Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-02T06:21:19.956Z Has data issue: false hasContentIssue false

24 - The sedimentary rock cycle of Mars

from Part V - Synthesis

Published online by Cambridge University Press:  10 December 2009

S. M. McLennan
Affiliation:
Department of Geosciences, SUNY Stony Brook Stony Brook, NY 11794-2100, USA
J. P. Grotzinger
Affiliation:
Geology & Planetary Sciences, California Institute of Technology MC 170-25 1200 E. California Blvd. Pasendena, CA 91125, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

Abstract

Orbital and landed missions have demonstrated that Mars possesses an extensive and diverse sedimentary rock record that is mostly ancient. Many observed or inferred processes appear familiar to sedimentary geologists but, in detail, the sedimentary record of Mars differs in fundamental ways from the terrestrial record. Mars is a basaltic planet and accordingly, the provenance of sedimentary material, including particulate debris and aqueous fluids from which chemical constituents precipitate, is composed of basalt rather than intermediate to felsic igneous compositions characteristic of terrestrial upper continental crust. Aqueous alteration, observed on Mars and studied experimentally, indicates surficial processes dominated by low pH; under acidic conditions, many chemical relationships that are characteristic of terrestrial weathering do not apply. Aluminum and Fe are far more soluble and mobile, Si mobility is limited by fluid/rock ratio and iron oxidation rates are sluggish. Low fluid/rock ratios are indicted by the observation that only the most soluble minerals (olivine, Fe-Ti oxides, phosphates, possibly pyroxene) appear to be widely involved in surface alteration with little evidence for involvement of relatively insoluble plagioclase. An intriguing result, from both global-scale orbital and detailed surface spectroscopy, and geochemistry obtained by rovers, is that evaporitic processes, leading to a wide variety of Ca-, Mg- and Fe-bearing sulfates in sedimentary rocks, alteration profiles, and soils, appear to have been common throughout Martian geological history. Investigations by Spirit and Opportunity demonstrate that classical stratigraphy and sedimentology can be accomplished on the Martian surface using remote techniques.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 541 - 577
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlbrandt, T. S. and S. G. Fryberger, Sedimentary features and significance of interdune deposits. In Recent and Ancient Non-marine Depositional Environments: Models for Exploration (ed. Ethridge, F. G. and Flores, R. M.), Special Publication No. 31, Tulsa: Society of Economic Mineralogists and Paleontologists, pp. 293–314, 1981.CrossRefGoogle Scholar
Andrews-Hanna, J. C., Phillips, R. J., and Zuber, M. T., Meridiani Planum and the global hydrology of Mars, Nature 446, 163–6, 2007.CrossRefGoogle ScholarPubMed
Arlauckas, S. M., McLennan, S. M., and Lindsley, D. H., The effect of low-temperature acidic weathering on the magnetic signature of primary Fe-Ti oxides on Mars, Lunar Planet. Sci. XXXVII, Houston: Lunar and Planetary Institute, Abstract #1609 (CD-ROM), 2006.Google Scholar
Armstrong, J. C. and Leovy, C. B., Long term wind erosion on Mars, Icarus 176, 57–74, 2005.CrossRefGoogle Scholar
Armstrong, J. C., Leovy, C. B., and Quinn, T., A 1 Gyr climate model for Mars: new orbital statistics and the importance of seasonally resolved polar processes, Icarus 171, 255–71, 2004.CrossRefGoogle Scholar
Arvidson, R. E., Poulet, F., Morris, R. V., et al., Nature and origin of the hematite-bearing plains of Terra Meridiani based on analyses of orbital and Mars Exploration rover data sets, J. Geophys. Res. 111, E12S08, doi:10.1029/2006JE002728, 2006a.CrossRefGoogle Scholar
Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al., Overview of the Spirit Mars Exploration Rover mission to Gusev crater: landing site to Backstay rock in the Columbia Hills, J. Geophys. Res. 111, E02S01, doi:10.1029/2005JE002499, 2006b.CrossRefGoogle Scholar
Baker, L. L., Agenbroad, D. J., and Wood, S. A., Experimental hydrothermal alteration of a Martian analog basalt: implications for Martian meteorites, Meteorit. Planet. Sci. 35, 31–8, 2000.CrossRefGoogle Scholar
Baker, V. R., Water and the Martian landscape, Nature 412, 228–36, 2001.CrossRefGoogle ScholarPubMed
Bandfield, J. L., Glotch, T. D., and Christensen, P. R., Spectroscopic identification of carbonate minerals in the martian dust, Science 301, 1084–7, 2003.CrossRefGoogle ScholarPubMed
