems-workshop-proceedings.shtmlGoogle Scholar
Sanislow, CA, Pine, DS, Quinn, KJ, et al. Developing constructs for psychopathology research: Research domain criteria. Journal of Abnormal Psychology. 2010; 119(4): 631639. https://doi.org/10.1037/a0020909CrossRefGoogle ScholarPubMed
Der-Avakian, A, Markou, A, The neurobiology of Anhedonia and other reward-related deficits. Trends Neurosci. 2012 January; 35(1): 6877. DOI:10.1016/j.tins.2011.11.005. Epub 2011 December 15.CrossRefGoogle ScholarPubMed
Haber, Suzanne N, Knutson, Brian, The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology. 2010 January; 35(1): 426. DOI:10.1038/npp.2009.129.CrossRefGoogle ScholarPubMed
Peciña, Susana, Berridge, Kent C., Hedonic hot spot in nucleus accumbens shell: Where do μ-Opioids cause increased hedonic impact of sweetness? Journal of Neuroscience. 2005 December 14; 25(50): 1177711786.CrossRefGoogle ScholarPubMed
O’Doherty, John P, Deichmann, Ralf, Critchley, Hugo D, Dolan, Raymond J, Neural responses during anticipation of a primary taste reward. Neuron. 2002 February 28; 33(5): 815826. DOI:10.1016/s0896-6273(02)00603-7.CrossRefGoogle ScholarPubMed
Schultz, . Neural substrate of prediction and reward. Science. 1997 March 14; 275(5306): 15931599.CrossRefGoogle ScholarPubMed
Stauffer, William R., Yang, Aimei, Borel, Melodie, et al. Dopamine neuron-specific optogenetic stimulation in rhesus macaques. Cell. 2016 September 8; 166(6): 15641571.e6.CrossRefGoogle ScholarPubMed
Chase, Henry W, Kumar, Poornima, Eickhoff, Simon B, Dombrovski, Alexandre Y, Reinforcement learning models and their neural correlates: An activation likelihood estimation meta-analysis. Cogn Affect Behav Neurosci. 2015 June; 15(2): 435459.CrossRefGoogle ScholarPubMed
Garrison, Kathleen A, Santoyo, Juan F, Davis, Jake H, et al. Effortless awareness: using real time neurofeedback to investigate correlates of posterior cingulate cortex activity in meditators’ self-report. Front Hum Neurosci. 2013; 7: 440. Published online 2013 August 6.CrossRefGoogle ScholarPubMed
Diederen, Kelly M.J., Ziauddeen, Hisham, Vestergaard, Martin D., et al. Dopamine modulates adaptive prediction error coding in the human midbrain and striatum. Journal of Neuroscience. 2017 February 15; 37(7): 17081720;CrossRefGoogle ScholarPubMed
Jocham, Gerhard, Klein, Tilmann A, Ullsperger, Markus, Dopamine-mediated reinforcement learning signals in the striatum and ventromedial prefrontal cortex underlie value-based choices. J Neurosci. 2011 February 2; 31(5): 16061613. DOI:10.1523/JNEUROSCI.3904-10.Google Scholar
Pessiglione, Mathias, Seymour, Ben, Flandin, Guillaume, Dolan, Raymond J, Frith, Chris D, Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature. 2006 August 31; 442(7106): 10421045. DOI:10.1038/nature05051. Epub 2006 August 23.CrossRefGoogle ScholarPubMed
Keren, H, O’Callaghan, G, Vidal-Ribas, P, et al. Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. American Journal of Psychiatry. 2018; 175(11): 11111120.CrossRefGoogle ScholarPubMed
Fischer, AS, Ellwood-Lowe, ME, Colich, NL, et al. Reward-circuit biomarkers of risk and resilience in adolescent depression. Journal of Affective Disorders. 2019; 246: 902909.CrossRefGoogle ScholarPubMed
Luking, KR, Pagliaccio, D, Luby, JL, Barch, DM. Depression risk predicts blunted neural responses to gains and enhanced responses to losses in healthy children. Journal of the American Academy of Child & Adolescent Psychiatry. 2016; 55(4): 328337.CrossRefGoogle ScholarPubMed
Olino, TM, McMakin, DL, Morgan, JK, et al. Reduced reward anticipation in youth at high-risk for unipolar depression: A preliminary study. Developmental Cognitive Neuroscience. 2014; 8: 5564.CrossRefGoogle ScholarPubMed
Stringaris, A, Vidal-Ribas Belil, P, Artiges, E, et al. The brain’s response to reward anticipation and depression in adolescence: Dimensionality, specificity, and longitudinal predictions in a community-based sample. American Journal of Psychiatry. 2015; 172(12): 12151223.CrossRefGoogle Scholar
Takamura, M, Okamoto, Y, Okada, G, et al. Patients with major depressive disorder exhibit reduced reward size coding in the striatum. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2017; 79: 317323.CrossRefGoogle ScholarPubMed
Knutson, B, Bhanji, JP, Cooney, RE, Atlas, LY, Gotlib, IH. Neural responses to monetary incentives in major depression. Biological Psychiatry. 2008; 63(7): 686692.CrossRefGoogle ScholarPubMed
Gotlib, IH, Hamilton, JP, Cooney, RE, et al. Neural processing of reward and loss in girls at risk for major depression. Archives of General Psychiatry. 2010; 67(4): 380387.CrossRefGoogle ScholarPubMed
Proudfit, GH. The reward positivity: From basic research on reward to a biomarker for depression. Psychophysiology. 2015; 52(4): 449459.CrossRefGoogle ScholarPubMed
Foti, D, Hajcak, G. Depression and reduced sensitivity to non-rewards versus rewards: Evidence from event-related potentials. Biological Psychology. 2009; 81(1): 18.CrossRefGoogle ScholarPubMed
Foti, D, Weinberg, A, Bernat, EM, Proudfit, GH. Anterior cingulate activity to monetary loss and basal ganglia activity to monetary gain uniquely contribute to the feedback negativity. Clinical Neurophysiology. 2015; 126(7): 13381347.CrossRefGoogle Scholar
Bress, JN, Foti, D, Kotov, R, Klein, DN, Hajcak, G. Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology. 2013; 50(1): 7481.CrossRefGoogle ScholarPubMed
Kujawa, A, Hajcak, G, Klein, DN. Reduced reward responsiveness moderates the effect of maternal depression on depressive symptoms in offspring: Evidence across levels of analysis. Journal of Child Psychology and Psychiatry. 2019; 60(1): 8290.CrossRefGoogle ScholarPubMed
Whitton, AE, Kakani, P, Foti, D, et al. Blunted neural responses to reward in remitted major depression: A high-density event-related potential study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016; 1(1): 8795.Google ScholarPubMed
Weinberg, A, Shankman, SA. Blunted reward processing in remitted melancholic depression. Clinical Psychological Science. 2017; 5(1): 1425.CrossRefGoogle ScholarPubMed
Dombrovski, AY, Szanto, K, Clark, L, Reynolds, CF, Siegle, GJ. Reward signals, attempted suicide, and impulsivity in late-life depression. JAMA Psychiatry Chic Ill. 2013; 70(10). DOI:10.1001/jamapsychiatry.2013.75.Google ScholarPubMed
Gradin, VB, Kumar, P, Waiter, G, et al. Expected value and prediction error abnormalities in depression and schizophrenia. Brain. 2011; 134(Pt 6): 17511764. DOI:10.1093/brain/awr059.CrossRefGoogle ScholarPubMed
Kumar, P, Waiter, G, Ahearn, T, et al. Abnormal temporal difference reward-learning signals in major depression. Brain. 2008; 131(Pt 8): 20842093. DOI:10.1093/brain/awn136.CrossRefGoogle ScholarPubMed
Kumar, P, Goer, F, Murray, L, et al. Impaired reward prediction error encoding and striatal-midbrain connectivity in depression. Neuropsychopharmacology. 2018; 43(7): 15811588. DOI:10.1038/s41386-018-0032-x.CrossRefGoogle ScholarPubMed
Rutledge, RB, Moutoussis, M, Smittenaar, P, et al. Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiatry. 2017; 74(8): 790797.CrossRefGoogle ScholarPubMed
Gottesman, II, Gould, TD. The endophenotype concept in psychiatry: Etymology and strategic intentions. Am J Psychiatry. 2003; 160(4): 636645. DOI:10.1176/appi.ajp.160.4.636.CrossRefGoogle ScholarPubMed
Pizzagalli, DA. Depression, stress, and anhedonia: Toward a synthesis and integrated model. Annu Rev Clin Psychol. 2014; 10(1): 393423. DOI:10.1146/annurev-clinpsy-050212-185606.CrossRefGoogle Scholar
Olino, TM, Silk, JS, Osterritter, C, Forbes, EE. Social reward in youth at risk for depression: A preliminary investigation of subjective and neural differences. J Child Adolesc Psychopharmacol. 2015; 25(9): 711721. DOI:10.1089/cap.2014.0165.CrossRefGoogle ScholarPubMed
Luking, KR, Pagliaccio, D, Luby, JL, Barch, DM. Reward processing and risk for depression across development. Trends Cogn Sci. 2016; 20(6): 456468. DOI:10.1016/j.tics.2016.04.002.CrossRefGoogle ScholarPubMed
Stringaris, A, Vidal-Ribas Belil, P, Artiges, E, et al. The brain’s response to reward anticipation and depression in adolescence: Dimensionality, specificity, and longitudinal predictions in a community-based sample. Am J Psychiatry. 2015; 172(12): 12151223. DOI:10.1176/appi.ajp.2015.14101298.CrossRefGoogle Scholar
Morgan, JK, Olino, TM, McMakin, DL, Ryan, ND, Forbes, EE. Neural response to reward as a predictor of increases in depressive symptoms in adolescence. Neurobiol Dis. 2013; 52: 6674. DOI:10.1016/j.nbd.2012.03.039.CrossRefGoogle ScholarPubMed
Telzer, EH, Fuligni, AJ, Lieberman, MD, Galván, A. Neural sensitivity to eudaimonic and hedonic rewards differentially predict adolescent depressive symptoms over time. Proc Natl Acad Sci. 2014; 111(18): 66006605. DOI:10.1073/pnas.1323014111.CrossRefGoogle ScholarPubMed
Alloy, LB, Nusslock, R. Future directions for understanding adolescent bipolar spectrum disorders: A reward hypersensitivity perspective. Journal of Clinical Child & Adolescent Psychology. 2019; 48(4): 669683.CrossRefGoogle ScholarPubMed
Nusslock, R, Almeida, JR, Forbes, EE, et al. Waiting to win: Elevated striatal and orbitofrontal cortical activity during reward anticipation in euthymic bipolar disorder adults. Bipolar Disorders. 2012; 14(3): 249260.CrossRefGoogle ScholarPubMed
Bermpohl, F, Kahnt, T, Dalanay, U, et al. Altered representation of expected value in the orbitofrontal cortex in mania. Human Brain Mapping. 2010; 31(7): 958969.CrossRefGoogle ScholarPubMed
Chase, HW, Nusslock, R, Almeida, JR, et al. Dissociable patterns of abnormal frontal cortical activation during anticipation of an uncertain reward or loss in bipolar versus major depression. Bipolar Disorders. 2013; 15(8): 839854.CrossRefGoogle ScholarPubMed
Caseras, X, Lawrence, NS, Murphy, K, Wise, RG, Phillips, ML. Ventral striatum activity in response to reward: Differences between bipolar I and II disorders. American Journal of Psychiatry. 2013; 170(5): 533541.CrossRefGoogle ScholarPubMed
Cattarinussi, G, Di Giorgio, A, Wolf, RC, Balestrieri, M, Sambataro, F. Neural signatures of the risk for bipolar disorder: A meta‐analysis of structural and functional neuroimaging studies. Bipolar Disorders. 2019; 21(3): 215227.Google Scholar
Schreiter, S, Spengler, S, Willert, A, et al. Neural alterations of fronto-striatal circuitry during reward anticipation in euthymic bipolar disorder. Psychological Medicine. 2016; 46(15): 31873198.Google Scholar
Yip, SW, Worhunsky, PD, Rogers, RD, Goodwin, GM. Hypoactivation of the ventral and dorsal striatum during reward and loss anticipation in antipsychotic and mood stabilizer-naive bipolar disorder. Neuropsychopharmacology. 2015; 40(3): 658.CrossRefGoogle ScholarPubMed
Mason, L, Eldar, E, Rutledge, RB. Mood instability and reward dysregulation—a neurocomputational model of bipolar disorder. JAMA Psychiatry. 2017; 74(12): 12751276.CrossRefGoogle ScholarPubMed
Linke, J, King, AV, Rietschel, M, et al. Increased medial orbitofrontal and amygdala activation: Evidence for a systems-level endophenotype of bipolar I disorder. American Journal of Psychiatry. 2012; 169(3): 316325.CrossRefGoogle ScholarPubMed
O’Sullivan, N, Szczepanowski, R, El-Deredy, W, Mason, L, Bentall, RP. fMRI evidence of a relationship between hypomania and both increased goal-sensitivity and positive outcome-expectancy bias. Neuropsychologia. 2011; 49(10): 28252835.CrossRefGoogle ScholarPubMed
Dutra, SJ, Cunningham, WA, Kober, H, Gruber, J. Elevated striatal reactivity across monetary and social rewards in bipolar I disorder. Journal of Abnormal Psychology. 2015; 124(4): 890.CrossRefGoogle ScholarPubMed
Mason, L, O’Sullivan, N, Blackburn, M, Bentall, R, El-Deredy, W. I want it now! Neural correlates of hypersensitivity to immediate reward in hypomania. Biological Psychiatry. 2012; 71(6): 530537.CrossRefGoogle ScholarPubMed
Mason, L, Trujillo-Barreto, NJ, Bentall, RP, El-Deredy, W. Attentional bias predicts increased reward salience and risk taking in bipolar disorder. Biological Psychiatry. 2016; 79(4): 311319.CrossRefGoogle ScholarPubMed
Abler, B, Greenhouse, I, Ongur, D, Walter, H, Heckers, S. Abnormal reward system activation in mania. Neuropsychopharmacology. 2008; 33(9): 2217.CrossRefGoogle ScholarPubMed
Sharma, A, Satterthwaite, TD, Vandekar, L, et al. Divergent relationship of depression severity to social reward responses among patients with bipolar versus unipolar depression. Psychiatry Research: Neuroimaging. 2016; 254: 1825.CrossRefGoogle ScholarPubMed
Singh, MK, Kelley, RG, Howe, ME, et al. Reward processing in healthy offspring of parents with bipolar disorder. JAMA Psychiatry. 2014; 71(10): 11481156. DOI:10.1001/jamapsychiatry.2014.1031.CrossRefGoogle ScholarPubMed
Manelis, A, Almeida, JRC, Stiffler, R, et al. Anticipation-related brain connectivity in bipolar and unipolar depression: A graph theory approach. Brain J Neurol. 2016; 139(Pt 9): 25542566. DOI:10.1093/brain/aww157.CrossRefGoogle ScholarPubMed
Redlich, R, Dohm, K, Grotegerd, D, et al. Reward processing in unipolar and bipolar depression: A functional MRI study. Neuropsychopharmacology. 2015; 40(11): 2623.CrossRefGoogle ScholarPubMed
Satterthwaite, TD, Kable, JW, Vandekar, L, et al. Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacology. 2015; 40(9): 2258.CrossRefGoogle ScholarPubMed
Glazer, JE, Kelley, NJ, Pornpattananangkul, N, Nusslock, R. Hypomania and depression associated with distinct neural activity for immediate and future rewards. Psychophysiology. 2019; 56(3): e13301.CrossRefGoogle ScholarPubMed
Groves, AR, Beckmann, CF, Smith, SM, Woolrich, MW. Linked independent component analysis for multimodal data fusion. Neuroimage. 2011; 54: 21982217.CrossRefGoogle ScholarPubMed
Calhoun, VD, Sui, J. Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1, 2016; 230244. DOI:10.1016/j.bpsc.2015.12.005.Google Scholar
Heller, AS, Fox, AS, Wing, EK, et al. The Neurodynamics of affect in the laboratory predicts persistence of real-world emotional responses. J Neurosci. 2015; 35(29): 1050310509. DOI:10.1523/JNEUROSCI.0569-15.CrossRefGoogle ScholarPubMed
Kasanova, Z, Ceccarini, J, Frank, MJ, Amelsvoort, TA van, Myin-Germeys, I. Striatal dopaminergic modulation of reinforcement learning predicts reward—oriented behavior in daily life. Biol Psychol. Published online 2017. DOI:10.1016/j.biopsycho.2017.04.014.CrossRefGoogle Scholar
Bakker, JM, Goossens, L, Kumar, P, et al. From laboratory to life: Associating brain reward processing with real-life motivated behaviour and symptoms of depression in non-help-seeking young adults. Psychol Med. 2019; 49(14): 24412451. DOI:10.1017/S0033291718003446.CrossRefGoogle ScholarPubMed

References

Smith, K. Mental health: A world of depression. Nature. 2014; 515: 181.Google Scholar
Lui, S, Zhou, XJ, Sweeney, JA, et al. Psychoradiology: The frontier of neuroimaging in psychiatry. Radiology. 2016; 281: 357372.CrossRefGoogle ScholarPubMed
Cordes, D, Haughton, VM, Arfanakis, K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol. 2000; 21: 16361644.Google ScholarPubMed
Beckmann, CF, DeLuca, M, Devlin, JT, et al. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005; 360: 10011013.CrossRefGoogle ScholarPubMed
Bullmore, E, Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009; 10: 186198.CrossRefGoogle ScholarPubMed
