Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-02T06:12:14.043Z Has data issue: false hasContentIssue false

22 - Implications of observed primary lithologies

from Part V - Synthesis

Published online by Cambridge University Press:  10 December 2009

G. J. Taylor
Affiliation:
Hawaii Institute of Geophysics & Planetology, 1680 East-West Road, Post 504 Honolulu, HI 96822, USA
S. M. McLennan
Affiliation:
Department of Geosciences, SUNY Stony Brook Stony Brook, NY 11794-2100, USA
H. Y. McSween Jr.
Affiliation:
Department of Earth & Planetary, Science University of Tennessee, Knoxville, TN 37996-1410, USA
M. B. Wyatt
Affiliation:
Brown University, Department of Geological, Science 324 Brook Street Providence, RI 02912-1846, USA
R. C. F. Lentz
Affiliation:
University of Hawai'i at Manoa Hawai'i, Institute of Geophysics and Planetology 1680 East-West Road, POST 602 Honolulu, HI 96822, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

Data from Martian meteorites, orbital remote-sensing instruments, and in situ measurements at robotic landing sites reveal that Mars has a heterogeneous surface composition. We use these data to infer the compositional and mineralogical nature of Martian igneous rocks. Basaltic rocks dominate, but highly mafic magmas also formed, producing cumulate rocks inside lava flows. Cumulate rocks also formed in intrusions. Evolved, silicic rocks occur, but are not abundant. The diversity of igneous rocks indicates several distinctive source regions in the Martian mantle. These sources probably formed early in Martian history as the result of crystallization in a magma ocean followed by overturn of an unstable cumulate pile. Shergottites alone represent at least two distinct mantle sources (assuming no crustal assimilation), with mixing between them, but could represent several distinct sources on the basis of initial Sr-isotopic compositions. The nakhlites may represent a somewhat complementary source, but there is clearly an additional source with subchondritic Ba/La. Surface Types 1 and 2 are probably composed of multiple types of igneous rock, possibly mixed with altered materials, and on average are different in trace element (K, Th) and Fe abundances. They may be derived from distinct mantle source regions. The crust appears to have been constructed by basaltic magmatism, some associated with primary differentiation (probably a magma ocean), the rest formed by partial melting during mantle overturn and other dynamic processes.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 501 - 518
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, V. R., Water and the Martian landscape, Nature 412, 228–36, 2001.CrossRefGoogle ScholarPubMed
Bandfield, J. L., Hamilton, V. E., and Christensen, P. R., A global view of Martian surface compositions from MGS-TES, Science 287, 1626–30, 2000.CrossRefGoogle Scholar
Bandfield, J. L., Hamilton, V. E., Christensen, P. R., and McSween, H. Y., Identification of quartzofeldspathic materials on Mars, J. Geophys. Res. 109, E10009, doi:10.1029/2004JE002290, 2004.CrossRefGoogle Scholar
Barrat, J. A., Blichert-Toft, J., Nesbitt, R. W., and Keller, F., Bulk chemistry of Saharan shergottite Dar al Gani 476, Meteorit. Planet. Sci. 36, 23–9, 2001.CrossRefGoogle Scholar
Beck, P., Barrat, J.-A., Chaussidon, M., Gillet, Ph., and Bohn, M., Li isotopic variations in single pyroxenes from the Northwest Africa 480 shergottite (NWA 480): a record of degassing of Martian magmas?, Geochim. Cosmochim. Acta 68, 2925–33, 2004.CrossRefGoogle Scholar
Beck, P., Barrat, J. A., Gillet, Ph., et al., Petrography and geochemistry of the chassignite Northwest Africa 2737 (NWA 2737), Geochim. Cosmochim. Acta 70, 2127–39, 2006.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum, Science 305, 1703–9, 2004.CrossRefGoogle Scholar
Bibring, J. P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science 307, 1576–81, 2005.CrossRefGoogle ScholarPubMed
Blichert-Toft, J., Gleason, J. D., Télouk, P., and Albarède, F., The Lu-Hf isotope geochemistry of shergottites and the evolution of the Martian mantle-crust system, Earth Planet. Sci. Lett. 173, 25–39, 1999.CrossRefGoogle Scholar
Borg, L. E. and Draper, D. S., A petrogenetic model for the origin and compositional variation of the Martian basaltic meteorites, Meteorit. Planet. Sci. 38, 1713–31, 2003.CrossRefGoogle Scholar