Banin, A., Han, F. X., Kan, I., and Cicelsky, A., Acidic volatiles and the Mars soil, J. Geophys. Res. 102, 13341–56, 1997.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum, Science 306, 1703–9, 2004.CrossRefGoogle ScholarPubMed
Benison, K. C. and LaClair, D. A., Modern and ancient extremely acid saline deposits: terrestrial analogs for Martian environments?, Astrobiology 3, 609–18, 2003.CrossRefGoogle ScholarPubMed
Berner, R. A., Chemical weathering and its effect on atmospheric CO2 and climate, Rev. Mineral. 31, 565–83, 1995.Google Scholar
Bhattacharya, J. P., Payenberg, T. H. D., Lang, S. C., and Bourke, M., Dynamic river channels suggest a long-lived Noachian crater lake on Mars, Geophys. Res. Lett. 32(10), L10201, 2005.CrossRefGoogle Scholar
Bibring, J.-P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science 307, 1576–81, 2005.CrossRefGoogle ScholarPubMed
Bibring, J.-P., Langevin, Y., Mustard, J. F., et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars Express data, Nature 312, 400–4, 2006.Google ScholarPubMed
Blatt, H., Flux of siliciclastic grains in sediments, J. Geol. Education 37, 243–9, 1989.CrossRefGoogle Scholar
Boguchwal, L. A. and Southard, J. B., Bed configurations in steady unidirectional flows. Part 1. Scale model using fine sands, J. Sediment. Petrol., 60, 649–57, 1990.Google Scholar
Branney, M. J. and Kokelaar, P., Pyroclastic Density Currents and the Sedimentation of Ignimbrites, London: The Geological Society, 142pp., 2002.Google Scholar
Bridges, J. C. and Grady, M. M., A halite-siderite-anhydrite-chlorapatite assemblage in Nakhla: mineralogical evidence for evaporites on Mars. Meteorit. Planet. Sci. 34, 407–15, 1999.CrossRefGoogle Scholar
Bridges, J. C. and Grady, M. M., Evaporite mineral assemblages in the nakhlites (martian) meteorites, Earth Planet. Sci. Lett. 176, 267–79, 2000.CrossRefGoogle Scholar
Bridges, J. C., Catling, D. C., Saxton, J. M., et al., Alteration assemblages in martian meteorites: implications for near-surface processes, Space Sci. Rev. 96, 365–92, 2001.CrossRefGoogle Scholar
Broecker, W. S. and Peng, T.-H., Tracers in the Sea, Palisades, NY: Eldigio Press, 690pp., 1982.Google Scholar
Buick, R., Life in the Archaean. In Palaeobiology II (ed. Briggs, D. E. G. and Crowther, P. R.), Oxford: Blackwell, pp. 13–21, 2001.CrossRefGoogle Scholar
Buick, R. and Dunlop, J. S. R., Evaporitic sediments of early Archean age from the Warrawoona Group, North Pole, Western Australia, Sedimentology 37, 247–78, 1990.CrossRefGoogle Scholar
Buick, R., Dunlop, J. S. R., and Groves, D. I., Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an early Archean chert-barite unit from North Pole, Western Australia, Alcheringa 21, 161–81, 1981.CrossRefGoogle Scholar
Burns, R. G., Rates and mechanisms of chemical weathering of ferromagnesian silicate minerals on Mars, Geochim. Cosmochim. Acta 57, 4555–74, 1993.CrossRefGoogle Scholar
Cabrol, N. A., Grin, E. A., Carr, M. H., et al., Exploring Gusev crater with Spirit: review of science objectives and testable hypotheses, J. Geophys. Res. 108, E128076, doi:10.1029/2002JE002026, 2003.CrossRefGoogle Scholar
Carr, M. H., Head, J. W. III, Oceans on Mars: an assessment of observational evidence and possible fate, J. Geophys. Res. 108(E5), 5042, doi 10.1029/2002JE001963, 2003.CrossRefGoogle Scholar
Catling, D. C., A chemical model for evaporites on early Mars: possible sedimentary tracers of the early climate and implications for exploration, J. Geophys. Res. 104, 16453–69, 1999.CrossRefGoogle Scholar
Chigira, M. and Oyama, T., Mechanism and effect of chemical weathering of sedimentary rocks, Eng. Geol. 55, 3–14, 1999.CrossRefGoogle Scholar
Choquette, P. W. and Pray, L. C., Geologic nomenclature and classification of porosity in sedimentary carbonates, Am. Assoc. Pet. Geol. Bull. 54, 207–50, 1970.Google Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the mini-TES experiment on the Opportunity rover, Science 306, 1733–9, 2004.CrossRefGoogle ScholarPubMed
Christensen, P. R., McSween, H. Y. Jr., Bandfield, J. L., et al., Evidence for magmatic evolution and diversity on Mars from infrared observations, Nature 436, 504–9, 2005.CrossRefGoogle ScholarPubMed
Clark, B. C. and Hart, D. C., The salts of Mars, Icarus 45, 370–8, 1981.CrossRefGoogle Scholar
Clark, B. C., Morris, R. V., McLennan, S. M., et al., Chemistry and mineralogy of outcrops at Meridiani Planum, Earth Planet. Sci. Lett. 240, 73–94, 2005.CrossRefGoogle Scholar