Sheline, YI. Neuroimaging studies of mood disorder effects on the brain. Biol Psychiatry. 2003; 54: 338352.CrossRefGoogle ScholarPubMed
Hasler, G, Fromm, S, Carlson, PJ, et al. Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and healthy subjects. Arch Gen Psychiatry. 2008; 65: 521531.CrossRefGoogle ScholarPubMed
Qiu, L, Lui, S, Kuang, W, et al. Regional increases of cortical thickness in untreated, first-episode major depressive disorder. Transl Psychiatry. 2014; 4: e378.CrossRefGoogle ScholarPubMed
Lui, S, Wu, Q, Qiu, L, et al. Resting-state functional connectivity in treatment-resistant depression. Am J Psychiatry. 2011; 168: 642648.CrossRefGoogle ScholarPubMed
Degl’Innocenti, A, Agren, H and Backman, L. Executive deficits in major depression. Acta Psychiatr Scand. 1998; 97: 182188.CrossRefGoogle ScholarPubMed
Nock, MK, Borges, G, Bromet, EJ, et al. Cross-national prevalence and risk factors for suicidal ideation, plans and attempts. Br J Psychiatry. 2008; 192: 98105.CrossRefGoogle ScholarPubMed
Cao, J, Chen, X, Chen, J, et al. Resting-state functional MRI of abnormal baseline brain activity in young depressed patients with and without suicidal behavior. J Affect Disord 2016; 205: 252263.CrossRefGoogle ScholarPubMed
Zhang, S, Chen, JM, Kuang, L, et al. Association between abnormal default mode network activity and suicidality in depressed adolescents. BMC Psychiatry. 2016; 16: 337.CrossRefGoogle ScholarPubMed
Wei, S, Chang, M, Zhang, R, et al. Amygdala functional connectivity in female patients with major depressive disorder with and without suicidal ideation. Ann Gen Psychiatry. 2018; 17: 37.CrossRefGoogle ScholarPubMed
Du, L, Zeng, J, Liu, H, et al. Fronto-limbic disconnection in depressed patients with suicidal ideation: A resting-state functional connectivity study. J Affect Disord. 2017; 215: 213217.CrossRefGoogle ScholarPubMed
Kim, K, Kim, SW, Myung, W, et al. Reduced orbitofrontal-thalamic functional connectivity related to suicidal ideation in patients with major depressive disorder. Scientific Reports. 2017; 7: 15772.CrossRefGoogle ScholarPubMed
Iwabuchi, SJ, Krishnadas, R, Li, C, et al. Localized connectivity in depression: a meta-analysis of resting state functional imaging studies. Neurosci Biobehav Rev. 2015; 51: 7786.CrossRefGoogle ScholarPubMed
Raichle, ME, MacLeod, AM, Snyder, AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A. 2001; 98: 676682.CrossRefGoogle ScholarPubMed
Andrews-Hanna, JR, Reidler, JS, Sepulcre, J, et al. Functional-anatomic fractionation of the brain’s default network. Neuron. 2010; 65: 550562.CrossRefGoogle ScholarPubMed
Buckner, RL, Andrews-Hanna, JR, Schacter, DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008; 1124: 138.CrossRefGoogle ScholarPubMed
Cavanna, AE, Trimble, MR. The precuneus: A review of its functional anatomy and behavioural correlates. Brain. 2006; 129: 564583.CrossRefGoogle ScholarPubMed
Andrews-Hanna, JR, Smallwood, J, Spreng, RN. The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci. 2014; 1316: 2952.CrossRefGoogle ScholarPubMed
Leech, R, Sharp, DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014; 137: 1232.CrossRefGoogle ScholarPubMed
Greicius, MD, Krasnow, B, Reiss, AL, et al. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003; 100: 253258.CrossRefGoogle Scholar
van Tol, MJ, Li, M, Metzger, CD, et al. Local cortical thinning links to resting-state disconnectivity in major depressive disorder. Psychol Med. 2014; 44: 20532065.CrossRefGoogle ScholarPubMed
Sheline, YI, Price, JL, Yan, Z, et al. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci U S A. 2010; 107: 1102011025.CrossRefGoogle ScholarPubMed
Zhou, Y, Yu, C, Zheng, H, et al. Increased neural resources recruitment in the intrinsic organization in major depression. J Affect Disord. 2010; 121: 220230.CrossRefGoogle ScholarPubMed
Alexopoulos, GS, Hoptman, MJ, Kanellopoulos, D, et al. Functional connectivity in the cognitive control network and the default mode network in late-life depression. J Affect Disord. 2012; 139: 5665.CrossRefGoogle ScholarPubMed
Andreescu, C, Tudorascu, DL, Butters, MA, et al. Resting state functional connectivity and treatment response in late-life depression. Psychiatry Res 2013; 214: 313321.CrossRefGoogle ScholarPubMed
Greicius, MD, Flores, BH, Menon, V, et al. Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007; 62: 429437.CrossRefGoogle ScholarPubMed
Zhu, X Wang, X, Xiao, J, et al. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol Psychiatry. 2012; 71: 611617.CrossRefGoogle ScholarPubMed
Li, B, Liu, L, Friston, KJ, et al. A treatment-resistant default mode subnetwork in major depression. Biol Psychiatry. 2013; 74: 4854.CrossRefGoogle ScholarPubMed
Manoliu, A, Meng, C, Brandl, F, et al. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Front Hum Neurosci. 2013; 7: 930.Google ScholarPubMed
Smith, SM, Fox, PT, Miller, KL, et al. Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A. 2009; 106: 1304013045.CrossRefGoogle ScholarPubMed
Menon, V. Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn Sci. 2011; 15: 483506.CrossRefGoogle ScholarPubMed
Ye, T, Peng, J, Nie, B, et al. Altered functional connectivity of the dorsolateral prefrontal cortex in first-episode patients with major depressive disorder. Eur J Radiol. 2012; 81: 40354040.CrossRefGoogle ScholarPubMed
Wang, YL, Yang, SZ, Sun, WL, et al. Altered functional interaction hub between affective network and cognitive control network in patients with major depressive disorder. Behav Brain Res. 2016; 298: 301309.CrossRefGoogle ScholarPubMed
Liston, C, Chen, AC, Zebley, BD, et al. Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol Psychiatry. 2014; 76: 517526.CrossRefGoogle ScholarPubMed
Stange, JP, Bessette, KL, Jenkins, LM, et al. Attenuated intrinsic connectivity within cognitive control network among individuals with remitted depression: Temporal stability and association with negative cognitive styles. Hum Brain Mapp. 2017; 38: 29392954.CrossRefGoogle ScholarPubMed
Seeley, WW, Menon, V, Schatzberg, AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007; 27: 23492356.CrossRefGoogle ScholarPubMed
Sridharan, D, Levitin, DJ, Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 2008; 105: 1256912574.CrossRefGoogle ScholarPubMed
Goulden, N, Khusnulina, A, Davis, NJ, et al. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. Neuroimage. 2014; 99: 180190.CrossRefGoogle Scholar
Horn, DI, Yu, C, Steiner, J, et al. Glutamatergic and resting-state functional connectivity correlates of severity in major depression – the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci. 2010 July 15; 4: 33.Google ScholarPubMed
Avery, JA, Drevets, WC, Moseman, SE, et al. Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biol Psychiatry. 2014; 76: 258266.CrossRefGoogle ScholarPubMed
Hamilton, JP, Chen, MC, Gotlib, IH. Neural systems approaches to understanding major depressive disorder: an intrinsic functional organization perspective. Neurobiol Dis. 2013; 52: 411.CrossRefGoogle ScholarPubMed
Yuen, GS, Gunning-Dixon, FM, Hoptman, MJ, et al. The salience network in the apathy of late-life depression. Int J Geriatr Psychiatry. 2014; 29: 11161124.Google Scholar
Cullen, KR, Westlund, MK, Klimes-Dougan, B, et al. Abnormal amygdala resting-state functional connectivity in adolescent depression. JAMA Psychiatry. 2014; 71: 11381147.CrossRefGoogle ScholarPubMed
Yue, Y, Yuan, Y, Hou, Z, et al. Abnormal functional connectivity of amygdala in late-onset depression was associated with cognitive deficits. PLoS One. 2013; 8: e75058.CrossRefGoogle ScholarPubMed
Ramasubbu, R, Konduru, N, Cortese, F, et al. Reduced intrinsic connectivity of amygdala in adults with major depressive disorder. Front Psychiatry. 2014; 5: 17.CrossRefGoogle ScholarPubMed
Tahmasian, M, Knight, DC, Manoliu, A, et al. Aberrant intrinsic connectivity of hippocampus and amygdala overlap in the fronto-insular and dorsomedial-prefrontal cortex in major depressive disorder. Front Hum Neurosci. 2013; 7: 639.CrossRefGoogle ScholarPubMed
Veer, IM, Beckmann, CF, van Tol, MJ, et al. Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Front Syst Neurosci. 2010 September 20; 4: 41.Google Scholar
Jiang, Y, Duan, M, Chen, X, et al. Common and distinct dysfunctional patterns contribute to triple network model in schizophrenia and depression: A preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2017; 79: 302310.CrossRefGoogle ScholarPubMed
Abbott, CC, Lemke, NT, Gopal, S, et al. Electroconvulsive therapy response in major depressive disorder: A pilot functional network connectivity resting state fMRI investigation. Front Psychiatry. 2013; 4: 10.CrossRefGoogle ScholarPubMed
Mulders, PC, van Eijndhoven, PF, Schene, AH, et al. Resting-state functional connectivity in major depressive disorder: A review. Neurosci Biobehav Rev. 2015; 56: 330344.CrossRefGoogle ScholarPubMed
Palaniyappan, L, Liddle, PF. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J Psychiatry Neurosci. 2012; 37: 1727.CrossRefGoogle ScholarPubMed
Gong, Q, He, Y. Depression, neuroimaging and connectomics: A selective overview. Biol Psychiatry. 2015; 77: 223235.CrossRefGoogle ScholarPubMed
Zhang, J, Wang, J, Wu, Q, et al. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry. 2011; 70: 334342.Google Scholar
Meng, C, Brandl, F, Tahmasian, M, et al. Aberrant topology of striatum’s connectivity is associated with the number of episodes in depression. Brain. 2014; 137: 598609.CrossRefGoogle ScholarPubMed
Lord, A, Horn, D, Breakspear, M, et al. Changes in community structure of resting state functional connectivity in unipolar depression. PLoS One. 2012; 7: e41282.CrossRefGoogle ScholarPubMed
Bohr, IJ, Kenny, E, Blamire, A, et al. Resting-state functional connectivity in late-life depression: Higher global connectivity and more long distance connections. Front Psychiatry. 2012; 3: 116.Google ScholarPubMed
Wang, J, Wang, L, Zang, Y, et al. Parcellation-dependent small-world brain functional networks: a resting-state fMRI study. Hum Brain Mapp. 2009; 30: 15111523.CrossRefGoogle ScholarPubMed
Zalesky, A, Fornito, A, Harding, IH, et al. Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage. 2010; 50: 970983.CrossRefGoogle ScholarPubMed
Tao, H, Guo, S, Ge, T, et al. Depression uncouples brain hate circuit. Mol Psychiatry. 2013; 18: 101111.CrossRefGoogle ScholarPubMed
Jin, C, Gao, C, Chen, C, et al. A preliminary study of the dysregulation of the resting networks in first-episode medication-naive adolescent depression. Neurosci Lett. 2011; 503: 105109.CrossRefGoogle ScholarPubMed
Pine, DS, Cohen, E, Cohen, P, et al. Adolescent depressive symptoms as predictors of adult depression: Moodiness or mood disorder? Am J Psychiatry. 1999; 156: 133135.CrossRefGoogle ScholarPubMed
van den Heuvel, MP, Hulshoff Pol, HE. Exploring the brain network: A review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol. 2010; 20: 519534.CrossRefGoogle ScholarPubMed

References

Nurnberger, JI. Genetics of bipolar disorder: Where we are and where we are going. Depression and Anxiety. 2012; 29(12): 991993.CrossRefGoogle ScholarPubMed
Lenox, RH, Watson, DG, Lithium and the brain: a psychopharmacological strategy to a molecular basis for manic depressive illness. [Review] [61 refs]. Clinical Chemistry. 1994; 40(2): 309314.CrossRefGoogle Scholar
Anand, A, Li, Y, Wang, Y, Lowe, MJ, Dzemidzic, M, Resting state corticolimbic connectivity abnormalities in unmedicated bipolar disorder and unipolar depression. Psychiatry Res. 2009; 171(3): 189198.CrossRefGoogle ScholarPubMed
Horwitz, B. The elusive concept of brain connectivity. Neuroimage. 2003; 19(2 Pt 1): 466470.CrossRefGoogle ScholarPubMed
Friston, KJ, Harrison, L, Penny, W, Dynamic causal modelling. Neuroimage. 2003; 19(4): 12731302.CrossRefGoogle ScholarPubMed
O’Reilly, JX, Woolrich, MW, Behrens, TEJ, Smith, SM, Johansen-Berg, H, Tools of the trade: Psychophysiological interactions and functional connectivity. Social Cognitive and Affective Neuroscience. 2012; 7(5): 604609.CrossRefGoogle ScholarPubMed
Caseras, X, Murphy, K, Lawrence, NS, et al. Emotion regulation deficits in euthymic bipolar I versus bipolar II disorder: A functional and diffusion-tensor imaging study. Bipolar Disord. 2015; 17(5): 461470.CrossRefGoogle ScholarPubMed
Favre, P, Polosan, M, Pichat, C, Bougerol, T, Baciu, M, Cerebral correlates of abnormal emotion conflict processing in euthymic bipolar patients: A functional MRI study. PLoS One. 2015; 10(8): e0134961.Google Scholar
Tseng, WL, Thomas, LA, Harkins, E, et al. Functional connectivity during masked and unmasked face emotion processing in bipolar disorder. Psychiatry Res Neuroimaging. 2016; 258: 19.Google Scholar
Townsend, JD, Torrisi, SJ, Lieberman, MD, et al. Frontal-amygdala connectivity alterations during emotion downregulation in bipolar I disorder. Biol Psychiatry. 2013; 73(2): 127135.CrossRefGoogle ScholarPubMed
Cerullo, MA, Fleck, DE, Eliassen, JC, et al. A longitudinal functional connectivity analysis of the amygdala in bipolar I disorder across mood states. Bipolar Disord. 2012; 14(2): 175184.CrossRefGoogle ScholarPubMed
Versace, A, Thompson, WK, Zhou, D, et al. Abnormal left and right amygdala-orbitofrontal cortical functional connectivity to emotional faces: state versus trait vulnerability markers of depression in bipolar disorder. Biol Psychiatry. 2010; 67(5): 422431.CrossRefGoogle ScholarPubMed
Stegmayer, K, Usher, J, Trost, S, et al. Disturbed cortico-amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder. Eur Arch Psychiatry Clin Neurosci. 2015; 265(4): 303311.CrossRefGoogle ScholarPubMed
Goikolea, JMD, Dima, D, Landin-Romero, R, et al. Multimodal brain changes in first-episode mania: A voxel-based morphometry, functional magnetic resonance imaging, and connectivity study. Schizophr Bull. 2019; 45(2): 464473.CrossRefGoogle Scholar
Marchand, WR, Lee, JN, Johnson, S, Gale, P, Thatcher, J. J, Abnormal functional connectivity of the medial cortex in euthymic bipolar II disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2014; 51: 2833.CrossRefGoogle ScholarPubMed
Dutra, SJ, Man, V, Kober, H, Cunningham, WA Gruber, J Disrupted cortico-limbic connectivity during reward processing in remitted bipolar I disorder. Bipolar Disord. 2017; 19(8): 661675.Google Scholar
Schreiter, S, Spengler, S, Willert, A, et al. Neural alterations of fronto-striatal circuitry during reward anticipation in euthymic bipolar disorder. Psychol Med. 2016; 46(15): 31873198.CrossRefGoogle ScholarPubMed
Redlich, R, Dohm, K, Grotegerd, D, et al. Reward processing in unipolar and bipolar depression: A functional MRI study. Neuropsychopharmacology. 2015; 40(11): 26232631.CrossRefGoogle ScholarPubMed
Lois, G, Gerchen, MF, Kirsch, P, et al. Large-scale network functional interactions during distraction and reappraisal in remitted bipolar and unipolar patients. Bipolar Disord. 2017; 19(6): 487495.CrossRefGoogle ScholarPubMed
Biswal, B, Yetkin, FZ, Haughton, VM, Hyde, JS, Functional connectivity in the motor cortex of resting human brain. Magnetic Resonance in Medicine. 1995; 34(4): 537541.CrossRefGoogle ScholarPubMed
Lowe, MJ, Dzemidzic, M, Lurito, JT, Mathews, VP, Phillips, MD, Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage. 2000; 12(5): 582587.CrossRefGoogle ScholarPubMed
Anand, A, Li, Y, Wang, Y, et al. Activity and connectivity of mood regulating circuit in depression: A functional magnetic resonance study. Biological Psychiatry. 2005; 15(10): 10791088.CrossRefGoogle Scholar
Rey, G, Piguet, C, Benders, A, et al. Resting-state functional connectivity of emotion regulation networks in euthymic and non-euthymic bipolar disorder patients. Eur Psychiatry. 2016; 34: 5663.CrossRefGoogle ScholarPubMed
Brady, RO Jr, Masters, GA, Mathew, IT, et al. State dependent cortico-amygdala circuit dysfunction in bipolar disorder. J Affect Disord. 2016; 201: 7987.CrossRefGoogle ScholarPubMed
Anticevic, A, Brumbaugh, MS, Winkler, AM, et al.Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history. Biol Psychiatry. 2013; 73(6): 565573.CrossRefGoogle ScholarPubMed
Favre, P, Baciu, M, Pichat, C, Bougerol, T, Polosan, M, fMRI evidence for abnormal resting-state functional connectivity in euthymic bipolar patients. J Affect Disord. 2014; 165: 182189.Google Scholar
Wei, S, Geng, H, Jiang, X, et al. Amygdala-prefrontal cortex resting-state functional connectivity varies with first depressive or manic episode in bipolar disorder. Neurosci Lett. 2017; 641: 5155.CrossRefGoogle ScholarPubMed
Chepenik, LG, Raffo, M, Hampson, M, et al. Functional connectivity between ventral prefrontal cortex and amygdala at low frequency in the resting state in bipolar disorder. Psychiatry Res. 2010; 182(3): 207210.Google Scholar
Torrisi, S, Moody, TD, Vizueta, N, et al. Differences in resting corticolimbic functional connectivity in bipolar I euthymia. Bipolar Disord. 2013; 15(2): 156166.CrossRefGoogle ScholarPubMed
Li, M, Huang, C, Deng, W, et al. Contrasting and convergent patterns of amygdala connectivity in mania and depression: A resting-state study. J Affect Disord. 2015; 173: 5358.CrossRefGoogle ScholarPubMed
Singh, MK, Kelley, RG, Chang, KD, Gotlib, IH, Intrinsic amygdala functional connectivity in youth with bipolar I disorder. J Am Acad Child Adolesc Psychiatry. 2015; 54(9): 763770.CrossRefGoogle ScholarPubMed
Li, G, Liu, P, Andari, E, Zhang, A, Zhang, K, The role of amygdala in patients with euthymic bipolar disorder during resting state. Front Psychiatry. 2018; 9: 445.CrossRefGoogle ScholarPubMed
Chen, L, Wang, Y, Niu, C, et al. Common and distinct abnormal frontal-limbic system structural and functional patterns in patients with major depression and bipolar disorder. Neuroimage Clin. 2018; 20: 4250.CrossRefGoogle ScholarPubMed
Magioncalda, P, Martino, M, Conio, B, et al. Functional connectivity and neuronal variability of resting state activity in bipolar disorder–reduction and decoupling in anterior cortical midline structures. Hum Brain Mapp. 2015; 36(2): 666682.CrossRefGoogle ScholarPubMed
Gong, J, Chen, G. G, Jia, Y. Y, et al. Disrupted functional connectivity within the default mode network and salience network in unmedicated bipolar II disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2019; 88: 1118.CrossRefGoogle ScholarPubMed
Martino, M, Magioncalda, P, Huang, Z, et al. Contrasting variability patterns in the default mode and sensorimotor networks balance in bipolar depression and mania. Proc Natl Acad Sci U S A. 2016; 113(17): 48244829.CrossRefGoogle ScholarPubMed
Martino, M, Magioncalda, P, Saiote, C, et al.Abnormal functional-structural cingulum connectivity in mania: Combined functional magnetic resonance imaging-diffusion tensor imaging investigation in different phases of bipolar disorder. Acta Psychiatr Scand. 2016; 134(4): 339349.CrossRefGoogle ScholarPubMed
He, Y, Wang, Y, Chang, TT, et al. Abnormal intrinsic cerebro-cerebellar functional connectivity in un-medicated patients with bipolar disorder and major depressive disorder. Psychopharmacology (Berl). 2018; 235(11): 31873200.CrossRefGoogle ScholarPubMed
Minuzzi, L, Syan, SK, Smith, M, et al. Structural and functional changes in the somatosensory cortex in euthymic females with bipolar disorder. Aust N Z J Psychiatry. 2018; 52(11): 10751083.Google Scholar
Wang, Y, Zhong, S, Jia, Y, et al. Interhemispheric resting state functional connectivity abnormalities in unipolar depression and bipolar depression. Bipolar Disord. 2015; 17(5): 486495.CrossRefGoogle ScholarPubMed
Yasuno, F, Kudo, T, Matsuoka, K, et al. Interhemispheric functional disconnection because of abnormal corpus callosum integrity in bipolar disorder type II. BJPsych Open. 2016; 2(6): 335340.CrossRefGoogle ScholarPubMed
Reinke, B, Ven, V, Matura, S, Linden, DE, Oertel-Knochel, V, Altered intrinsic functional connectivity in language-related brain regions in association with verbal memory performance in euthymic bipolar patients. Brain Sci. 2013; 3(3): 13571373.CrossRefGoogle ScholarPubMed
Pang, Y, Chen, H, Wang, Y, et al. Transdiagnostic and diagnosis-specific dynamic functional connectivity anchored in the right anterior insula in major depressive disorder and bipolar depression. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 85: 715.CrossRefGoogle ScholarPubMed
Ellard, KK, Gosai, AK, Felicione, JM, et al.Deficits in frontoparietal activation and anterior insula functional connectivity during regulation of cognitive-affective interference in bipolar disorder. Bipolar Disord. 2019; May; 21(3): 244258.CrossRefGoogle ScholarPubMed
Marchand, WR, Lee, JN, Johnson, S, Gale, P, Thatcher, J, Differences in functional connectivity in major depression versus bipolar II depression. J Affect Disord. 2013; 150(2): 527532.Google Scholar
Yin, Z, Chang, M, Wei, S, et al. Decreased functional connectivity in insular subregions in depressive episodes of bipolar disorder and major depressive disorder. Front Neurosci. 2018; 12: 842.CrossRefGoogle ScholarPubMed
Liu, Y, Wu, X, Zhang, J, et al. Altered effective connectivity model in the default mode network between bipolar and unipolar depression based on resting-state fMRI. J Affect Disord. 2015; 182: 817.CrossRefGoogle ScholarPubMed
Fateh, AA, Long, Z, Duan, X, et al. Hippocampal functional connectivity-based discrimination between bipolar and major depressive disorders. Psychiatry Res Neuroimaging. 2019; 284: 5360.CrossRefGoogle ScholarPubMed
Oertel-Knochel, V, Reinke, B, Matura, S, Prvulovic, D, Linden, DE, van de Ven, V, Functional connectivity pattern during rest within the episodic memory network in association with episodic memory performance in bipolar disorder. Psychiatry Res. 2015; 231(2): 141150.CrossRefGoogle ScholarPubMed
Dandash, O, Yucel, M, Daglas, R, et al. Differential effect of quetiapine and lithium on functional connectivity of the striatum in first episode mania. Transl Psychiatry. 2018; 8(1): 59.CrossRefGoogle ScholarPubMed
He, Z, Sheng, W, Lu, F, et al. Altered resting-state cerebral blood flow and functional connectivity of striatum in bipolar disorder and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2019; 90: 177185.CrossRefGoogle ScholarPubMed
Altinay, MI, Hulvershorn, LA, Karne, H, Beall, EB, Anand, A, Differential Resting-State Functional Connectivity of Striatal Subregions in Bipolar Depression and Hypomania. Brain Connect. 2016; 6(3): 255265.CrossRefGoogle ScholarPubMed
Ambrosi, E, Arciniegas, DB, Madan, A, et al. Insula and amygdala resting-state functional connectivity differentiate bipolar from unipolar depression. Acta Psychiatr Scand. 2017; 136(1): 129139.CrossRefGoogle ScholarPubMed
Teng, S, Lu, CF, Wang, PS, et al. Altered resting-state functional connectivity of striatal-thalamic circuit in bipolar disorder. PLoS One. 2014; 9(5): e96422.CrossRefGoogle ScholarPubMed
Lv, D, Lin, W. W, Xue, Z. Z, et al. Decreased functional connectivity in the language regions in bipolar patients during depressive episodes but not remission. J Affect Disord. 2016; 197: 116124.CrossRefGoogle Scholar
Luo, X, Chen, G, Jia, Y, et al. Disrupted cerebellar connectivity with the central executive network and the default-mode network in unmedicated bipolar II disorder. Front Psychiatry. 2018; 9: 705.CrossRefGoogle Scholar
Chen, G, Zhao, L, Jia, Y, et al. Abnormal cerebellum-DMN regions connectivity in unmedicated bipolar II disorder. J Affect Disord. 2019; 243: 441447.CrossRefGoogle ScholarPubMed
Wang, J, Wang, Y. Y, Wu, X. X, et al. Shared and specific functional connectivity alterations in unmedicated bipolar and major depressive disorders based on the triple-network model. Brain Imaging Behav. 2020; February; 14(1):186199.CrossRefGoogle ScholarPubMed
Wang, Y, Zhong, S, Chen, G, et al. Altered cerebellar functional connectivity in remitted bipolar disorder: A resting-state functional magnetic resonance imaging study. Aust N Z J Psychiatry. 2018; 52(10): 962971.CrossRefGoogle ScholarPubMed
Shi, J, Geng, J, Yan, R, et al. Differentiation of transformed bipolar disorder from unipolar depression by resting-state functional connectivity within reward circuit. Front Psychol. 2018; 9: 2586.CrossRefGoogle ScholarPubMed
Han, S, He, Z, Duan, X, et al. Dysfunctional connectivity between raphe nucleus and subcortical regions presented opposite differences in bipolar disorder and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 92: 7682.CrossRefGoogle ScholarPubMed
Calhoun, VD, Adali, T, Pearlson, GD, Pekar, JJ, Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Hum Brain Mapp. 2001; 13(1): 4353.CrossRefGoogle ScholarPubMed
Beckmann, CF, DeLuca, M, Devlin, JT, Smith, SM, Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 2005; 360(1457): 10011013.CrossRefGoogle ScholarPubMed
Raichle, ME. Modern phrenology: Maps of human cortical function. Annals of the New York Academy of Sciences. 1999; 882: 107118; discussion 128–134.CrossRefGoogle ScholarPubMed
Raichle, ME, MacLeod, AM, Snyder, AZ, et al. A default mode of brain function. Proc Natl Acad Sci U S A. 2001; 98(2): 676682.CrossRefGoogle ScholarPubMed
Ishida, T, Donishi, T, Iwatani, J, et al. Interhemispheric disconnectivity in the sensorimotor network in bipolar disorder revealed by functional connectivity and diffusion tensor imaging analysis. Heliyon. 2017; 3(6): e00335.CrossRefGoogle ScholarPubMed
Syan, SK, Minuzzi, L, Smith, M, et al. Resting state functional connectivity in women with bipolar disorder during clinical remission. Bipolar Disord. 2017; 19(2): 97106.CrossRefGoogle ScholarPubMed
Lois, G, Linke, J, Wessa, M, Altered functional connectivity between emotional and cognitive resting state networks in euthymic bipolar I disorder patients. PLoS One. 2014; 9(10): e107829.CrossRefGoogle ScholarPubMed
Ford, KA, Theberge, J, Neufeld, RJ, Williamson, PC, Osuch, EA, Correlation of brain default mode network activation with bipolarity index in youth with mood disorders. J Affect Disord. 2013; 150(3): 11741178.CrossRefGoogle ScholarPubMed
He, H, Sui, J, Du, Y, et al. Co-altered functional networks and brain structure in unmedicated patients with bipolar and major depressive disorders. Brain Struct Funct. 2017; 222(9): 40514064.CrossRefGoogle ScholarPubMed
Goya-Maldonado, R, Brodmann, K, Keil, M, et al. Differentiating unipolar and bipolar depression by alterations in large-scale brain networks. Hum Brain Mapp. 2016; 37(2): 808818.Google Scholar
Bullmore, E, Sporns, O, Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009; 10(3): 186198.CrossRefGoogle ScholarPubMed
Doucet, GE, Bassett, DS, Yao, N, Glahn, DC, Frangou, S, The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder. Am J Psychiatry. 2017; 174(12): 12141222.Google Scholar
Wang, Y, Zhong, S, Jia, Y, et al. Disrupted resting-state functional connectivity in nonmedicated bipolar disorder. Radiology. 2016; 280(2): 529536.Google Scholar
Spielberg, JM, Beall, EB, Hulvershorn, LA, et al. Resting state brain network disturbances related to hypomania and depression in medication-free bipolar disorder. Neuropsychopharmacology. 2016; 41(13): 30163024.CrossRefGoogle ScholarPubMed
He, H, Yu, Q, Du, Y, et al. Resting-state functional network connectivity in prefrontal regions differs between unmedicated patients with bipolar and major depressive disorders. J Affect Disord. 2016; 190: 483493.Google Scholar
Wang, Y, Wang, J, Jia, Y, et al. Shared and specific intrinsic functional connectivity patterns in unmedicated bipolar disorder and major depressive disorder. Sci Rep. 2017; 7(1): 3570.CrossRefGoogle ScholarPubMed
Wang, Y, Wang, J, Jia, Y, et al.Topologically convergent and divergent functional connectivity patterns in unmedicated unipolar depression and bipolar disorder. Transl Psychiatry. 2017; 7(7): e1165.CrossRefGoogle ScholarPubMed
Wiest, G. Neural and mental hierarchies. Front. Psychol. 2012 November 26; 3(516).CrossRefGoogle ScholarPubMed
Solms, L, Gamwell, M. (2006). From Neurology to Psychoanalysis: Sigmund Freud’s Neurological Drawings and Diagrams of the Mind, Binghamton University Art Museum.Google Scholar
Wang, F, Kalmar, JH, He, Y, et al. Functional and structural connectivity between the perigenual anterior cingulate and amygdala in bipolar disorder. Biol Psychiatry. 2009; 66(5): 516521.Google Scholar
Almeida, JR, Versace, A, Mechelli, A, et al. Abnormal amygdala-prefrontal effective connectivity to happy faces differentiates bipolar from major depression. Biol Psychiatry. 2009; 66(5): 451459.CrossRefGoogle ScholarPubMed
Benson, BE, Willis, MW, Ketter, TA, et al. Differential abnormalities of functional connectivity of the amygdala and hippocampus in unipolar and bipolar affective disorders. J Affect Disord. 2014; 168: 243253.CrossRefGoogle ScholarPubMed
Satterthwaite, TD, Kable, JW, Vandekar, L, et al. Common and dissociable dysfunction of the reward system in bipolar and unipolar depression. Neuropsychopharmacology. 2015; 40(9): 22582268.CrossRefGoogle ScholarPubMed
Pompei, F, Dima, D, Rubia, K, Kumari, V, Frangou, S, Dissociable functional connectivity changes during the Stroop task relating to risk, resilience and disease expression in bipolar disorder. Neuroimage. 2011; 57(2): 576582.CrossRefGoogle ScholarPubMed
Nguyen, TT, Kovacevic, S, Dev, SI, et al. Dynamic functional connectivity in bipolar disorder is associated with executive function and processing speed: A preliminary study.” Neuropsychology. 2017; 31(1): 7383.CrossRefGoogle ScholarPubMed
Brady, RO Tandon, Jr Masters, N GA, et al. Differential brain network activity across mood states in bipolar disorder. J Affect Disord. 2017; 207: 367376.CrossRefGoogle ScholarPubMed
Ellard, KK, Zimmerman, J. P. JP, Kaur, N. N, et al. Functional connectivity between anterior insula and key nodes of frontoparietal executive control and salience networks distinguish bipolar depression from unipolar depression and healthy control subjects. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018; 3(5): 473484.Google ScholarPubMed
Yip, SW, Mackay, CE, Goodwin, GM, Increased temporo-insular engagement in unmedicated bipolar II disorder: An exploratory resting state study using independent component analysis. Bipolar Disord. 2014; 16(7): 748755.CrossRefGoogle ScholarPubMed
Ladouceur, CD, Diwadkar, VA, White, R, et al. Fronto-limbic function in unaffected offspring at familial risk for bipolar disorder during an emotional working memory paradigm. Dev Cogn Neurosci. 2013; 5: 185196.Google Scholar
Soehner, AM, Bertocci, MA, Manelis, A, et al. Preliminary investigation of the relationships between sleep duration, reward circuitry function, and mood dysregulation in youth offspring of parents with bipolar disorder. J Affect Disord. 2016; 205: 144153.CrossRefGoogle ScholarPubMed