Clifford, S. M. and Parker, T. J., The evolution of the Martian hydrosphere: implications for the fate of a primordial ocean and the current state of the northern plains, Icarus 154, 40–79, 2001.CrossRefGoogle Scholar
Clifford, S. M., Crisp, D., Fisher, D. A., et al., The state and future of Mars polar science and exploration, Icarus 144, 210–42, 2000.CrossRefGoogle ScholarPubMed
Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., et al., Magnetic lineation in the ancient crust of Mars, Science 284, 794–8, 1999.CrossRefGoogle Scholar
Dressler, B. O., Sharpton, V. L., Schwandt, C. S., and Ames, D., Impactites of the Yaxcopoil-1 drilling site, Chicxulub impact structure: petrography, geochemistry, and depositional environment, Meteorit. Planet. Sci. 39, 857–78, 2004.CrossRefGoogle Scholar
Edgett, K. S., The sedimentary rocks of Sinus Meridiani: five key observations from data acquired by Mars Global Surveyor and Mars Odyssey orbiters, Mars 1, 5–58, 2005.CrossRefGoogle Scholar
Edgett, K. S. and Malin, M. C., Martian sedimentary rock stratigraphy: outcrops and interbedded craters of northwest Sinus Meridiani and southwest Arabia Terra, Geophys. Res. Lett. 29(24), 2179, doi:10.1029/2002GL016515, 2002.CrossRefGoogle Scholar
Eriksson, K. A., Alluvial and destructive beach facies from the Archean Moodies Group, Barberton Mountain Land, South Africa and Swaiziland, Canadian Soc. Petrol. Geol. Mem. 5, 287–311, 1978.Google Scholar
Eugster, H. P., Climatic significance of lake and evaporite deposits, Climate in Earth History, Studies in Geophysics, Washington, DC: National Academy Press, pp. 105–11, 1982.Google Scholar
Eugster, H. P. and L. A. Hardie, Saline lakes. In Lakes: Chemistry, Geology, Physics (ed. Lerman, A.), New York: Springer-Verlag, pp. 237–93, 1978.CrossRefGoogle Scholar
Farrand, W. H., Bell, J. F. III, Johnson, J. R., et al., Visible and near infrared multispectral analysis of rocks at Meridiani Planum, Mars, by the Mars Exploration Rover Opportunity, J. Geophys. Res. 112, E06S02, doi:10.1029/2006JE002773, 2007.CrossRefGoogle Scholar
Fisher, R. V. and Waters, A. C., Base surge bed forms in maar volcanoes, Am. J. Sci. 268, 157–80, 1970.CrossRefGoogle Scholar
Fryberger, S. G. and Schenk, C. J., Pin stripe lamination: a distinctive feature of modern and ancient eolian sediments, Sediment. Geol. 55, 1–55, 1988.CrossRefGoogle Scholar
Fryberger, S. G., Al-Sarl, A. M., and Clisham, T. J., Eolian dune, interdune, sand sheet, and silicilcastic sabkha sediments of an off-shore prograding sand sea, Dhahran area, Saudi Arabia, Am. Assoc. Pet. Geol. Bull. 67, 280–312, 1983.Google Scholar
Garrels, R. M. and Mackenzie, F. T., Evolution of Sedimentary Rocks, New York: W. W. Norton, 397pp., 1971.Google Scholar
Gendrin, A., Mangold, N., Bibring, J.-P., et al., Sulfates in martian layered terrains: the OMEGA/Mars Express view, Science 307, 1587–91, 2005.CrossRefGoogle ScholarPubMed
Glotch, T. D., Bandfield, J. L., Christensen, P. R., et al., Mineralogy of the light-toned outcrop rock at Meridiani Planum as seen by the Miniature Thermal Emission Spectrometer and implications for its formation, J. Geophys. Res. 111, E12S03, doi:10.1029/2005JE002762, 2006.CrossRefGoogle Scholar
Golden, D. C., Ming, D. W., Morris, R. V., and Mertzman, S. A., Laboratory-simulated acid-sulfate weathering of basaltic materials: implications for formation of sulfates at Meridiani Planum and Gusev crater, Mars, J. Geophys. Res. 110, E12S07, 2005.CrossRefGoogle Scholar
Gooding, J. L. and Keil, K., Alteration of glass as a possible source of clay minerals on Mars, Geophys. Res. Lett. 5, 727–30, 1978.CrossRefGoogle Scholar
Greeley, R. and Iverson, J., Wind as a Geological Process on Earth, Mars, Venus and Titan, New York: Cambridge University Press, 333 pp., 1985.CrossRefGoogle Scholar
Greeley, R., Skypeck, A., and Pollack, J. B., Martian aeolian features and deposits: comparisons with general circulation model results, J. Geophys. Res. 98, 3183–93, 1993.CrossRefGoogle Scholar
Greeley, R., Arvidson, R. E., Bartlett, P. W., et al., Gusev crater: wind-related features and processes observed by the Mars Exploration Rover Spirit, J. Geophys. Res. 111, E02S09, doi:10.1029/2005JE002491, 2006.CrossRefGoogle Scholar
Griffith, L. L. and Shock, E. L., Hydrothermal hydration of martian crust: illustration via geochemical model calculations, J. Geophys. Res. 102, 9135–43, 1997.CrossRefGoogle ScholarPubMed
Grotzinger, J. P., Cyclicity and paleoenvironmental dynamics, Rocknest Platform, northwest Canada, Geol. Soc. Am. Bull. 97, 1208–31, 1986.2.0.CO;2>CrossRefGoogle Scholar
Grotzinger, J. P., Facies and evolution of Precambrian carbonate depositional systems: emergence of the modern platform archetype, Soc. Econ. Paleontol. Mineral. Spec. Publ. 44, 79–106, 1989.Google Scholar
Grotzinger, J. P. and James, N. P., Carbonate sedimentation and diagenesis in the evolving Precambrian world, Soc. Econ. Paleontol. Mineral. Spec. Publ. 67, 365, 2000.Google Scholar
Grotzinger, J. P., Bell, J. F. III, Calvin, W., et al., Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 11–72, 2005.CrossRefGoogle Scholar
Grotzinger, J. P., Bell, J. F. III, Herkenhoff, K. E., et al., Sedimentary textures formed by aqueous processes, Erebus crater, Meridiani Planum, Mars, Geology 34, 1085–8, 2006.CrossRefGoogle Scholar
Haberle, R. M., Murphy, J. R., and Schaeffer, J., Orbital change experiments with a Mars general circulation model, Icarus 161, 66–89, 2003.CrossRefGoogle Scholar
Halevy, I., Zuber, M. T., and Schrag, D. P., A sulfur dioxide feedback on early Mars, Science 318, 1903–07, 2007.CrossRefGoogle ScholarPubMed
Hardie, L. A., Gypsum: anhydrite equilibrium at one atmosphere pressure, Am. Mineral. 52, 171–200, 1967.Google Scholar
Hardie, L. A., On the significance of evaporites, Annu. Rev. Earth Planet. Sci. 19, 131–68, 1991.CrossRefGoogle Scholar
Hardie, L. A. and Eugster, H. P., The evolution of closed-basin brines, Mineral. Soc. Am. Spec. Paper 3, 273–90, 1970.Google Scholar
Hardie, L. A., T. K. Lowenstein, and R. J. Spencer, The problem of distinguishing between primary and secondary features in evaporites. In Sixth International Symposium on Salt (ed. Schrieber, B. C. and Harner, H. L.), Alexandria, VA: Salt Institute, 1, 11–39, 1985.Google Scholar
Harms, J. C., Southard, J. B., Spearing, D. R., and Walker, R. G., Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequences, Tulsa: Society of Economic Mineralogists and Paleontologists, 161pp., 1975.Google Scholar
Harms, J. C., Southard, J. B., Walker, R. G., Structures and Sequences in Clastic Rocks, Tulsa: Society of Economic Mineralogists and Paleontologists, 253pp., 1982.CrossRefGoogle Scholar
Head, J. W., Greeley, R., Golombek, M. P., et al., Geological processes and evolution, Space Sci. Rev. 96, 263–92, 2001.CrossRefGoogle Scholar
Head, J. W., Mustard, J. F., Kreslavsky, M. A., Milliken, R. E., and Marchant, D. R., Recent ice ages on Mars, Nature 426, 797–802, 2003.CrossRefGoogle ScholarPubMed
Henderson, J. B., Sedimentology of the Archean Yellowknife Supergroup at Yellowknife, District of Mackenzie, Geol. Surv. Canada Bul. 246, 62, 1975.Google Scholar
Herkenhoff, K. E., Squyres, S. W., Anderson, R., et al., Overview of the Microscopic Imager investigation during Spirit's first 450 sols in Gusev crater, J. Geophys. Res. 111, E02S04, doi:10.1029/2005JE002574, 2006.CrossRefGoogle Scholar
Hoffman, P. F., Stratigraphy of the Lower Proterozoic (Aphebian), Great Slave Supergroup, East Arm of Great Slave Lake, District of Mackenzie, Geol. Surv. Canada Paper 68–42, 93pp., 1968.Google Scholar
Hoffman, P. F., Evolution of an early Proterozoic continental margin: the Coronation Geosyncline and associated aulacogens of the northwestern Canadian Shield, Philos. Trans. R. Soc. Lond., A273, 547–81, 1973.CrossRefGoogle Scholar
Hofmann, H. J., Thurston, P. C., and Wallace, H., Archean stromatolites from Uchi greenstone belt, northwestern Ontario, Geol. Assoc. Canada Spec. Paper 28, 125–32, 1985.Google Scholar
Hunter, R. E., Basic types of stratification in small eolian dunes, Sedimentology 24, 361–87, 1977.CrossRefGoogle Scholar
Hunter, R. E., Subaqueous sand-flow cross strata, J. Sediment. Petrol. 55, 886–94, 1985.Google Scholar
Hurowitz, J. A. and McLennan, S. M., A ∼ 3.5 Ga record of water-limited, acidic weathering conditions on Mars, Earth Planet. Sci. Lett. 260, 432–43, 2007.CrossRefGoogle Scholar
Hurowitz, J. A., McLennan, S. M., Lindsley, D. H., and Schoonen, M. A. A., Experimental epithermal alteration of synthetic Los Angeles meteorite: implications for the origin of Martian soils and the identification of hydrothermal sites on Mars, J. Geophys. Res. 110, E07002, doi:10.1029/2004JE002391, 2005.CrossRefGoogle Scholar
Hurowitz, J. A., McLennan, S. M., Tosca, N. J., et al., In-situ and experimental evidence for acidic weathering on Mars, J. Geophys. Res. 111, E02S19, doi:10.1029/2005JE002515, 2006.CrossRefGoogle Scholar
Hynek, B. M. and Phillips, R. J., New data reveal mature integrated drainage systems on Mars indicative of past precipitation, Geology 31, 757–60, 2003.CrossRefGoogle Scholar
Irwin, R. P. III, Craddock, R. A., and Howard, A. D., Interior channels in Martian valley networks: discharge and runoff production, Geology 33, 489–92, 2005.CrossRefGoogle Scholar