Acuff, HE, Versace, A, Bertocci, MA, et al. Association of neuroimaging measures of emotion processing and regulation neural circuitries with symptoms of bipolar disorder in offspring at risk for bipolar disorder. JAMA Psychiatry. 2018; 75(12): 12411251.CrossRefGoogle ScholarPubMed
Acuff, HE, Versace, A, Bertocci, MA, et al. Baseline and follow-up activity and functional connectivity in reward neural circuitries in offspring at risk for bipolar disorder. Neuropsychopharmacology. 2019 August; 44(9): 15701578.CrossRefGoogle ScholarPubMed
Manelis, A, Ladouceur, CD, Graur, S, et al. Altered amygdala-prefrontal response to facial emotion in offspring of parents with bipolar disorder. Brain. 2015; 138(Pt 9): 27772790.CrossRefGoogle ScholarPubMed
Meluken, I, Ottesen, NM, Phan, KL, et al. Neural response during emotion regulation in monozygotic twins at high familial risk of affective disorders. Neuroimage Clin. 2019; 21: 101598.CrossRefGoogle ScholarPubMed
Hafeman, DM, Chase, HW, Monk, K, et al. Intrinsic functional connectivity correlates of person-level risk for bipolar disorder in offspring of affected parents. Neuropsychopharmacology. 2019; 44(3): 629634.CrossRefGoogle ScholarPubMed
Singh, MK, Chang, KD, Kelley, RG, et al. Early signs of anomalous neural functional connectivity in healthy offspring of parents with bipolar disorder. Bipolar Disord. 2014; 16(7): 678689.CrossRefGoogle ScholarPubMed
Singh, MK, Leslie, SM, Bhattacharjee, K, et al. Vulnerabilities in sequencing and task switching in healthy youth offspring of parents with mood disorders. J Clin Exp Neuropsychol. 2018; 40(6): 606618.CrossRefGoogle ScholarPubMed
Sole-Padulles, C, Castro-Fornieles, J, de la Serna, E, et al. Altered cortico-striatal connectivity in offspring of schizophrenia patients relative to offspring of bipolar patients and controls. PLoS One. 2016; 11(2): e0148045.CrossRefGoogle ScholarPubMed
Whittaker, JR, Foley, SF, Ackling, E, Murphy, K, Caseras, X, The functional connectivity between the nucleus accumbens and the ventromedial prefrontal cortex as an endophenotype for bipolar disorder. Biol Psychiatry. 2018; 84(11): 803809.CrossRefGoogle ScholarPubMed
Li, CT, Tu, PC, Hsieh, JC, et al. Functional dysconnection in the prefrontal-amygdala circuitry in unaffected siblings of patients with bipolar I disorder. Bipolar Disord. 2015; 17(6): 626635.CrossRefGoogle ScholarPubMed
Roberts, G, Lord, A, Frankland, A, et al. Functional dysconnection of the inferior frontal gyrus in young people with bipolar disorder or at genetic high risk. Biol Psychiatry. 2017; 81(8): 718727.Google Scholar
Collin, G, Scholtens, LH, Kahn, RS, Hillegers, MHJ, van den Heuvel, MP, Affected anatomical rich club and structural-functional coupling in young offspring of schizophrenia and bipolar disorder patients. Biol Psychiatry. 2017; 82(10): 746755.CrossRefGoogle ScholarPubMed
Altinay, M, Karne, H, Anand, A, Lithium monotherapy associated clinical improvement effects on amygdala-ventromedial prefrontal cortex resting state connectivity in bipolar disorder. J Affect Disord. 2018; 225: 412.CrossRefGoogle ScholarPubMed
Spielberg, JM, Matyi, MA, Karne, H, Anand, A, Lithium monotherapy associated longitudinal effects on resting state brain networks in clinical treatment of bipolar disorder. Bipolar Disord. 2019; 21(4): 361371.CrossRefGoogle ScholarPubMed
Kazemi, R, Rostami, R, Khomami, S, et al. Bilateral transcranial magnetic stimulation on dlPFC changes resting state networks and cognitive function in patients with bipolar depression. Front Hum Neurosci. 2018; 12: 356.CrossRefGoogle ScholarPubMed
Shinn, AK, Roh, YS, Ravichandran, CT, et al. Aberrant cerebellar connectivity in bipolar disorder with psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017; 2(5): 438448.Google ScholarPubMed
Samudra, N, Ivleva, EI, Hubbard, NA, et al. Alterations in hippocampal connectivity across the psychosis dimension. Psychiatry Res. 2015; 233(2): 148157.Google Scholar
Anticevic, A, Savic, A, Repovs, G, et al. Ventral anterior cingulate connectivity distinguished nonpsychotic bipolar illness from psychotic bipolar disorder and schizophrenia. Schizophr Bull. 2015; 41(1): 133143.CrossRefGoogle ScholarPubMed

References

Fakhoury, M. Revisiting the serotonin hypothesis: Implications for major depressive disorders. Mol Neurobiol. 2016; 53(5): 27782786.CrossRefGoogle ScholarPubMed
Lener, MS, Niciu, MJ, Ballard, ED, et al. Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biological Psychiatry. 2017; 81(10): 886897.Google Scholar
Young, JJ, Bruno, D, Pomara, N. A review of the relationship between proinflammatory cytokines and major depressive disorder. Journal of Affective Disorders. 2014; 169: 1520.Google Scholar
Slavich, GM, Irwin, MR. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychological Bulletin. 2014; 140(3): 774.CrossRefGoogle ScholarPubMed
Maes, M, Galecki, P, Chang, YS, Berk, M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2011; 35(3): 676692.CrossRefGoogle Scholar
Cecil, KM. Proton magnetic resonance spectroscopy: Technique for the neuroradiologist. Neuroimaging Clinics of North America. 2013; 23(3): 381392.CrossRefGoogle ScholarPubMed
Miller, BL, Changl, L, Booth, R, et al. In vivo 1 H MRS choline: Correlation with in vitro chemistry/histology. Life Sciences. 1996; 58(22): 19291935.Google Scholar
Scremin, OU, Jenden, DJ. Acetylcholine turnover and release: the influence of energy metabolism and systemic choline availability. Progress in Brain Research. 98: Elsevier; 1993. p. 191–5.Google Scholar
Djuricic, B, Olson, SR, Assaf, HM, et al. Formation of free choline in brain tissue during in vitro energy deprivation. Journal of Cerebral Blood Flow & Metabolism. 1991; 11(2): 308313.CrossRefGoogle ScholarPubMed
Wallimann, T, Wyss, M, Brdiczka, D, Nicolay, K, Eppenberger, H. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The’phosphocreatine circuit’for cellular energy homeostasis. Biochemical Journal. 1992; 281(Pt 1): 21.CrossRefGoogle ScholarPubMed
Li, BSY, Wang, H, Gonen, O. Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy. Magnetic Resonance Imaging. 2003 October; 21 (8): 923928.CrossRefGoogle ScholarPubMed
Choi, C, Ghose, S, Uh, J, et al. Measurement of N‐acetylaspartylglutamate in the human frontal brain by 1 H‐MRS at 7 T. Magnetic Resonance in Medicine. 2010; 64(5): 12471251.Google Scholar
Ariyannur, PS, Madhavarao, CN, Namboodiri, AMA. N-acetylaspartate synthesis in the brain: Mitochondria vs. microsomes. Brain Research. 2008; 1227: 3441.Google Scholar
Wiame, E, Tyteca, D, Pierrot, N, et al. Molecular identification of aspartate N-acetyltransferase and its mutation in hypoacetylaspartia. Biochemical Journal. 2010; 425(1): 127139.Google Scholar
Moreno, A, Ross, BD, Blüml, S. Direct determination of the N‐acetyl‐l‐aspartate synthesis rate in the human brain by 13 C MRS and [1‐13 C]glucose infusion. Journal of Neurochemistry. 2001; 77(1): 347350.Google ScholarPubMed
Choi, I-Y, Gruetter, R, editors. In vivo 13 C NMR measurement of total brain glycogen concentrations in the conscious rat. Proc Intl Soc Mag Reson Med; 2001.Google Scholar
Patel, TB, Clark, JB. Synthesis of N-acetyl-l-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochemical Journal. 1979; 184(3): 539–46.CrossRefGoogle ScholarPubMed
Yudkoff, M, Nelson, D, Daikhin, Y, Erecińska, M. Tricarboxylic acid cycle in rat brain synaptosomes. Fluxes and interactions with aspartate aminotransferase and malate/aspartate shuttle. Journal of Biological Chemistry. 1994; 269(44): 2741427420.CrossRefGoogle ScholarPubMed
Moffett, JR, Ross, B, Arun, P, Madhavarao, CN, Namboodiri, AMA. N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Progress in Neurobiology. 2007; 81(2): 89131.CrossRefGoogle ScholarPubMed
Baslow, MH. N-Acetylaspartate in the Vertebrate Brain: Metabolism and Function. Neurochemical Research. 2003; 28(6): 941–53.Google Scholar
Arun, P, Madhavarao, CN, Moffett, JR, Namboodiri, M. Regulation of N‐acetylaspartate and N‐acetylaspartylglutamate biosynthesis by protein kinase activators. Journal of Neurochemistry. 2006; 98(6): 20342042.Google Scholar
Neale, JH, Bzdega, T, Wroblewska, B. N-Acetylaspartylglutamate: The most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem. 2000; 75(2): 443452.CrossRefGoogle ScholarPubMed
Brand, A, Richter-Landsberg, C, Leibfritz, D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Developmental Neuroscience. 1993; 15(3–5): 289298.CrossRefGoogle ScholarPubMed
Moretto, E, Murru, L, Martano, G, Sassone, J, Passafaro, M. Glutamatergic synapses in neurodevelopmental disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2018; 84: 328342.CrossRefGoogle ScholarPubMed
Kew, JN, Kemp, JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology. 2005; 179(1): 429.Google Scholar
Anderson, CM, Swanson, RA. Astrocyte glutamate transport: Review of properties, regulation, and physiological functions. Glia. 2000; 32(1): 114.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Hertz, L, Zielke, HR. Astrocytic control of glutamatergic activity: Astrocytes as stars of the show. Trends in Neurosciences. 2004; 27(12): 735743.CrossRefGoogle Scholar
Sibson, NR, Dhankhar, A, Mason, GF, et al. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proceedings of the National Academy of Sciences. 1998; 95(1): 316321.CrossRefGoogle ScholarPubMed
Abdallah, Chadi G., Lihong, Jiang, De Feyter, Henk M., et al. Glutamate metabolism in major depressive disorder. American Journal of Psychiatry. 2014; 171(12): 13201327.CrossRefGoogle ScholarPubMed
Sappey-Marinier, D, Calabrese, G, Fein, G, et al. Effect of photic stimulation on human visual cortex lactate and phosphates using 1 H and 31P magnetic resonance spectroscopy. Journal of Cerebral Blood Flow & Metabolism. 1992; 12(4): 584592.CrossRefGoogle Scholar
Fox, PT, Raichle, ME, Mintun, MA, Dence, C. Nonoxidative glucose consumption during focal physiologic neural activity. Science (New York, NY). 1988; 241(4864): 462464.Google Scholar
Cichocka, M, Kozub, J, Urbanik, A. PH Measurements of the brain using phosphorus magnetic resonance spectroscopy ((31)PMRS) in healthy men – comparison of two analysis methods. Polish Journal of Radiology. 2015; 80: 509514.CrossRefGoogle Scholar
Petroff, OA, Prichard, JW, Behar, KL, et al. Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology. 1985; 35(6): 781788.CrossRefGoogle ScholarPubMed
Szulc, A, Wiedlocha, M, Waszkiewicz, N, et al. Proton magnetic resonance spectroscopy changes after lithium treatment. Systematic Review. Psychiatry Research Neuroimaging. 2018; 273: 18.CrossRefGoogle ScholarPubMed
Auer, DP, Pütz, B, Kraft, E, et al. Reduced glutamate in the anterior cingulate cortex in depression: An in vivo proton magnetic resonance spectroscopy study. Biological Psychiatry. 2000; 47(4): 305313.Google Scholar
Ende, G, Braus, DF, Walter, S, Weber-Fahr, W, Henn, FA. The hippocampus in patients treated with electroconvulsive therapy: A proton magnetic resonance spectroscopic imaging study. Archives of General Psychiatry. 2000; 57(10): 937943.CrossRefGoogle ScholarPubMed
Farchione, TR, Moore, GJ, Rosenberg, DR. Proton magnetic resonance spectroscopic imaging in pediatric major depression. Biological Psychiatry. 2002; 52(2): 8692.CrossRefGoogle ScholarPubMed
Kumar, A, Thomas, A, Lavretsky, H, et al. Frontal white matter biochemical abnormalities in late-life major depression detected with proton magnetic resonance spectroscopy. American Journal of Psychiatry. 2002; 159(4): 630636.CrossRefGoogle ScholarPubMed
Pfleiderer, B, Michael, N, Erfurth, A, et al. Effective electroconvulsive therapy reverses glutamate/glutamine deficit in the left anterior cingulum of unipolar depressed patients. Psychiatry Research: Neuroimaging. 122(3): 185192.CrossRefGoogle Scholar
Hasler, G, van der Veen, J, Tumonis, T, et al.Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Archives of General Psychiatry. 2007; 64(2): 193200.CrossRefGoogle ScholarPubMed
Gabbay, V, Hess, DA, Liu, S, et al. Lateralized caudate metabolic abnormalities in adolescent major depressive disorder: A proton MR spectroscopy study. American Journal of Psychiatry. 2007; 164(12): 18811889.CrossRefGoogle ScholarPubMed
Glodzik-Sobanska, L, Slowik, A, McHugh, P, et al. Single voxel proton magnetic resonance spectroscopy in post-stroke depression. Psychiatry Research: Neuroimaging. 2006; 148(2): 111120.CrossRefGoogle ScholarPubMed
Block, W, Traber, F, von Widdern, O, et al. Proton MR spectroscopy of the hippocampus at 3 T in patients with unipolar major depressive disorder: Correlates and predictors of treatment response. The International Journal of Neuropsychopharmacology / Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum. 2009; 12(3): 415422.CrossRefGoogle ScholarPubMed
McEwen, AM, Burgess, DT, Hanstock, CC, et al. Increased glutamate levels in the medial prefrontal cortex in patients with postpartum depression. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology. 2012; 37(11): 24282435.CrossRefGoogle ScholarPubMed
Wang, X, Li, Y-H, Li, M-H, et al. Glutamate level detection by magnetic resonance spectroscopy in patients with post-stroke depression. European Archives of Psychiatry and Clinical Neuroscience. 2012; 262(1): 3338.CrossRefGoogle ScholarPubMed
Wang, Y, Jia, Y, Chen, X, et al. Hippocampal N-acetylaspartate and morning cortisol levels in drug-naive, first-episode patients with major depressive disorder: Effects of treatment. Journal of Psychopharmacology. 2012 November; 26(11): 14631470.CrossRefGoogle ScholarPubMed
Rosa, CE, Soares, JC, Figueiredo, FP, et al. Glutamatergic and neural dysfunction in postpartum depression using magnetic resonance spectroscopy. Psychiatry Research: Neuroimaging. 2017; 265: 1825.CrossRefGoogle ScholarPubMed
Li, H, Xu, H, Zhang, Y, et al. Differential neurometabolite alterations in brains of medication‐free individuals with bipolar disorder and those with unipolar depression: A two‐dimensional proton magnetic resonance spectroscopy study. Bipolar Disorders. 2016; 18(7): 583590.Google Scholar
Yoon, S, Kim, JE, Hwang, J, et al. Effects of creatine monohydrate augmentation on brain metabolic and network outcome measures in women with major depressive disorder. Biological Psychiatry. 2016; 80(6): 439447.CrossRefGoogle ScholarPubMed
Lefebvre, D, Langevin, LM, Jaworska, N, et al. A pilot study of hippocampal N-acetyl-aspartate in youth with treatment resistant major depression. Journal of Affective Disorders. 2017; 207: 110113.CrossRefGoogle ScholarPubMed
Njau, S, Joshi, SH, Espinoza, R, et al. Neurochemical correlates of rapid treatment response to electroconvulsive therapy in patients with major depression. J Psychiatry Neurosci. 2017; 42(1): 616.CrossRefGoogle ScholarPubMed
Vythilingam, M, Charles, HC, Tupler, LA, et al. Focal and lateralized subcortical abnormalities in unipolar major depressive disorder: An automated multivoxel proton magnetic resonance spectroscopy study. Biological Psychiatry. 2003 October; 54(7): 744750.CrossRefGoogle ScholarPubMed
Gruber, S, Frey, R, Mlynárik, V, et al. Quantification of metabolic differences in the frontal brain of depressive patients and controls obtained by 1 H-MRS at 3 Tesla. Investigative Radiology. 2003; 38(7): 403408.CrossRefGoogle Scholar