Jakosky, B. M. and Phillips, R. J., Mars' volatile and climate history, Nature 412, 237–44, 2001.CrossRefGoogle ScholarPubMed
Jerolmack, D. J., Mohrig, D., Zuber, M. T., and Byrne, S., A minimum time for the formation of Holden Northesast fan, Mars, Geophys Res. Lett. 31(21), L21701, doi:10.1029/2004GL021326, 2004.CrossRefGoogle Scholar
Jerolmack, D. J., Mohrig, D., Grotzinger, J. P., Fike, D. A., and Watters, W. A., Spatial grain size sorting in eolian ripples and estimation of wind conditions on planetary surfaces: application to Meridiani Planum, Mars, J. Geophys. Res. 111, E12S02, doi:10.1029/2005JE002544, 2006.CrossRefGoogle Scholar
Jones, B. and Renaut, R. W., Water content of opal-A: implications for the origin of laminae in geyserite and sinter, J. Sediment. Res. 74, 117–28, 2004.CrossRefGoogle Scholar
Keller, J. M., Boynton, W. V., Karunatillake, S., et al., Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, J. Geophys. Res. 111, E03S08, doi:10.1029/2006JE002679, 2006.Google Scholar
Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S. (eds.), Mars, Tucson: Arizona University Press, 1498pp., 1992.Google Scholar
King, P. L., Lescinsky, D. T., and Nesbitt, H. W., The composition and evolution of primordial solutions on Mars, with application to other planetary bodies, Geochim. Cosmochim. Acta 68, 4993–5008, 2004.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer, Science 306, 1740–5, 2004.CrossRefGoogle ScholarPubMed
Knauth, L. P., Burt, D. M., and Wohletz, K. H., Impact origin of sediments at the Opportunity landing site on Mars, Nature 438, 1123–8, 2005.CrossRefGoogle ScholarPubMed
Knoll, A. H., B. L. Jolliff, W. H. Farrand, et al., Late diagenetic veneers, rinds, and fracture fill at Meridiani Planum, Mars, J. Geophys. Res. in press, 2008.
Kocurek, G. and K. G. Havholm, Eolian sequence stratigraphy: a conceptual framework. In Siliciclastic Sequence Stratigraphy, Am. Assoc. Pet. Geol. Memoir 58 (ed. Weimer, P. and Posamentier, H. W.), pp. 393–409, Tulsa, OK. 1993.Google Scholar
Kolb, E. J. and Tanaka, K. L., Geologic history of the polar regions of Mars based on Mars Global Surveyor data: II. Amazonian Period, Icarus 154, 22–39, 2001.CrossRefGoogle Scholar
Laskar, J., Levrard, B., and Mustard, J. F., Orbital forcing of the martian polar layered deposits, Nature 419, 375–7, 2002.CrossRefGoogle ScholarPubMed
Laskar, J., Corrieia, A. C. M., Gastineau, M., et al., Long term evolution and chaotic diffusion of the insolation quantities of Mars, Icarus 170, 343–54, 2004.CrossRefGoogle Scholar
Lewis, K. and Aharonson, O., Characterization of the distributary fan in Holden NE crater using stereo analysis, Lunar Planet. Sci. XXXV, Houston: Lunar and Planetary Institute, Abstract #2083 (CD-ROM), 2004.Google Scholar
Lewis, K., O. Aharonson, J. P. Grotzinger, et al., Stratigraphy and structure of Home Plate from the Spirit Mars Exploration Rover, J. Geophys. Res. (Submitted), 2008.
Lowe, D. R., Byerly, G. R., Kyte, F. T., et al., Spherule beds 3.47–3.24 billion years old in the Barberton Greenstone Belt, South Africa: a record of large meteorite impacts and their influence on early crustal and biological evolution, Astrobiology 3, 7–48, 2003.CrossRefGoogle ScholarPubMed
Lucchitta, B. K., A. S. McEwen, G. D. Clow, et al., The canyon system on Mars. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 453–92, 1992.Google Scholar
Malin, M. C. and Edgett, K. S., Sedimentary rocks of early Mars, Science 290, 1927–37, 2000.CrossRefGoogle ScholarPubMed
Malin, M. C. and Edgett, K. S., Evidence for persistent flow and aqueous sedimentation on early Mars, Science 302, 1931–4, 2003.CrossRefGoogle ScholarPubMed
Marion, G. M. and Kargel, J. S., Stability of magnesium sulfate minerals in martian environments, Lunar Planet. Sci. XXXVI, Houston: Lunar and Planetary Institute, Abstract #2290 (CD-ROM), 2005.Google Scholar
Marion, G. M., Catling, D. C., and Kargel, J. S., Modeling aqueous ferrous iron chemistry at low temperatures with application to Mars, Geochim. Cosmochim. Acta 67, 4251–66, 2003.CrossRefGoogle Scholar
McCollom, T. M. and Hynek, B. M., A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars, Nature 438, 1129–31, 2005.CrossRefGoogle ScholarPubMed
McGlynn, J. C. and Henderson, J. B., Archean volcanism and sedimentation in the Slave structural province, Geol. Surv. Canada Paper 70–40, 31–44, 1970.Google Scholar
McLennan, S. M., Recycling of the continental crust, Pure Appl. Geophys.(PAGEOPH) 128, 683–724, 1988.CrossRefGoogle Scholar
McLennan, S. M., Sedimentary silica on Mars, Geology 31, 315–18, 2003.2.0.CO;2>CrossRefGoogle Scholar
McLennan, S. M., Bell, J. F. III, Calvin, W., et al., Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 95–121, 2005.CrossRefGoogle Scholar
McLennan, S. M., Grotzinger, J. P., Hurowitz, J. A., and Tosca, N. J., Sulfate geochemistry and the sedimentary rock record of Mars, Workshop on Martian Sulfates as Records of Atmospheric-Fluid-Rock Interactions, LPI Contribution No. 1331, Houston: Lunar and Planetary Institute, p. 54, 2006.Google Scholar
McSween, H. Y. Jr and Keil, K., Mixing relationships in the Martian regolith and the composition of globally homogeneous dust, Geochim. Cosmochim. Acta 64, 2155–66, 2000.CrossRefGoogle Scholar
Melosh, H. J. and Vickery, A. M., Impact erosion of the primordial atmosphere of Mars, Nature 338, 487–9, 1989.CrossRefGoogle ScholarPubMed
Metz, J. M., Grotzinger, J. P., Rubin, D. M., et al., Sulfate-rich eolian and wet interdune deposits, Erebus crater, Meridiani Planum, Mars, J. Sediment. Petrol. (submitted), 2008.Google Scholar
Meyers, W. J., Carbonate cement stratigraphy of the Lake Valley Formation, Mississippian, Sacramento mountains, New Mexico, J. Sediment. Petrol. 44, 837–61, 1974.Google Scholar
Middleton, G. V. and Southard, J. B., Mechanics of Sediment Movement, Tulsa: Society of Economic Mineralogists and Paleontologists, 401pp., 1984.CrossRefGoogle Scholar
Milliken, R. E., G. Swayze, R. Arvidson, et al., Spectral evidence for sedimentary silica on Mars, Lunar Planet. Sci. XXXIX, Houston: Lunar and Planetary Institute, Abstract #2025 (CD-ROM), 2008.
Millot, R., Gaillardet, J., Dupre, B., and Allègre, C. J., The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers on the Canadian Shield, Earth Planet. Sci. Lett. 196, 83–98, 2002.CrossRefGoogle Scholar
Montgomery, D. R. and Gillespie, D. R., Formation of Martian outflow channels by catastrophic dewatering of evaporite deposits, Geology 33, 625–8, 2005.CrossRefGoogle Scholar
Moore, J. M. and Howard, A. D., Large alluvial fans on Mars, J. Geophys. Res. 110, E04005, 2005.CrossRefGoogle Scholar
Moore, J. M., Howard, A. D., Dietrich, W. E., and Schenk, P. M., Martian layered fluvial deposits: implications for Noachian climate scenarios, Geophys. Res. Lett. 30(24), 2292, doi:10.1029/2003GL019002, 2003.CrossRefGoogle Scholar
Morris, R. V., Golden, D. C., Bell, J. F. III, et al., Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples, J. Geophys. Res. 105, 1757–817, 2000.CrossRefGoogle Scholar
Morris, R. V., Ming, D. W., Graff, T. G., et al., Hematite spherules in basaltic tephra altered under aqueous, acid-sulfate conditions on Mauna Kea volcano, Hawaii: possible clues for the occurrence of hematite-rich spherules in the Burns formation at Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 168–78, 2005.CrossRefGoogle Scholar
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res. 111, E12S15, doi:10.1029/2006JE002791, 2006.CrossRefGoogle Scholar
Morse, J. W. and Marion, G. M., The role of carbonates in the evolution of early martian oceans, Am. J. Sci. 299, 738–61, 1999.CrossRefGoogle Scholar
Murray, J. B., Muller, J. P., Neukum, G., et al., Evidence from the Mars Express High Resolution Stereo Camera for a frozen sea close to Mars' equator, Nature 434, 352–6, 2005.CrossRefGoogle ScholarPubMed
Nesbitt, H. W. and Wilson, R. E., Recent chemical weathering of basalts, Am. J. Sci. 292, 740–77, 1992.CrossRefGoogle Scholar
Nesbitt, H. W. and Young, G. M., Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations, Geochim. Cosmochim. Acta 48, 1523–34, 1984.CrossRefGoogle Scholar
Newsom, H. E. and Hagerty, J. J., Chemical components of the martian soil: melt degassing, hydrothermal alteration, and chondritic debris, J. Geophys. Res. 102, 19345–55, 1997.CrossRefGoogle Scholar
Newsom, H. E., Brittelle, G. E., Hibbitts, C. A., et al., Impact crater lakes on Mars, J. Geophys. Res. 101, 14951–5, 1996.CrossRefGoogle Scholar
Nimmo, F. and Tanaka, K., Early crustal evolution of Mars, Annu. Rev. Earth Planet. Sci. 33, 133–61, 2005.CrossRefGoogle Scholar
Pettijohn, F. J., Archean sedimentation, Geol. Soc. Am. Bull. 54, 925–72, 1943.CrossRefGoogle Scholar
Phillips, R. J., Zuber, M. T., Solomon, S. C., et al., Ancient geodynamics and global-scale hydrology on Mars, Science 291, 2587–91, 2001.CrossRefGoogle ScholarPubMed
Pitzer, K. S., Ion interaction approach: theory and data correlation. In Activity Coefficients in Electrolyte Solutions (ed. Pitzer, K. S.), Boca Raton: CRC Press, pp. 75–154, 1991.Google Scholar