Chen, CS, Chiang, IC, Li, CW, et al. Proton magnetic resonance spectroscopy of late-life major depressive disorder. Psychiatry Research. 2009; 172(3): 210214.CrossRefGoogle ScholarPubMed
Zhong, S, Wang, Y, Zhao, G, et al. Similarities of biochemical abnormalities between major depressive disorder and bipolar depression: A proton magnetic resonance spectroscopy study. Journal of Affective Disorders. 2014; 168: 380386.CrossRefGoogle ScholarPubMed
Jia, Y, Zhong, S, Wang, Y, et al. The correlation between biochemical abnormalities in frontal white matter, hippocampus and serum thyroid hormone levels in first-episode patients with major depressive disorder. Journal of Affective Disorders. 2015; 180: 162169.CrossRefGoogle ScholarPubMed
Huang, Y, Chen, W, Li, Y, et al. Effects of antidepressant treatment on N-acetyl aspartate and choline levels in the hippocampus and thalami of post-stroke depression patients: A study using (1)H magnetic resonance spectroscopy. Psychiatry Research. 2010; 182(1): 4852.CrossRefGoogle ScholarPubMed
Wang, Y, Jia, Y, Xu, G, et al. Frontal white matter biochemical abnormalities in first-episode, treatment-naive patients with major depressive disorder: A proton magnetic resonance spectroscopy study. Journal of Affective Disorders. 2012; 136(3): 620626.CrossRefGoogle ScholarPubMed
Li, Y, Jakary, A, Gillung, E, et al. Evaluating metabolites in patients with major depressive disorder who received mindfulness-based cognitive therapy and healthy controls using short echo MRSI at 7 Tesla. Magma (New York, Ny). 2016; 29: 523533.Google Scholar
Nery, FG, Stanley, JA, Chen, HH, et al. Normal metabolite levels in the left dorsolateral prefrontal cortex of unmedicated major depressive disorder patients: A single voxel (1)H spectroscopy study. Psychiatry Research. 2009; 174(3): 177183.CrossRefGoogle ScholarPubMed
Portella, MJ, de Diego-Adelino, J, Gomez-Anson, B, et al. Ventromedial prefrontal spectroscopic abnormalities over the course of depression: A comparison among first episode, remitted recurrent and chronic patients. Journal of Psychiatric Research. 2011; 45(4): 427434.CrossRefGoogle ScholarPubMed
de Diego-Adelino, J, Portella, MJ, Gomez-Anson, B, et al. Hippocampal abnormalities of glutamate/glutamine, N-acetylaspartate and choline in patients with depression are related to past illness burden. J Psychiatry Neurosci. 2013; 38(2): 107116.CrossRefGoogle ScholarPubMed
Tae, WS, Kim, SS, Lee, KU, Nam, EC, Koh, SH. Progressive decrease of N-acetylaspartate to total creatine ratio in the pregenual anterior cingulate cortex in patients with major depressive disorder: Longitudinal 1 H-MR spectroscopy study. Acta Radiologica. 2014; 55(5): 594603.CrossRefGoogle Scholar
Henigsberg, N, Šarac, H, Radoš, M, et al. Lower choline-containing metabolites/creatine (Cr) rise and failure to sustain NAA/Cr levels in the dorsolateral prefrontal cortex are associated with depressive episode recurrence under maintenance therapy: A proton magnetic resonance spectroscopy retrospective cohort study. Frontiers in Psychiatry. 2017; 8: 277.CrossRefGoogle ScholarPubMed
Grachev, ID, Ramachandran, TS, Thomas, PS, Szeverenyi, NM, Fredrickson, BE. Association between dorsolateral prefrontal N-acetyl aspartate and depression in chronic back pain: An in vivo proton magnetic resonance spectroscopy study. Journal of Neural Transmission. 2003; 110(3): 287312.CrossRefGoogle Scholar
Woo Suk, T, Sam Soo, K, Kang, Uk L, Eui-Cheol, N, Sung Hye, K. Progressive decrease of N-acetylaspartate to total creatine ratio in the pregenual anterior cingulate cortex in patients with major depressive disorder: Longitudinal 1H-MR spectroscopy study. Acta Radiologica. 2014; 55(5): 594603.Google Scholar
Wang, Y, Jia, Y, Chen, X, et al. Hippocampal N-acetylaspartate and morning cortisol levels in drug-naive, first-episode patients with major depressive disorder: Effects of treatment. Journal of Psychopharmacology (Oxford, England). 2012; 26(11): 14631470.CrossRefGoogle ScholarPubMed
Charles, HC, Lazeyras, F, Krishnan, KRR, Brain choline in depression: In vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 1994; 18(7): 11211127.CrossRefGoogle ScholarPubMed
Huang, Y, Chen, W, Li, Y, et al. Effects of antidepressant treatment on & <em>N</em>-acetyl aspartate and choline levels in the hippocampus and thalami of post-stroke depression patients: A study using 1H magnetic resonance spectroscopy. Psychiatry Research: Neuroimaging. 2010; 182(1): 4852.CrossRefGoogle Scholar
Kaymak, SU, Demir, B, Oğuz, KK, Şentürk, S, Uluğ, B. Antidepressant effect detected on proton magnetic resonance spectroscopy in drug‐naïve female patients with first‐episode major depression. Psychiatry and Clinical Neurosciences. 2009; 63(3): 350356.CrossRefGoogle ScholarPubMed
Lisanby, SH. Electroconvulsive therapy for depression. New England Journal of Medicine. 2007; 357(19): 19391945.CrossRefGoogle ScholarPubMed
Berlim, MT, van den Eynde, F, Tovar-Perdomo, S, Daskalakis, ZJ. Response, remission and drop-out rates following high-frequency repetitive transcranial magnetic stimulation (rTMS) for treating major depression: a systematic review and meta-analysis of randomized, double-blind and sham-controlled trials. Psychological Medicine. 2014; 44(2): 225239.CrossRefGoogle ScholarPubMed
Cano, M, Martínez-Zalacaín, I, Bernabéu-Sanz, Á, et al. Brain volumetric and metabolic correlates of electroconvulsive therapy for treatment-resistant depression: A longitudinal neuroimaging study. Translational Psychiatry. 2017; 7: e1023.CrossRefGoogle ScholarPubMed
Michael, N, Erfurth, A, Ohrmann, P, et al. Neurotrophic effects of electroconvulsive therapy: A proton magnetic resonance study of the left amygdalar region in patients with treatment-resistant depression. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2003; 28: 720.CrossRefGoogle ScholarPubMed
Zheng, H, Jia, F, Guo, G, et al. Abnormal anterior cingulate N-acetylaspartate and executive functioning in treatment-resistant depression after rTMS therapy. The International Journal of Neuropsychopharmacology / Official Scientific Journal of the Collegium Internationale Neuropsychopharmacologicum. 2015; 18(11): pyv059.CrossRefGoogle ScholarPubMed
Mirza, Y, O’Neill, J, Smith, EA, et al. Increased medial thalamic creatine-phosphocreatine found by proton magnetic resonance spectroscopy in children with obsessive-compulsive disorder versus major depression and healthy controls. Journal of Child Neurology. 2006; 21(2): 106111.CrossRefGoogle ScholarPubMed
Nery, FG, Stanley, JA, Chen, H-H, et al. Normal metabolite levels in the left dorsolateral prefrontal cortex of unmedicated major depressive disorder patients: A single voxel 1 H spectroscopy study. Psychiatry Research: Neuroimaging. 2009; 174(3): 177183.CrossRefGoogle ScholarPubMed
Iosifescu, DV, Renshaw, PF. 31P-Magnetic resonance spectroscopy and thyroid hormones in major depressive disorder: Toward a bioenergetic mechanism in depression? Harvard Review of Psychiatry. 2003; 11(2): 5163.Google Scholar
Kato, T, Takahashi, S, Shioiri, T, Inubushi, T. Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. Journal of Affective Disorders. 1992; 26(4): 223230.CrossRefGoogle ScholarPubMed
Moore, CM, Christensen, JD, Lafer, B, Fava, M, Renshaw, PF. Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: A phosphorous-31 magnetic resonance spectroscopy study. American Journal of Psychiatry. 1997; 154(1): 116118.Google ScholarPubMed
Volz, HP, Rzanny, R, Riehemann, S, et al. 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. European Archives of Psychiatry and Clinical Neuroscience. 1998; 248(6): 289295.Google Scholar
Renshaw, PF, Parow, AM, Hirashima, F, et al. Multinuclear magnetic resonance spectroscopy studies of brain purines in major depression. American Journal of Psychiatry. 2001; 158(12): 20482055.Google Scholar
Kondo, DG, Sung, Y-H, Hellem, TL, et al. Open-label adjunctive creatine for female adolescents with SSRI-resistant major depressive disorder: A 31-phosphorus magnetic resonance spectroscopy study. Journal of Affective Disorders. 2011; 135(1): 354361.CrossRefGoogle ScholarPubMed
Iosifescu, DV, Bolo, NR, Nierenberg, AA, et al. Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biological Psychiatry. 2008; 63(12): 11271134.CrossRefGoogle ScholarPubMed
Pettegrew, JW, Levine, J, Gershon, S, et al. 31P-MRS study of acetyl-L-carnitine treatment in geriatric depression: Preliminary results. Bipolar Disorders. 2002; 4(1): 6166.CrossRefGoogle ScholarPubMed
Forester, BP, Harper, DG, Jensen, JE, et al. 31Phosphorus magnetic resonance spectroscopy study of tissue specific changes in high energy phosphates before and after sertraline treatment of geriatric depression. International Journal of Geriatric Psychiatry. 2009; 24(8): 788797.CrossRefGoogle ScholarPubMed
Harper, DG, Joe, EB, Jensen, JE, Ravichandran, C, Forester, BP. Brain levels of high‐energy phosphate metabolites and executive function in geriatric depression. International Journal of Geriatric Psychiatry. 2016; 31(11): 12411249.CrossRefGoogle ScholarPubMed
Harper, DG, Jensen, JE, Ravichandran, C, et al. Tissue type-specific bioenergetic abnormalities in adults with major depression. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology. 2017; 42(4): 876885.CrossRefGoogle ScholarPubMed
Sassi RB, Stanley JA, Axelson D, et al. Reduced NAA levels in the dorsolateral prefrontal cortex of young bipolar patients. American Journal of Psychiatry. 2005; 162(11): 21092115.Google Scholar
Caetano, SC, Olvera, RL, Hatch, JP, et al. Lower <em>N</em>-Acetyl-Aspartate levels in prefrontal cortices in pediatric bipolar disorder: A 1H magnetic resonance spectroscopy study. Journal of the American Academy of Child & Adolescent Psychiatry. 2011; 50(1): 8594.CrossRefGoogle Scholar
Olvera, RL, Caetano, SC, Fonseca, M, et al. Low levels of N-Acetyl aspartate in the left dorsolateral prefrontal cortex of pediatric bipolar patients. Journal of Child and Adolescent Psychopharmacology. 2007; 17(4): 461473.Google Scholar
Winsberg, ME, Sachs, N, Tate, DL, et al. Decreased dorsolateral prefrontal <em>N</em>-acetyl aspartate in bipolar disorder. Biological Psychiatry. 2000; 47(6): 475481.CrossRefGoogle Scholar
Cecil, KM, DelBello, MP, Morey, R, Strakowski, SM. Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disorders. 2002; 4(6): 357365.Google Scholar
Özdel, O, Kalayci, D, Sözeri-Varma, G, et al. Neurochemical metabolites in the medial prefrontal cortex in bipolar disorder: A proton magnetic resonance spectroscopy study. Neural Regeneration Research. 2012; 7(36): 29292936.Google ScholarPubMed
Bertolino, A, Frye, M, Callicott, JH, et al. Neuronal pathology in the hippocampal area of patients with bipolar disorder: A study with proton magnetic resonance spectroscopic imaging. Biological Psychiatry. 2003; 53(10): 906913.CrossRefGoogle ScholarPubMed
Deicken, RF, Pegues, MP, Anzalone, S, Feiwell, R, Soher, B. Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. The American Journal of Psychiatry. 2003; 160(5): 873882.CrossRefGoogle ScholarPubMed
Port, JD, Unal, SS, Mrazek, DA, Marcus, SM. Metabolic alterations in medication-free patients with bipolar disorder: A 3 T CSF-corrected magnetic resonance spectroscopic imaging study. Psychiatry Research: Neuroimaging. 2008; 162(2): 113121.CrossRefGoogle Scholar
Zhong, S, Wang, Y, Zhao, G, et al. Similarities of biochemical abnormalities between major depressive disorder and bipolar depression: A proton magnetic resonance spectroscopy study. Journal of Affective Disorders. 2014; 168: 380386.Google Scholar
Croarkin, PE, Thomas, MA, Port, JD, et al. N-acetylaspartate normalization in bipolar depression after lamotrigine treatment. Bipolar Disorders. 2015; 17(4): 450457.CrossRefGoogle ScholarPubMed
Sharma, R, Venkatasubramanian, PN, Bárány, M, Davis, JM. Proton magnetic resonance spectroscopy of the brain in schizophrenic and affective patients. Schizophrenia Research. 1992; 8(1): 4349.CrossRefGoogle ScholarPubMed
Deicken, RF, Eliaz, Y, Feiwell, R, Schuff, N. Increased thalamic N-acetylaspartate in male patients with familial bipolar I disorder. Psychiatry Research: Neuroimaging. 2001; 106(1): 3545.Google Scholar
Ohara, K, Isoda, H, Suzuki, Y, et al. Proton magnetic resonance spectroscopy of the lenticular nuclei in bipolar I affective disorder. Psychiatry Research: Neuroimaging. 1998; 84(2): 5560.CrossRefGoogle ScholarPubMed
Castillo, M, Kwock, L, Courvoisie, H, Hooper, SR. Proton MR spectroscopy in children with bipolar affective disorder: Preliminary observations. American Journal of Neuroradiology. 2000; 21(5): 832.Google ScholarPubMed
Davanzo, P, Thomas, MA, Yue, K, et al. Decreased anterior cingulate myo-inositol/creatine spectroscopy resonance with lithium treatment in children with bipolar disorder. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology. 2001; 24(4): 359369.Google Scholar
Moore, CM, Frazier, JA, Glod, CA, et al. Glutamine and glutamate levels in children and adolescents with bipolar disorder. J Am Acad Child Adolesc Psychiatry. 2007 April; 46(4): 524534.Google Scholar
Davanzo, Pablo, Kenneth Yue, M. Thomas, Albert, et al. Proton magnetic resonance spectroscopy of bipolar disorder versus intermittent explosive disorder in children and adolescents. American Journal of Psychiatry. 2003; 160(8): 14421452.Google Scholar
Brambilla, P, Stanley, JA, Nicoletti, MA, et al. 1 H magnetic resonance spectroscopy investigation of the dorsolateral prefrontal cortex in bipolar disorder patients. Journal of Affective Disorders. 2005; 86(1): 6167.Google Scholar
DelBello, MP, Cecil, KM, Adler, CM, Daniels, JP, Strakowski, SM. Neurochemical effects of olanzapine in first-hospitalization manic adolescents: A proton magnetic resonance spectroscopy study. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology. 2005; 31: 1264.Google Scholar
Michael, N, Erfurth, A, Ohrmann, P, et al. Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology. 2003; 168(3): 344346.CrossRefGoogle ScholarPubMed
Forester, BP, Finn, CT, Berlow, YA, et al. Brain lithium, N‐acetyl aspartate and myo‐inositol levels in older adults with bipolar disorder treated with lithium: A lithium‐7 and proton magnetic resonance spectroscopy study. Bipolar Disorders. 2008; 10(6): 691700.Google Scholar
Hamakawa, H, Kato, T, Shioiri, T, Inubushi, T, Kato, N. Quantitative proton magnetic resonance spectroscopy of the bilateral frontal lobes in patients with bipolar disorder. Psychological Medicine. 1999; 29(3): 639644.CrossRefGoogle ScholarPubMed
Cecil, KM, DelBello, MP, Sellars, MC, Strakowski, SM. Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. Journal of Child and Adolescent Psychopharmacology. 2003; 13(4): 545555.CrossRefGoogle Scholar
Öngür, D, Prescot, AP, Jensen, JE, Cohen, BM, Renshaw, PF. Creatine abnormalities in schizophrenia and bipolar disorder. Psychiatry Research: Neuroimaging. 2009; 172(1): 4448.CrossRefGoogle ScholarPubMed
Dager, SR, Friedman, SD, Parow, A, et al. Brain metabolic alterations in medication-free patients with bipolardisorder. Archives of General Psychiatry. 2004; 61(5): 450458.CrossRefGoogle Scholar
Frye, MA, Watzl, J, Banakar, S, et al. Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology. 2007; 32: 2490.Google Scholar