Pollack, J. B., Kasting, J. F., Richardson, S. M., and Polliakoff, K., The case for a warm, wet climate on early Mars, Icarus 71, 203–24, 1987.CrossRefGoogle ScholarPubMed
Poulet, F., Bibring, J.-P., Mustard, J. F., et al., Phyllosilicates on Mars and implications for early martian climate, Nature 438, 623–7, 2005.CrossRefGoogle ScholarPubMed
Ronov, A. B., The Earth's Sedimentary Shell: Quantitative Patterns of its Structure, Compositions, and Evolution, Reprint Series V, Falls Church, VA: American Geological Institute, 80pp., 1983.Google Scholar
Rubin, D. M., Formation of scalloped cross-bedding without unsteady flows, J. Sediment. Res. 57, 39–45, 1987.Google Scholar
Schenk, C. J. and Fryberger, S. G., Early diagenesis of eolian dune and interdune sands at White Sands, New Mexico, Sediment. Geol. 55, 109–20, 1988.CrossRefGoogle Scholar
Schopf, J. W. and Packer, B. M., Early Archean (3.3-billion-year-old) microfossils from Warrawoona Group, Australia, Science 237, 70–3, 1987.CrossRefGoogle Scholar
Schopf, J. W., Oehler, D. Z., Horodyski, R. J., and Kvenvolden, K. A., Biogenecity and significance of the oldest known stromatolites, J. Paleontol. 45, 477–85, 1971.Google Scholar
Schrieber, B. C. and Tabakh, M. El, Deposition and early alteration of evaporites, Sedimentology 47(Suppl. 1), 215–38, 2000.CrossRefGoogle Scholar
Settle, M., Formation and deposition of volcanic sulfate aerosols on Mars, J. Geophys. Res. 84, 8343–54, 1979.CrossRefGoogle Scholar
Sharp, R. P., Wind ripples, J. Geol. 71, 617–36, 1963.CrossRefGoogle Scholar
Shoemaker, E. M. and S. W. Kieffer, Guidebook to the Geology of Meteor Crater, Arizona, Tempe, Arizona State University, Center for Meteorite Studies, 66pp., 1974.
Sleep, N. H., Martian plate tectonics, J. Geophys. Res. 99, 5639–56, 1994.CrossRefGoogle Scholar
Smith, G. A. and Katzman, D., Discrimination of eolian and pyroclastic-surge processes in the generation of cross-bedded tuffs, Jemez Mountains volcanic field, New Mexico, Geology 19, 465–8, 1991.2.3.CO;2>CrossRefGoogle Scholar
Southard, J. B., Flume experiments on transition from ripples to lower flat bed with increasing sand size, J. Sediment. Petrol. 43, 1114–21, 1973.Google Scholar
Southard, J. B. and Boguchwal, L. A., Bed configurations in steady unidirectional flows. Part 3. Effects of temperature and gravity, J. Sediment. Petrol. 60, 680–6, 1990a.CrossRefGoogle Scholar
Southard, J. B. and Boguchwal, L. A., Bed configurations in steady unidirectional flows. Part 2. Synthesis of flume data, J. Sediment. Petrol 60, 658–79, 1990b.CrossRefGoogle Scholar
Squyres, S. W. and Knoll, A. H., Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars, Earth Planet. Sci. Lett. 240, 1–10, 2005.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R., Bell, J. F. III, et al., The Opportunity rover's Athena science investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R., Bell, J. F. III, et al., The Spirit rover's Athena science investigation at Gusev crater, Mars, Science 305, 794–9, 2004b.CrossRefGoogle Scholar
Squyres, S. W., Knoll, A. N., Arvidson, R. E., et al., Two years at Meridiani Planum: Results from the Opportunity rover, Science 313, 1403–7, 2006a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Blaney, D. L., et al., Rocks of the Columbia Hills, J. Geophys. Res. 111, E02S11, doi:10.1029/2005JE002562, 2006b.CrossRefGoogle Scholar
Squyres, S. W., Aharonson, O., Clark, B. C., et al., Pyroclastic activity at Home Plate in Gusev crater, Science, 316, 738–42, 2007a.CrossRefGoogle Scholar
Squyres, S. W. and the Athena Science Team, Recent results from the Spirit rover at Home Plate and “Silica Valley”, EOS Trans. AGU88(52), Fall Meeting, Suppl., Abstract P21C-01, 2007b.
Sullivan, R., Banfields, D., Bell, J. F. III, et al., Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site, Nature 436, 58–61, 2005.CrossRefGoogle ScholarPubMed
Sumner, D. Y. and Grotzinger, J. P., Were kinetics of Archean calcium carbonate precipitation related to oxygen concentration?, Geology 24, 119–22, 1996.2.3.CO;2>CrossRefGoogle ScholarPubMed
Tanaka, K. L., Isbell, N. K., Scott, D. H., Greeley, R., and Guest, J. E., The resurfacing history of Mars: a synthesis of digitized, Viking-based geology, Proc. Lunar Sci. Conf. XVIII, 665–78, 1988.Google Scholar
Taylor, S. R. and McLennan, S. M., The Continental Crust: Its Composition and Evolution, Oxford: Blackwells, 312pp., 1985.Google Scholar
Taylor, G. J., Boynton, W., Brückner, J., et al., Bulk composition and early differentiation of Mars, J. Geophys. Res.111, E03S10, doi:10.1029/2005JE002645, 2006.