Kato, T, Takahashi, S, Shioiri, T, et al. Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. Journal of Affective Disorders. 1994; 31(2): 125133.CrossRefGoogle ScholarPubMed
Weber, WA, Dudley, J, Lee, J-H, et al. A pilot study of alterations in high energy phosphoryl compounds and intracellular pH in unmedicated adolescents with bipolar disorder. Journal of Affective Disorders. 2013; 150(3): 11091113.CrossRefGoogle ScholarPubMed
Dudley, J, DelBello, MP, Weber, WA, et al. Tissue-dependent cerebral energy metabolism in adolescents with bipolar disorder. Journal of Affective Disorders. 2016; 191: 248255.CrossRefGoogle ScholarPubMed
Brennan, BP, Jensen, JE, Hudson, JI, et al. A placebo-controlled trial of acetyl-L-carnitine and alpha-lipoic acid in the treatment of bipolar depression. J Clin Psychopharmacol. 2013; 33(5): 627635.CrossRefGoogle ScholarPubMed
Deicken, RF, Fein, G, Weiner, MW. Abnormal frontal lobe phosphorous metabolism in bipolar disorder. American Journal of Psychiatry. 1995; 152(6): 915918.Google Scholar
Du, F, Yuksel, C, Chouinard, V-A, et al. Abnormalities in high-energy phosphate metabolism in first-episode bipolar disorder measured using 31P-magnetic resonance spectroscopy. Biological Psychiatry. 2018 December 1; 84(11): 797802.Google Scholar
Jensen, JE, Daniels, M, Haws, C, et al. Triacetyluridine (TAU) decreases depressive symptoms and increases brain pH in bipolar patients. Experimental and Clinical Psychopharmacology. 2008; 16(3): 199206.CrossRefGoogle Scholar
Murashita, J, Kato, T, Shioiri, T, Inubushi, T, Kato, N. Altered brain energy metabolism in lithium-resistant bipolar disorder detected by photic stimulated 31P-MR spectroscopy. Psychological Medicine. 2000; 30(1): 107115.CrossRefGoogle Scholar
Shi, XF, Carlson, PJ, Sung, YH, et al. Decreased brain PME/PDE ratio in bipolar disorder: A preliminary 31P magnetic resonance spectroscopy study. Bipolar Disorders. 2015; 17(7): 743752.CrossRefGoogle ScholarPubMed
Yuksel, C, Du, F, Ravichandran, C, et al. Abnormal high-energy phosphate molecule metabolism during regional brain activation in patients with bipolar disorder. Molecular Psychiatry. 2015; 20(9): 10791084.CrossRefGoogle ScholarPubMed
Sikoglu, EM, Jensen, JE, Vitaliano, G, et al. Bioenergetic measurements in children with bipolar disorder: A pilot 31P magnetic resonance spectroscopy study. PloS One. 2013; 8(1): e54536.CrossRefGoogle ScholarPubMed
Kato, T, Takahashi, S, Shioiri, T, Inubushi, T. Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. Journal of Affective Disorders. 1993; 27(1): 5359.CrossRefGoogle ScholarPubMed
Kato, T, Shioiri, T, Murashita, J, et al. Phosphorus-31 magnetic resonance spectroscopy and ventricular enlargement in bipolar disorder. Psychiatry Research. 1994; 55(1): 4150.Google Scholar
Hamakawa H, Murashita J, Yamada N, et al. Reduced intracellular pH in the basal ganglia and whole brain measured by 31P‐MRS in bipolar disorder. Psychiatry and Clinical Neurosciences. 2004; 58(1): 8288.CrossRefGoogle Scholar
Jensen, JE, Daniels, M, Haws, C, et al. Triacetyluridine (TAU) decreases depressive symptoms and increases brain pH in bipolar patients. Experimental and Clinical Psychopharmacology. 2008; 16(3): 199206.Google Scholar
Kim, DJ, Lyoo, IK, Yoon, SJ, et al. Clinical response of quetiapine in rapid cycling manic bipolar patients and lactate level changes in proton magnetic resonance spectroscopy. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2007; 31(6): 11821188.CrossRefGoogle ScholarPubMed
Bradley, EH, Curry, L, Horwitz, LI, Sipsma, H, Thompson, JW, Elma, M. Contemporary evidence about hospital strategies for reducing 30-day readmissions: a national study. J Am Coll Cardiol. 2012; 60.Google Scholar
Xu, J, Dydak, U, Harezlak, J, et al. Neurochemical abnormalities in unmedicated bipolar depression and mania: A 2D 1H MRS investigation. Psychiatry Research: Neuroimaging. 2013; 213(3): 235241.Google Scholar
Soeiro-de-Souza, MG, Pastorello, BF, Leite, CdC, et al. Dorsal anterior cingulate lactate and glutathione levels in euthymic bipolar I disorder: 1 H-MRS study. International Journal of Neuropsychopharmacology. 2016; 19(8): pyw032–pyw.Google Scholar
Machado-Vieira, R, Zanetti, MV, Otaduy, MC, et al. Increased brain lactate during depressive episodes and reversal effects by lithium monotherapy in drug-naive bipolar disorder: A 3-T 1 H-MRS study. Journal of Clinical Psychopharmacology. 2017; 37(1): 4045.Google Scholar
Yousha, M, Joseph, ON, Ethan, AS, et al. Increased medial thalamic creatine-phosphocreatine found by proton magnetic resonance spectroscopy in children with obsessive-compulsive disorder versus major depression and healthy controls. Journal of Child Neurology. 2006; 21(2): 106111.Google Scholar
Chen, C-S, Chiang, IC, Li, C-W, Lin, W-C, Lu, C-Y, Hsieh, T-J, et al. Proton magnetic resonance spectroscopy of late-life major depressive disorder. Psychiatry Research: Neuroimaging. 2009; 172(3): 210–4.Google ScholarPubMed
Wang, Y, Jia, Y, Xu, G, et al. Frontal white matter biochemical abnormalities in first-episode, treatment-naive patients with major depressive disorder: A proton magnetic resonance spectroscopy study. Journal of Affective Disorders. 2012; 136(3): 620626.Google Scholar
Jia, Y, Zhong, S, Wang, Y, et al. The correlation between biochemical abnormalities in frontal white matter, hippocampus and serum thyroid hormone levels in first-episode patients with major depressive disorder. Journal of Affective Disorders. 2015; 180: 162169.CrossRefGoogle ScholarPubMed
Moore, CM, Christensen, JD, Lafer, B, Fava, M, Renshaw, PF. Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: A phosphorous-31 magnetic resonance spectroscopy study. American Journal of Psychiatry. 1997; 154(1): 116118.Google ScholarPubMed
Harper, DG, Jensen, JE, Ravichandran, C, et al. Tissue type-specific bioenergetic abnormalities in adults with major depression. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 2016; 42: 876.Google Scholar
Hamakawa, H, Kato, T, Shioiri, T, Inubushi, T, Kato, N. Quantitative proton magnetic resonance spectroscopy of the bilateral frontal lobes in patients with bipolar disorder. Psychological Medicine. 1999; 29(3): 639644.Google Scholar
Moore, CM, Breeze, JL, Gruber, SA, et al. Choline, myo‐inositol and mood in bipolar disorder: A proton magnetic resonance spectroscopic imaging study of the anterior cingulate cortex. Bipolar Disorders. 2000; 2(3p2): 207216.CrossRefGoogle ScholarPubMed
Patel, NC, Cecil, KM, Strakowski, SM, Adler, CM, DelBello, MP. Neurochemical alterations in adolescent bipolar depression: A proton magnetic resonance spectroscopy pilot study of the prefrontal cortex. Journal of Child and Adolescent Psychopharmacology. 2008; 18(6): 623627.CrossRefGoogle ScholarPubMed
Brady, Jr RO, Cooper, A, Jensen, JE, et al. A longitudinal pilot proton MRS investigation of the manic and euthymic states of bipolar disorder. Translational Psychiatry. 2012; 2: e160.Google Scholar
Deicken, RF, Weiner, MW, Fein, G. Decreased temporal lobe phosphomonoesters in bipolar disorder. Journal of Affective Disorders. 1995; 33(3): 195199.Google Scholar

References

Francis, PT, Poynton, A, Lowe, SL, et al. Brain amino acid concentrations and Ca2+-dependent release in intractable depression assessed antemortem. Brain Res. 1989; 494(2): 315324.CrossRefGoogle ScholarPubMed
Stagg, CJ, Bestmann, S, Constantinescu, AO, et al. Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. J Physiol (Lond). 2011; 589(Pt 23): 58455855.Google Scholar
Eastwood, SL, Harrison, PJ. Markers of glutamate synaptic transmission and plasticity are increased in the anterior cingulate cortex in bipolar disorder. Biol Psychiatry. 2010; 67(11): 10101016.CrossRefGoogle ScholarPubMed
Rossignol, E. Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast. 2011; 2011: 649325.CrossRefGoogle ScholarPubMed
Fatemi, SH, Hossein Fatemi, S, Stary, JM, et al. GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of glutamic acid decarboxylase 65 and 67 kDa and Reelin proteins in cerebellum. Schizophr Res. 2005; 72(2–3): 109122.Google Scholar
Torrey, EF, Barci, BM, Webster, MJ, et al. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry. 2005; 57(3): 252260.CrossRefGoogle ScholarPubMed
Ongür, D, Drevets, WC, Price, JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA. 1998; 95(22): 1329013295.CrossRefGoogle ScholarPubMed
Yüksel, C, Ongur, D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry. 2010; 68(9): 785794.CrossRefGoogle ScholarPubMed
Cotter, DR, Pariante, CM, Everall, IP. Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull. 2001; 55(5): 585595.CrossRefGoogle ScholarPubMed
Machado-Vieira, R, Salvadore, G, Ibrahim, LA, Diaz-Granados, N, Zarate, CA. Targeting glutamatergic signaling for the development of novel therapeutics for mood disorders. Curr Pharm Des. 2009; 15(14): 15951611.CrossRefGoogle ScholarPubMed
Machado-Vieira, R, Manji, HK, Zarate, CA. The role of the tripartite glutamatergic synapse in the pathophysiology and therapeutics of mood disorders. Neuroscientist. 2009; 15(5): 525539.Google Scholar
Kim, JS, Schmid-Burgk, W, Claus, D, Kornhuber, HH. Increased serum glutamate in depressed patients. Arch Psychiatr Nervenkr. 1982; 232(4): 299304.CrossRefGoogle ScholarPubMed
Brady, RO, McCarthy, JM, Prescot, AP, et al. Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder. Bipolar Disord. 2013; 15(4): 434439.Google Scholar
Altamura, CA, Mauri, MC, Ferrara, A, et al. Plasma and platelet excitatory amino acids in psychiatric disorders. Am J Psychiatry. 1993; 150(11): 17311733.Google ScholarPubMed
Mauri, MC, Ferrara, A, Boscati, L, et al. Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology. 1998; 37(3): 124129.CrossRefGoogle ScholarPubMed
Rajkowska, G. Cell pathology in mood disorders. Semin Clin Neuropsychiatry. 2002; 7(4): 281292.CrossRefGoogle ScholarPubMed
Levine, J, Panchalingam, K, Rapoport, A et al. Increased cerebrospinal fluid glutamine levels in depressed patients. Biol Psychiatry. 2000; 47(7): 586593.CrossRefGoogle ScholarPubMed
Hashimoto, K, Sawa, A, Iyo, M. Increased levels of glutamate in brains from patients with mood disorders. Biol Psychiatry. 2007; 62(11): 13101316.CrossRefGoogle ScholarPubMed
Frye, MA, Tsai, GE, Huggins, T, Coyle, JT, Post, RM. Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol Psychiatry. 2007; 61(2): 162166.CrossRefGoogle ScholarPubMed
Gerner, RH, Fairbanks, L, Anderson, GM, et al. CSF neurochemistry in depressed, manic, and schizophrenic patients compared with that of normal controls. Am J Psychiatry. 1984; 141(12): 15331540.Google ScholarPubMed
Berrettini, WH, Nurnberger, JI, Hare, TA, Simmons-Alling, S, Gershon, ES. CSF GABA in euthymic manic-depressive patients and controls. Biol Psychiatry. 1986; 21(8–9): 844846.Google Scholar
Rajkowska, G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry. 2000; 48(8): 766777.CrossRefGoogle ScholarPubMed
Trullas, R, Skolnick, P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Pharmacol. 1990; 185(1): 110.CrossRefGoogle ScholarPubMed
Berman, RM, Cappiello, A, Anand, A, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000; 47(4): 351354.Google Scholar
Mathew, SJ, Shah, A, Lapidus, K, et al. Ketamine for treatment-resistant unipolar depression: Current evidence. CNS Drugs. 2012; 26(3): 189204.Google Scholar
Zarate, CA, Brutsche, NE, Ibrahim, L, et al. Replication of ketamine’s antidepressant efficacy in bipolar depression: A randomized controlled add-on trial. Biol Psychiatry. 2012; 71(11): 939946.CrossRefGoogle ScholarPubMed
Govindaraju, V, Young, K, Maudsley, AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed. 2000; 13(3): 129153.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Hashimoto, R, Hough, C, Nakazawa, T, Yamamoto, T, Chuang, D-M. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: Involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem. 2002; 80(4): 589597.CrossRefGoogle ScholarPubMed
Kumar, A, Singh, RL, Babu, GN. Cell death mechanisms in the early stages of acute glutamate neurotoxicity. Neurosci Res. 2010; 66(3): 271278.CrossRefGoogle ScholarPubMed
Gigante, AD, Young, LT, Yatham, LN, et al. Morphometric post-mortem studies in bipolar disorder: Possible association with oxidative stress and apoptosis. Int J Neuropsychopharmacol. 2011; 14(8): 10751089.CrossRefGoogle ScholarPubMed
Martinez-Hernandez, A, Bell, KP, Norenberg, MD. Glutamine synthetase: Glial localization in brain. Science. 1977; 195(4284): 13561358.Google Scholar
Waagepetersen, HS, Sonnewald, U, Schousboe, A. Glutamine, Glutamate, and GABA: metabolic aspects. In: Lajtha, A, Oja, S, Schousboe, A, Saransaari, P, editors. Handbook of Neurochemistry and Molecular Neurobiology: Amino Acids and Peptides in the Nervous System. New York: Springer; 2007, pp. 121.Google Scholar
Rothman, DL, De Feyter, HM, de Graaf, RA, Mason, GF, Behar, KL. 13 C MRS studies of neuroenergetics and neurotransmitter cycling in humans. NMR Biomed. 2011; 24(8): 943957.CrossRefGoogle ScholarPubMed
Daikhin, Y, Yudkoff, M. Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr. 2000; 130(4S Suppl): 1026S1031S.CrossRefGoogle ScholarPubMed
Brennan, BP, Hudson, JI, Jensen, JE, et al. Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology. 2010; 35(3): 834846.CrossRefGoogle ScholarPubMed
Soeiro de Souza, MG, Henning, A, Machado-Vieira, R, et al. Anterior cingulate Glutamate-Glutamine cycle metabolites are altered in euthymic bipolar I disorder. Eur Neuropsychopharmacol. 2015; 25(12): 22212229.Google Scholar
Igarashi, H, Kwee, IL, Nakada, T, Katayama, Y, Terashi, A. 1 H magnetic resonance spectroscopic imaging of permanent focal cerebral ischemia in rat: Longitudinal metabolic changes in ischemic core and rim. Brain Res. 2001; 907(1–2): 208221.CrossRefGoogle Scholar
Iltis, I, Koski, DM, Eberly, LE, et al. Neurochemical changes in the rat prefrontal cortex following acute phencyclidine treatment: An in vivo localized (1)H MRS study. NMR Biomed. 2009; 22(7): 737744.CrossRefGoogle Scholar
Mlynárik, V, Kohler, I, Gambarota, G, et al. Quantitative proton spectroscopic imaging of the neurochemical profile in rat brain with microliter resolution at ultra-short echo times. Magn Reson Med. 2008; 59(1): 5258.CrossRefGoogle ScholarPubMed
Ongur, D, Jensen, JE, Prescot, AP, et al. Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry. 2008; 64(8): 718726.Google Scholar
Théberge, J, Bartha, R, Drost, DJ, et al. Glutamate and glutamine measured with 4.0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatry. 2002; 159(11): 19441946.CrossRefGoogle ScholarPubMed
Théberge, J, Al-Semaan, Y, Williamson, PC, et al. Glutamate and glutamine in the anterior cingulate and thalamus of medicated patients with chronic schizophrenia and healthy comparison subjects measured with 4.0-T proton MRS. Am J Psychiatry. 2003; 160(12): 22312233.CrossRefGoogle Scholar
Erlander, MG, Tillakaratne, NJ, Feldblum, S, Patel, N, Tobin, AJ. Two genes encode distinct glutamate decarboxylases. Neuron. 1991; 7(1): 91100.CrossRefGoogle ScholarPubMed
Bu, DF, Erlander, MG, Hitz, BC, et al. Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene. Proc Natl Acad Sci USA. 1992; 89(6): 21152119.CrossRefGoogle ScholarPubMed