Thomas, P., S. Squyres, K. Herkenhoff, A. Howard, and B. Murray, Polar deposits of Mars. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 767–95, 1992.Google Scholar
Tosca, N. J. and McLennan, S. M., Chemical divides and evaporite assemblages on Mars, Earth Planet. Sci. Lett. 241, 21–31, 2006.CrossRefGoogle Scholar
Tosca, N. J., McLennan, S. M., Lindsley, D. H., and Schoonen, M. A. A., Acid-sulfate weathering of synthetic Martian basalt: the acid fog model revisited, J. Geophys. Res. 109, E05003, doi:10.1029/2003JE002218, 2004.CrossRefGoogle Scholar
Tosca, N. J., McLennan, S. M., Clark, B. C., et al., Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum, Earth Planet. Sci. Lett. 240, 122–48, 2005.CrossRefGoogle Scholar
Tosca, N. J., Smirnov, A., and McLennan, S. M., Application of the Pitzer ion interaction model to isopiestic data for the Fe2(SO4)3–H2SO4–H2O system at 298.15 K and 323.15 K, Geochim. Cosmochim. Acta 71, 2680–98, 2007.CrossRefGoogle Scholar
Veizer, J. and Jansen, S. L., Basement and sedimentary recycling and continental evolution, J. Geol. 87, 341–70, 1979.CrossRefGoogle Scholar
Veizer, J. and Jansen, S. L., Basement and sedimentary recycling: 2. Time dimension to global tectonics, J. Geol. 93, 625–43, 1985.CrossRefGoogle Scholar
Veizer, J. and Mackenzie, F. T., Evolution of sedimentary rocks, Treatise on Geochemistry 7, 369–407, 2003.CrossRefGoogle Scholar
Walker, R. G., The origin and significance of the internal sedimentary structures of turbidites, Proc. Yorkshire Geol. Soc. 35, 1–32, 1965.CrossRefGoogle Scholar
Walker, R. G. and Pettijohn, F. J., Archaean sedimentation: analysis of Minnitaki Basin, Northwestern Ontario, Canada, Geol. Soc. Am. Bull. 82, 2099–130, 1971.CrossRefGoogle Scholar
Wang, A., Korotev, R. L., Jolliff, B. L., et al., Evidence of phyllosilicates in Wooly Patch, an altered rock encountered at West Spur, Columbia Hills, by the Spirit rover in Gusev crater, Mars, J. Geophys. Res. 111, E02S16, doi:10.1029/2005JE002516, 2006a.Google Scholar
Wang, A., Haskin, L. A., Squyres, S. W., et al., Sulfate deposition in subsurface regolith in Gusev crater, Mars, J. Geophys. Res. 111, E02S17, doi:10.1029/2005JE002513, 2006b.Google Scholar
Webb, V. E., Putative shorelines in northern Arabia Terra, Mars, J. Geophys. Res. 109, E09010, doi 10.1029/2004JE002205, 2004.CrossRefGoogle Scholar
White, A. F. and Brantley, S. L. (eds.), Chemical weathering rates of silicate minerals, Rev. Mineral. 31, 583pp., 1995.Google Scholar
White, J. D. L., Depositional architecture of a maar-pitted playa: sedimentation in the Hopi Buttes volcanic field, northeastern Arizona, U.S.A., Sediment. Geol. 67, 55–83, 1990.CrossRefGoogle Scholar
Wiberg, P. L. and Smith, J. D., Calculations of the critical shear stress for motion of uniform and heterogeneous sediments, Water Resour. Res. 23, 1471–80, 1987.CrossRefGoogle Scholar
Yen, A. S., Grotzinger, J. P., Gellert, R., et al., Evidence for halite at Meridiani Planum, Lunar Planet. Sci. XXXVII, Houston: Lunar and Planetary Institute, Abstract #2128, (CD-ROM), 2006.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The sedimentary rock cycle of Mars
    • By S. M. McLennan, Department of Geosciences, SUNY Stony Brook Stony Brook, NY 11794-2100, USA, J. P. Grotzinger, Geology & Planetary Sciences, California Institute of Technology MC 170-25 1200 E. California Blvd. Pasendena, CA 91125, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.025
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The sedimentary rock cycle of Mars
    • By S. M. McLennan, Department of Geosciences, SUNY Stony Brook Stony Brook, NY 11794-2100, USA, J. P. Grotzinger, Geology & Planetary Sciences, California Institute of Technology MC 170-25 1200 E. California Blvd. Pasendena, CA 91125, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.025
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The sedimentary rock cycle of Mars
    • By S. M. McLennan, Department of Geosciences, SUNY Stony Brook Stony Brook, NY 11794-2100, USA, J. P. Grotzinger, Geology & Planetary Sciences, California Institute of Technology MC 170-25 1200 E. California Blvd. Pasendena, CA 91125, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.025
Available formats
×