Guidotti, A, Auta, J, Davis, JM, et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry. 2000; 57(11): 10611069.CrossRefGoogle ScholarPubMed
Heckers, S, Stone, D, Walsh, J, et al. Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Arch Gen Psychiatry. 2002; 59(6): 521529.CrossRefGoogle ScholarPubMed
Woo, T-UW, Walsh, JP, Benes, FM. Density of glutamic acid decarboxylase 67 messenger RNA-containing neurons that express the N-methyl-D-aspartate receptor subunit NR2A in the anterior cingulate cortex in schizophrenia and bipolar disorder. Arch Gen Psychiatry. 2004; 61(7): 649657.CrossRefGoogle ScholarPubMed
Thompson, M, Weickert, CS, Wyatt, E, Webster, MJ. Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders. J Psychiatr Res. 2009; 43(11): 970977.CrossRefGoogle ScholarPubMed
Maddock, RJ, Buonocore, MH. MR spectroscopic studies of the brain in psychiatric disorders. Curr Top Behav Neurosci. 2012; 11: 199251.CrossRefGoogle ScholarPubMed
Cooper, AJL, Jeitner, TM. Central role of glutamate metabolism in the maintenance of nitrogen homeostasis in normal and hyperammonemic brain. Biomolecules. 2016 March 26; 6(2): 16.CrossRefGoogle ScholarPubMed
Walls, AB, Waagepetersen, HS, Bak, LK, Schousboe, A, Sonnewald, U. The glutamine-glutamate/GABA cycle: Function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res. 2015; 40(2): 402409.Google Scholar
Buonocore, MH, Maddock, RJ. Magnetic resonance spectroscopy of the brain: A review of physical principles and technical methods. Rev Neurosci. 2015; 26(6): 609632.Google Scholar
Bush, G, Luu, P, Posner, M. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci (Regul Ed). 2000; 4(6): 215222.CrossRefGoogle ScholarPubMed
Strakowski, SM, Adler, CM, Almeida, J, et al. The functional neuroanatomy of bipolar disorder: A consensus model. Bipolar Disord. 2012 June; 14(4): 313325. DOI:10.1111/j.1399-5618.2012.01022.x.CrossRefGoogle ScholarPubMed
Drevets, WC, Price, JL, Simpson, JR, et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997; 386(6627): 824827.Google Scholar
Haldane, M, Frangou, S. New insights help define the pathophysiology of bipolar affective disorder: Neuroimaging and neuropathology findings. Prog Neuropsychopharmacol Biol Psychiatry. 2004; 28(6): 943960.CrossRefGoogle ScholarPubMed
Savitz, JB, Price, JL, Drevets, WC. Neuropathological and neuromorphometric abnormalities in bipolar disorder: View from the medial prefrontal cortical network. Neurosci Biobehav Rev. 2014; 42: 132147.CrossRefGoogle ScholarPubMed
Drevets, WC, Savitz, J, Trimble, M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr. 2008; 13(8): 663681.CrossRefGoogle ScholarPubMed
Hibar, DP, Westlye, LT, Doan, NT, et al. Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018 April; 23(4): 932942.CrossRefGoogle ScholarPubMed
McGirr, A, Berlim, MT, Bond, DJ, et al. A systematic review and meta-analysis of randomized controlled trials of adjunctive ketamine in electroconvulsive therapy: Efficacy and tolerability. J Psychiatr Res. 2015; 62: 2330.Google Scholar
Godfrey, KEM, Gardner, AC, Kwon, S, Chea, W, Muthukumaraswamy, SD. Differences in excitatory and inhibitory neurotransmitter levels between depressed patients and healthy controls: A systematic review and meta-analysis. J Psychiatr Res. 2018; 105: 3344.Google Scholar
Moriguchi, S, Takamiya, A, Noda, Y, et al. Glutamatergic neurometabolite levels in major depressive disorder: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry. 2019; 24: 952964.Google Scholar
Arnone, D, Mumuni, AN, Jauhar, S, Condon, B, Cavanagh, J. Indirect evidence of selective glial involvement in glutamate-based mechanisms of mood regulation in depression: Meta-analysis of absolute prefrontal neuro-metabolic concentrations. Eur Neuropsychopharmacol. 2015; 25(8): 11091117.Google Scholar
Luykx, JJ, Laban, KG, van den Heuvel, MP, et al. Region and state specific glutamate downregulation in major depressive disorder: A meta-analysis of (1)H-MRS findings. Neurosci Biobehav Rev. 2012; 36(1): 198205.Google Scholar
Dager, SR, Friedman, SD, Parow, A, et al. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry. 2004; 61(5): 450458.CrossRefGoogle ScholarPubMed
Frye, MA, Watzl, J, Banakar, S, et al. Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression. Neuropsychopharmacology. 2007; 32(12): 24902499.CrossRefGoogle ScholarPubMed
Soeiro de Souza, MG, Salvadore, G, Moreno, RA, et al. Bcl-2 rs956572 polymorphism is associated with increased anterior cingulate cortical glutamate in euthymic bipolar I disorder. Neuropsychopharmacology. 2013; 38(3): 468475.Google Scholar
Ehrlich, A, Schubert, F, Pehrs, C, Gallinat, J. Alterations of cerebral glutamate in the euthymic state of patients with bipolar disorder. Psychiatry Res. 2015; 233(2): 7380.Google Scholar
Kubo, H, Nakataki, M, Sumitani, S, et al. 1 H-magnetic resonance spectroscopy study of glutamate-related abnormality in bipolar disorder. J Affect Disord. 2017; 208: 139144.CrossRefGoogle Scholar
Soeiro de Souza, MG, Otaduy, MCG, Machado-Vieira, R, et al. Anterior cingulate cortex glutamatergic metabolites and mood stabilizers in euthymic bipolar I disorder patients: A proton magnetic resonance spectroscopy study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018 December; 3(12): 985991.Google Scholar
Michael, N, Erfurth, A, Ohrmann, P, et al. Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med. 2003; 33(7): 12771284.CrossRefGoogle ScholarPubMed
Bhagwagar, Z, Wylezinska, M, Jezzard, P, et al. Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol Psychiatry. 2007; 61(6): 806812.Google Scholar
Yildiz-Yesiloglu, A, Ankerst, DP. Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: A systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropsychopharmacol Biol Psychiatry. 2006; 30(6): 969995.CrossRefGoogle ScholarPubMed
Gigante, AD, Bond, DJ, Lafer, B, et al. Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: A meta-analysis. Bipolar Disord. 2012; 14(5): 478487.Google Scholar
Chitty, KM, Lagopoulos, J, Lee, RSC, Hickie, IB, Hermens, DF. A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. Eur Neuropsychopharmacol. 2013; 23(11): 13481363.CrossRefGoogle ScholarPubMed
Drevets, WC. Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Prog Brain Res. 2000; 126: 413431.CrossRefGoogle ScholarPubMed
Phillips, ML, Drevets, WC, Rauch, SL, Lane, R. Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biol Psychiatry. 2003; 54(5): 504514.Google Scholar
Anticevic, A, Savic, A, Repovs, G, et al. Ventral anterior cingulate connectivity distinguished nonpsychotic bipolar illness from psychotic bipolar disorder and schizophrenia. Schizophr Bull. 2015; 41(1): 133143.CrossRefGoogle ScholarPubMed
Liu, J, Blond, BN, van Dyck, LI, et al. Trait and state corticostriatal dysfunction in bipolar disorder during emotional face processing. Bipolar Disord. 2012; 14(4): 432441.CrossRefGoogle ScholarPubMed
Foland-Ross, LC, Thompson, PM, Sugar, CA, et al. Investigation of cortical thickness abnormalities in lithium-free adults with bipolar I disorder using cortical pattern matching. Am J Psychiatry. 2011; 168(5): 530539.CrossRefGoogle ScholarPubMed
Patel, NC, DelBello, MP, Cecil, KM, et al. Temporal change in N-acetyl-aspartate concentrations in adolescents with bipolar depression treated with lithium. J Child Adolesc Psychopharmacol. 2008; 18(2): 132139.CrossRefGoogle ScholarPubMed
Colla, M, Schubert, F, Bubner, M, et al. Glutamate as a spectroscopic marker of hippocampal structural plasticity is elevated in long-term euthymic bipolar patients on chronic lithium therapy and correlates inversely with diurnal cortisol. Mol Psychiatry. 2009; 14(7): 696704, 647.CrossRefGoogle ScholarPubMed
Senaratne, R, Milne, AM, MacQueen, GM, Hall, GBC. Increased choline-containing compounds in the orbitofrontal cortex and hippocampus in euthymic patients with bipolar disorder: A proton magnetic resonance spectroscopy study. Psychiatry Res. 2009; 172(3): 205209.Google Scholar
Moore, CM, Frazier, JA, Glod, CA, et al. Glutamine and glutamate levels in children and adolescents with bipolar disorder: A 4.0-T proton magnetic resonance spectroscopy study of the anterior cingulate cortex. J Am Acad Child Adolesc Psychiatry. 2007; 46(4): 524534.Google Scholar
Friedman, SD, Dager, SR, Parow, A, et al. Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol Psychiatry. 2004; 56(5): 340348.Google Scholar
Machado-Vieira, R, Gattaz, WF, Zanetti, MV, et al. A longitudinal (6-week) 3 T (1)H-MRS study on the effects of lithium treatment on anterior cingulate cortex metabolites in bipolar depression. Eur Neuropsychopharmacol. 2015; 25(12): 23112317.CrossRefGoogle Scholar
Zanetti, MV, Otaduy, MC, de Sousa, RT, et al. Bimodal effect of lithium plasma levels on hippocampal glutamate concentrations in bipolar II depression: A pilot study. Int J Neuropsychopharmacol. 2014 October 31; 18(6): pyu058.Google ScholarPubMed
O’Donnell, T, Rotzinger, S, Nakashima, TT, et al. Chronic lithium and sodium valproate both decrease the concentration of myo-inositol and increase the concentration of inositol monophosphates in rat brain. Brain Res. 2000; 880(1–2): 8491.Google Scholar
Szulc, A, Wiedlocha, M, Waszkiewicz, N, et al. Proton magnetic resonance spectroscopy changes after lithium treatment. Systematic review. Psychiatry Res Neuroimaging. 2018; 273: 18.CrossRefGoogle ScholarPubMed
Luscher, B, Shen, Q, Sahir, N. The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry. 2011; 16(4): 383406.CrossRefGoogle ScholarPubMed
Petty, F, Schlesser, MA. Plasma GABA in affective illness. A Preliminary Investigation. J Affect Disord. 1981; 3(4): 339343.CrossRefGoogle ScholarPubMed
Petty, F, Sherman, AD. Plasma GABA levels in psychiatric illness. J Affect Disord. 1984; 6(2): 131138.Google Scholar
Gerner, RH, Hare, TA. CSF GABA in normal subjects and patients with depression, schizophrenia, mania, and anorexia nervosa. Am J Psychiatry. 1981; 138(8): 10981101.Google ScholarPubMed
Honig, A, Bartlett, JR, Bouras, N, Bridges, PK. Amino acid levels in depression: A preliminary investigation. J Psychiatr Res. 1988; 22(3): 159164.CrossRefGoogle ScholarPubMed
Chiapponi, C, Piras, F, Piras, F, Caltagirone, C, Spalletta, G. GABA system in schizophrenia and mood disorders: A mini review on third-generation imaging studies. Front Psychiatry. 2016; 7: 61.Google Scholar
Schür, RR, Draisma, LWR, Wijnen, JP, et al. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies. Hum Brain Mapp. 2016; 37(9): 33373352.CrossRefGoogle ScholarPubMed
Romeo, B, Choucha, W, Fossati, P, Rotge, J-Y. Meta-analysis of central and peripheral γ-aminobutyric acid levels in patients with unipolar and bipolar depression. J Psychiatry Neurosci. 2018; 43(1): 5866.Google Scholar
Kalueff, AV, Nutt, DJ. Role of GABA in anxiety and depression. Depress Anxiety. 2007; 24(7): 495517.Google Scholar
Sanacora, G, Mason, GF, Rothman, DL, Krystal, JH. Increased occipital cortex GABA concentrations in depressed patients after therapy with selective serotonin reuptake inhibitors. Am J Psychiatry. 2002; 159(4): 663665.CrossRefGoogle ScholarPubMed
Sanacora, G, Mason, GF, Rothman, DL, et al. Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry. 2003; 160(3): 577579.CrossRefGoogle ScholarPubMed
Verkuyl, JM, Hemby, SE, Joëls, M. Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus. Eur J Neurosci. 2004; 20(6): 16651673.Google Scholar
Wang, PW, Sailasuta, N, Chandler, RA, Ketter, TA. Magnetic resonance spectroscopy measurement of cerebral gamma-aminobutyric acid concentrations in patients with bipolar disorders. Acta Neuropsychiatrica. 2006; 18: 120126.CrossRefGoogle ScholarPubMed
Kaufman, RE, Ostacher, MJ, Marks, EH, et al. Brain GABA levels in patients with bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009; 33(3): 427434.CrossRefGoogle ScholarPubMed
Godlewska, BR, Yip, SW, Near, J, Goodwin, GM, Cowen, PJ. Cortical glutathione levels in young people with bipolar disorder: A pilot study using magnetic resonance spectroscopy. Psychopharmacology (Berl). 2014; 231(2): 327332.CrossRefGoogle ScholarPubMed
Prisciandaro, JJ, Tolliver, BK, Prescot, AP, et al. Unique prefrontal GABA and glutamate disturbances in co-occurring bipolar disorder and alcohol dependence. Transl Psychiatry. 2017; 7(7): e1163.CrossRefGoogle ScholarPubMed
Levy, LM, Degnan, AJ. GABA-based evaluation of neurologic conditions: MR spectroscopy. AJNR Am J Neuroradiol. 2013; 34(2): 259265.Google Scholar
Mesdjian, E, Ciesielski, L, Valli, M, et al. Sodium valproate: Kinetic profile and effects on GABA levels in various brain areas of the rat. Prog Neuropsychopharmacol Biol Psychiatry. 1982; 6(3): 223233.Google Scholar
Rubenstein, JLR, Merzenich, MM. Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003; 2(5): 255267.Google Scholar
Krystal, JH, Sanacora, G, Blumberg, H, et al. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry. 2002; 7(Suppl 1): S7180.CrossRefGoogle ScholarPubMed
Lener, MS, Niciu, MJ, Ballard, ED, et al. Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry. 2017; 81(10): 886897.Google Scholar
Soeiro de Souza, MG, Machado-Vieira, R, Soares, Bio D, Do Prado, CM, Moreno, RA. COMT polymorphisms as predictors of cognitive dysfunction during manic and mixed episodes in bipolar I disorder. Bipolar Disord. 2012; 14(5): 554564.CrossRefGoogle ScholarPubMed
Michael, N, Erfurth, A, Ohrmann, P, et al. Acute mania is accompanied by elevated glutamate/glutamine levels within the left dorsolateral prefrontal cortex. Psychopharmacology (Berl). 2003; 168(3): 344346.Google Scholar
Hajek, T, Bernier, D, Slaney, C, et al. A comparison of affected and unaffected relatives of patients with bipolar disorder using proton magnetic resonance spectroscopy. J Psychiatry Neurosci. 2008; 33(6): 531540.Google ScholarPubMed

References

Miller, AH, Maletic, V, Raison, CL. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009; 65(9): 732741.Google Scholar
Dowlati, Y, Herrmann, N, Swardfager, W, et al. A meta-analysis of Cytokines in major depression. Biol Psychiatry. 2010 March 1; 67(5): 446457.CrossRefGoogle ScholarPubMed
Musselman, DL, Lawson, DH, Gumnick, JF, et al. Paroxetine for the prevention of depression induced by high-dose interferon alfa. N Engl J Med. 2001; 344(13): 961966.Google Scholar
Capuron, L, Gumnick, JF, Musselman, DL, et al. Neurobehavioral effects of interferon-alpha in cancer patients: Phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology. 2002; 26(5): 643652.CrossRefGoogle ScholarPubMed
Brydon, L, Harrison, NA, Walker, C, Steptoe, A, Critchley, HD. Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry. 2008; 63(11): 10221029.CrossRefGoogle ScholarPubMed
Reichenberg, A, Yirmiya, R, Schuld, A, et al. Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry. 2001; 58(5): 445452.CrossRefGoogle ScholarPubMed
Salazar, A, Gonzalez-Rivera, BL, Redus, L, Parrott, JM, O’Connor, JC. Indoleamine 2,3-dioxygenase mediates anhedonia and anxiety-like behaviors caused by peripheral lipopolysaccharide immune challenge. Horm Behav. 2012; 62(3): 202209.CrossRefGoogle ScholarPubMed
Yang, L, Wang, M, et al. Systemic inflammation induces anxiety disorder through CXCL12/CXCR4 pathway. Brain Behav Immun. 2016; 56: 352362.Google Scholar
Yu, I, Inaji, M, Maeda, J, et al. Glial cell-mediated deterioration and repair of the nervous system after traumatic brain injury in a rat model as assessed by positron emission tomography. J Neurotrauma. 2010; 27(8): 14631475.CrossRefGoogle Scholar
Grossman, R, Paden, CM, Fry, PA, Rhodes, RS, Biegon, A. Persistent region-dependent neuroinflammation, NMDA receptor loss and atrophy in an animal model of penetrating brain injury. Future Neurol. 2012; 7(3): 329339.CrossRefGoogle Scholar
Raghavendra Rao, VL, Dogan, A, Bowen, KK, Dempsey, RJ. Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol. 2000; 161(1): 102114.Google Scholar
Ramlackhansingh, AF, Brooks, DJ, Greenwood, RJ,et al. Inflammation after trauma: Microglial activation and traumatic brain injury. Ann Neurol. 2011; 70(3): 374383.Google Scholar
Rapoport, MJ. Depression following traumatic brain injury: epidemiology, risk factors and management. CNS Drugs. 2012; 26(2): 111121.Google Scholar
Bombardier, CH, Fann, JR, Temkin, NR, Et al. Rates of major depressive disorder and clinical outcomes following traumatic brain injury. JAMA. 2010; 303(19): 19381945.Google Scholar
Jorge, RE, Robinson, RG, Moser, D, et al. Major depression following traumatic brain injury. Arch Gen Psychiatry. 2004; 61(1): 4250.CrossRefGoogle ScholarPubMed
Brey, RL, Holliday, SL, Saklad, AR, et al. Neuropsychiatric syndromes in lupus: prevalence using standardized definitions. Neurology. 2002; 58(8): 12141220.Google Scholar
Nery, FG, Borba, EF, Viana, VS, et al. Prevalence of depressive and anxiety disorders in systemic lupus erythematosus and their association with anti-ribosomal P antibodies. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(3): 695700.CrossRefGoogle ScholarPubMed
Bachen, EA, Chesney, MA, Criswell, LA. Prevalence of mood and anxiety disorders in women with systemic lupus erythematosus. Arthritis Rheum. 2009; 61(6): 822829.CrossRefGoogle ScholarPubMed
Minden, SL, Orav, J, Reich, P. Depression in multiple sclerosis. Gen Hosp Psychiatry. 1987; 9(6): 426434.CrossRefGoogle ScholarPubMed
Sadovnick, AD, Eisen, K, Ebers, GC, Paty, DW. Cause of death in patients attending multiple sclerosis clinics. Neurology. 1991; 41(8): 11931196.Google Scholar
Joffe, RT, Lippert, GP, Gray, TA, Sawa, G, Horvath, Z. Mood disorder and multiple sclerosis. Arch Neurol. 1987; 44(4): 376378.Google Scholar
Pandey, GN, Rizavi, HS, Ren, X, et al. Proinflammatory cytokines in the prefrontal cortex of teenage suicide victims. J Psychiatr Res. 2012; 46(1): 5763.Google Scholar
Shelton, RC, Claiborne, J, Sidoryk-Wegrzynowicz, M, et al. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry. 2011; 16(7): 751762.Google Scholar
Steiner, J, Bielau, H, Brisch, R, et al. Immunological aspects in the neurobiology of suicide: Elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008; 42(2): 151157.Google Scholar
Mahajan, GJ, Vallender, EJ, Garrett, MR, et al. Altered neuro-inflammatory gene expression in hippocampus in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 82: 177186.CrossRefGoogle ScholarPubMed
Kreutzberg, GW. Microglia: A sensor for pathological events in the CNS. Trends in Neurosciences. 1996; 19(8): 312318.CrossRefGoogle ScholarPubMed
Carbonell, WS, Murase, S, Horwitz, AF, Mandell, JW. Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: An in situ time-lapse confocal imaging study. J Neurosci. 2005; 25(30): 70407047.CrossRefGoogle Scholar
Cross, AK, Woodroofe, MN. Chemokines induce migration and changes in actin polymerization in adult rat brain microglia and a human fetal microglial cell line in vitro. J Neurosci Res. 1999; 55(1): 1723.Google Scholar
Gehrmann, J, Matsumoto, Y, Kreutzberg, GW. Microglia: Intrinsic immuneffector cell of the brain. Brain Research Reviews. 1995; 20(3): 269287.CrossRefGoogle ScholarPubMed
Dantzer, R, O’Connor, JC, Freund, GG, Johnson, RW, Kelley, KW. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat Rev Neurosci. 2008; 9(1): 4656.Google Scholar
Wohleb, ES, Franklin, T, Iwata, M, Duman, RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci. 2016; 17(8): 497511.Google Scholar
Venneti, S, Wiley, CA, Kofler, J. Imaging microglial activation during neuroinflammation and Alzheimer’s disease. J Neuroimmune Pharmacol. 2009; 4(2): 227243.CrossRefGoogle ScholarPubMed
Banati, RB, Myers, R, Kreutzberg, GW. PK (‘peripheral benzodiazepine’)–binding sites in the CNS indicate early and discrete brain lesions: Microautoradiographic detection of [3 H]PK11195 binding to activated microglia. J Neurocytol. 1997; 26(2): 7782.Google Scholar
Martin, A, Boisgard, R, Theze, B, et al. Evaluation of the PBR/TSPO radioligand [(18)F]DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab. 2010; 30(1): 230241.Google Scholar
Hannestad, J, Dellagioia, N, Gallezot, JD, et al. The neuroinflammation marker translocator protein is not elevated in individuals with mild-to-moderate depression: A [C]PBR28 PET study. Brain Behav Immun. 2013; 33: 131138.CrossRefGoogle Scholar
Betlazar, C, Harrison-Brown, M, Middleton, RJ, Banati, R, Liu, GJ. Cellular sources and regional variations in the expression of the neuroinflammatory marker translocator protein (TSPO) in the normal brain. Int J Mol Sci. 2018 September 11; 19(9): 2707.Google Scholar
Cosenza-Nashat, M, Zhao, ML, Suh, HS, et al. Expression of the translocator protein of 18kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathology and Applied Neurobiology. 2009; 35(3): 306328.Google Scholar
Kropholler, MA, Boellaard, R, Schuitemaker, A, et al. Evaluation of reference tissue models for the analysis of [11 C](R)-PK11195 studies. J Cereb Blood Flow Metab. 2006; 26(11): 14311441.CrossRefGoogle ScholarPubMed
Imaizumi, M, Kim, HJ, Zoghbi, SS, et al. PET imaging with [11 C]PBR28 can localize and quantify upregulated peripheral benzodiazepine receptors associated with cerebral ischemia in rat. Neurosci Lett. 2007; 411(3): 200205.CrossRefGoogle ScholarPubMed
Wilson, AA, Garcia, A, Parkes, J, et al. Radiosynthesis and initial evaluation of [18 F]-FEPPA for PET imaging of peripheral benzodiazepine receptors. Nucl Med Biol. 2008; 35(3): 305314.Google Scholar
Ikawa, M, Lohith, TG, Shrestha, S, et al. Biomarkers consortium radioligand project T. 11 C-ER176, a radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain. J Nucl Med. 2017; 58(2): 320325.Google Scholar
Wimberley, C, Lavisse, S, Brulon, V, et al. Impact of endothelial 18-kDa translocator protein on the quantification of (18)F-DPA-714. J Nucl Med. 2018; 59(2): 307314.Google Scholar
Medran-Navarrete, V, Damont, A, Peyronneau, MA, et al. Preparation and evaluation of novel pyrazolo[1,5-a]pyrimidine acetamides, closely related to DPA-714, as potent ligands for imaging the TSPO 18kDa with PET. Bioorg Med Chem Lett. 2014; 24(6): 15501556.Google Scholar
Fookes, CJ, Pham, TQ, Mattner, F, et al. Synthesis and biological evaluation of substituted [18 F]imidazo[1,2-a]pyridines and [18 F]pyrazolo[1,5-a]pyrimidines for the study of the peripheral benzodiazepine receptor using positron emission tomography. J Med Chem. 2008; 51(13): 37003712.Google Scholar
James, ML, Fulton, RR, Vercoullie, J, et al. DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacologic characterization. J Nucl Med. 2008; 49(5): 814822.Google Scholar
Zanotti-Fregonara, P, Zhang, Y, Jenko, KJ, et al. Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971. ACS Chem Neurosci. 2014; 5(10): 963971.Google Scholar
Fujita, M, Imaizumi, M, Zoghbi, SS, et al. Kinetic analysis in healthy humans of a novel positron emission tomography radioligand to image the peripheral benzodiazepine receptor, a potential biomarker for inflammation. Neuroimage. 2008; 40(1): 4352.CrossRefGoogle ScholarPubMed
Rusjan, P, Wilson, AA, Bloomfield, PM, et al. Quantification of translocator protein (18kDa) in the human brain with PET and a novel radioligand, [18 F]-FEPPA. JCBFM. 2010; 31(8): 18071816.Google Scholar
Guo, Q, Colasanti, A, Owen, DR, et al. Quantification of the specific translocator protein signal of 18 F-PBR111 in healthy humans: A genetic polymorphism effect on in vivo binding. J Nucl Med. 2013; 54(11): 19151923.CrossRefGoogle ScholarPubMed
Jucaite, A, Cselenyi, Z, Arvidsson, A, et al. Kinetic analysis and test-retest variability of the radioligand [11 C](R)-PK11195 binding to TSPO in the human brain – a PET study in control subjects. EJNMMI Res. 2012; 2: 15.Google Scholar
Hagens, MHJ, Golla, SV, Wijburg, MT, et al. In vivo assessment of neuroinflammation in progressive multiple sclerosis: A proof of concept study with [(18)F]DPA714 PET. J Neuroinflammation. 2018; 15(1): 314.Google Scholar
Collste, K, Forsberg, A, Varrone, A, et al. Test-retest reproducibility of [(11)C]PBR28 binding to TSPO in healthy control subjects. Eur J Nucl Med Mol Imaging. 2016; 43(1): 173183.CrossRefGoogle Scholar
Hashimoto, K, Inoue, O, Suzuki, K, Yamasaki, T, Kojima, M. Synthesis and evaluation of 11 C-PK 11195 for in vivo study of peripheral-type benzodiazepine receptors using positron emission tomography. Ann Nucl Med. 1989; 3(2): 6371.Google Scholar
Vicidomini, C, Panico, M, Greco, A, et al. In vivo imaging and characterization of [(18)F]DPA-714, a potential new TSPO ligand, in mouse brain and peripheral tissues using small-animal PET. Nucl Med Biol. 2015; 42(3): 309316.CrossRefGoogle ScholarPubMed
Meyer, J. Novel phenotypes detectable with PET in mood disorders: Elevated monoamine oxidase A and translocator protein level. In: Vasdev, N, Alavi, A, editors. PET Clinics: Novel PET Radiotracers with Potential Clinical Applications. Vol 12. United States: Elsevier; 2017, pp. 361371.Google Scholar
Setiawan, E, Wilson, AA, Mizrahi, R, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 2015; 72(3): 268275.Google Scholar
Li, H, Sagar, AP, Keri, S. Translocator protein (18kDa TSPO) binding, a marker of microglia, is reduced in major depression during cognitive-behavioral therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 83: 17.CrossRefGoogle Scholar
Holmes, SE, Hinz, R, Conen, S, et al. Elevated translocator protein in anterior cingulate in major depression and a role for inflammation in suicidal thinking: A positron emission tomography study. Biol Psychiatry. 2018; 83(1): 6169.Google Scholar
Setiawan, E, Attwells, S, Wilson, AA, et al. Association of translocator protein total distribution volume with duration of untreated major depressive disorder: A cross-sectional study. Lancet Psychiatry. 2018; 5(4): 339347.Google Scholar
Richards, EM, Zanotti-Fregonara, P, Fujita, M, et al. PET radioligand binding to translocator protein (TSPO) is increased in unmedicated depressed subjects. EJNMMI Res. 2018; 8(1): 57.Google Scholar
Li, H, Sagar, AP, Keri, S. Microglial markers in the frontal cortex are related to cognitive dysfunctions in major depressive disorder. J Affect Disord. 2018; 241: 305310.CrossRefGoogle ScholarPubMed
Narayanaswami, V, Dahl, K, Bernard-Gauthier, V, et al. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: Outlook beyond TSPO. Mol Imaging. 2018; 17: 1536012118792317.Google Scholar
Fowler, JS, MacGregor, RR, Wolf, AP, et al. Mapping human brain monoamine oxidase A and B with 11 C-labeled suicide inactivators and PET. Science. 1987; 235(4787): 481485.Google Scholar
Fowler, JS, Wang, GJ, Logan, J, et al. Selective reduction of radiotracer trapping by deuterium substitution: Comparison of carbon-11-L-deprenyl and carbon-11-deprenyl-D2 for MAO B mapping. J Nucl Med. 1995; 36(7): 12551262.Google Scholar
Nag, S, Fazio, P, Lehmann, L, et al. In vivo and in vitro characterization of a novel MAO-B inhibitor radioligand, 18 F-labeled deuterated fluorodeprenyl. J Nucl Med. 2016; 57(2): 315320.Google Scholar
Bramoulle, Y, Puech, F, Saba, W, et al. Radiosynthesis of (S)‐5‐methoxymethyl‐3‐[6‐(4, 4, 4‐trifluorobutoxy) benzo [d] isoxazol‐3‐yl] oxazolidin‐2‐[11 C] one ([11 C] SL25. 1188), a novel radioligand for imaging monoamine oxidase‐B with PET. Journal of Labelled Compounds and Radiopharmaceuticals. 2008; 51(3): 153158.Google Scholar
Saba, W, Valette, H, Peyronneau, MA, et al. [(11)C]SL25.1188, a new reversible radioligand to study the monoamine oxidase type B with PET: Preclinical characterisation in nonhuman primate. Synapse. 2010; 64(1): 6169.Google Scholar
Vasdev, N, Sadovski, O, Garcia, A, et al. Radiosynthesis of [11 C] SL25. 1188 via [11 C] CO2 fixation for imaging monoamine oxidase B. Journal of Labelled Compounds and Radiopharmaceuticals. 2011; 54(10): 678680.CrossRefGoogle Scholar
Vasdev, N, Sadovski, O, Moran, MD, et al. Development of new radiopharmaceuticals for imaging monoamine oxidase B. Nucl Med Biol. 2011; 38(7): 933943.CrossRefGoogle ScholarPubMed
Rusjan, PM, Wilson, AA, Miler, L, et al. Kinetic modeling of the monoamine oxidase B radioligand [(1)(1)C]SL25.1188 in human brain with high-resolution positron emission tomography. J Cereb Blood Flow Metab. 2014; 34(5): 883889.CrossRefGoogle Scholar
Moriguchi, S, Wilson, AA, Miler, L, et al. Monoamine oxidase B total distribution volume in the prefrontal cortex of major depressive disorder: An [11 C]SL25.1188 positron emission tomography study. JAMA Psychiatry. 2019 June 1; 6(6): 634641.CrossRefGoogle Scholar
Saura, J, Andres, N, Andrade, C, et al. Biphasic and region-specific MAO-B response to aging in normal human brain. Neurobiol Aging. 1997; 18(5): 497507.CrossRefGoogle ScholarPubMed
Tong, J, Jeffrey H. Meyer , Furukawa, Y, Et al. Distribution of monoamine oxidase proteins in human brain: Implications for brain imaging studies. J Cereb Blood Flow Metab. 2013; 33(6): 863871.Google Scholar
Saura, J, Luque, JM, Cesura, AM, et al. Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience. 1994; 62(1): 1530.CrossRefGoogle ScholarPubMed
Ekblom, J, Jossan, SS, Oreland, L, Walum, E, Aquilonius, SM. Reactive gliosis and monoamine oxidase B. J Neural Transm Suppl. 1994; 41: 253258.Google Scholar
Tong, J, Rathitharan, G, Meyer, Jeffrey H., et al. Brain monoamine oxidase B and A in human parkinsonian dopamine deficiency disorders. Brain. 2017; 140(9): 24602474.Google Scholar
Gulyas, B, Pavlova, E, Kasa, P, et al. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11 C]-L-deprenyl using whole hemisphere autoradiography. Neurochem Int. 2011; 58(1): 6068.CrossRefGoogle ScholarPubMed
Rajkowska, G, Miguel-Hidalgo, JJ, Wei, J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999; 45(9): 10851098.Google Scholar
Ongur, D, Drevets, WC, Price, JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A. 1998; 95(22): 1329013295.Google Scholar
Rajkowska, G, Stockmeier, CA. Astrocyte pathology in major depressive disorder: Insights from human postmortem brain tissue. Curr Drug Targets. 2013; 14(11): 12251236.Google Scholar
Khundakar, A, Morris, C, Oakley, A, Thomas, AJ. A morphometric examination of neuronal and glial cell pathology in the orbitofrontal cortex in late-life depression. Int Psychogeriatr. 2011; 23(1): 132140.Google Scholar
Si, X, Miguel-Hidalgo, JJ, O’Dwyer, G, Stockmeier, CA, Rajkowska, G. Age-dependent reductions in the level of glial fibrillary acidic protein in the prefrontal cortex in major depression. Neuropsychopharmacology. 2004; 29(11): 20882096.CrossRefGoogle ScholarPubMed
Miguel-Hidalgo, JJ, Baucom, C, Dilley, G, et al. Glial fibrillary acidic protein immunoreactivity in the prefrontal cortex distinguishes younger from older adults in major depressive disorder. Biol Psychiatry. 2000; 48(8): 861873.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×