Borg, L. E., Nyquist, L. E., Taylor, L. A., Wiesmann, H., and Shih, C.-Y., Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE94201, Geochim. Cosmochim. Acta 61, 4915–31, 1997.CrossRefGoogle Scholar
Borg, L. E., Nyquist, L. E., Weissman, H., Shih, C.-Y., and Reese, Y., The age of Dar al Gani 476 and the differentiation history of the Martian meteorites inferred from their radiogenic isotopic systematics, Geochim. Cosmochim. Acta 67, 3519–36, 2003.CrossRefGoogle Scholar
Borg, L. E., Edmunson, J. E., and Asmerom, Y., Constraints on the U-Pb isotopic systematics of Mars inferred from a combined U-Pb, Rb-Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami, Geochim. Cosmochim. Acta 69, 5819–30, 2005.CrossRefGoogle Scholar
Bouvier, A., Blichert-Toft, J., Vervoort, J. D., and Albarède, F., The age of Martian meteorites and the antiquity of the Martian surface, Earth Planet. Sci. Lett. 240, 221–33, 2005.CrossRefGoogle Scholar
Brandon, A. D., Walker, R. J., Morgan, J. W., and Goles, G. G., Re-Os isotopic evidence for early differentiation of the Martian mantle, Geochim. Cosmochim. Acta 64, 4083–95, 2000.CrossRefGoogle Scholar
Bridges, J. C. and Grady, M. M., Evaporite mineral assemblages in the nakhlite (Martian) meteorites, Earth Planet. Sci. Lett. 176, 267–79, 2000.CrossRefGoogle Scholar
Bridges, J. C. and Warren, P. H., The Martian meteorites: basaltic igneous processes on Mars, J. Geol. Soc. Lond. 163, 229–51, 2006.CrossRefGoogle Scholar
Brückner, J., Dreibus, G., Rieder, R., and Wänke, H., Refined data of Alpha Proton X-ray Spectrometer analyses of soils and rocks at the Mars Pathfinder site: implications for surface chemistry, J. Geophys. Res. 108(E12), 8094, doi:10.1029/2003JE002060, 2003.CrossRefGoogle Scholar
Bruno, B. C., Taylor, G. J., Rowland, S. K., and Baloga, S. M., Quantifying the effect of rheology on lava-flow margins using fractal geometry, Bull. Volc. 56, 193–206, 1994.CrossRefGoogle Scholar
Carr, M. H. and Wänke, H., Earth and Mars: water inventories as clues to accretional histories, Icarus 98, 61–71, 1992.CrossRefGoogle Scholar
Chambers, J. E., Making more terrestrial planets, Icarus 152, 205–24, 2001.CrossRefGoogle Scholar
Chen, J. H. and Wasserburg, G. J., Formation ages and evolution of Shergotty and its parent planet from U-Th-Pb systematics, Geochim. Cosmochim. Acta 50, 955–68, 1986.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N., Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data, J. Geophys. Res. 105, 9609–21, 2000.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES experiment on the Opportunity rover, Science 306, 1733–9, 2004.CrossRefGoogle ScholarPubMed
Christensen, P. R., McSween, H. Y. Jr., Bandfield, J. L., et al., Evidence for magmatic evolution and diversity on Mars from infrared observations, Nature 436, 504–9, 2005.CrossRefGoogle ScholarPubMed
Clague, D. A. and Frey, F. A., Petrology and trace element geochemistry of the Honolulu Volcanics, Oahu: implications for the oceanic mantle below Hawaii, J. Petrol. 23, 447–504, 1982.CrossRefGoogle Scholar
Coogan, L. A., Kasemann, S. A., and Chakraborty, S., Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry, Earth Planet. Sci. Lett. 240, 415–24, 2005.CrossRefGoogle Scholar
Dann, J. C., Holzheid, A. H., Grove, T. L., and McSween, H. Y. Jr., Phase equilibria of the Shergotty meteorite: constraints on pre-eruptive water contents of Martian magmas and fractional crystallization under hydrous conditions, Meteorit. Planet. Sci. 36, 793–806, 2001.CrossRefGoogle Scholar
Day, J. M. D., Taylor, L. A., Floss, C., and McSween, H. Y. Jr., Petrology and chemistry of MIL 03346 and its significance in understanding the petrogenesis of nakhlites on Mars, Meteorit. Planet. Sci. 41, 581–606, 2006.CrossRefGoogle Scholar
Drake, M. J. and Righter, K., Determining the composition of the earth, Nature 416, 39–44, 2002.CrossRefGoogle Scholar
Dreibus, G. and Wänke, H., Mars: a volatile rich planet, Meteoritics 20, 367–82, 1985.Google Scholar
Dreibus, G., Huisl, W., Haubold, R., and Jagoutz, E., Influence of terrestrial desert weathering in Martian meteorites (abst.), Meteorit. Planet. Sci. 36 (Suppl.), A50–A51, 2001.Google Scholar
Elkins-Tanton, L. T. and E. M. Parmentier, The fate of water in the Martian magma ocean and the formation of an early atmosphere, Lunar Planet. Sci. Conf. XXXVI, Houston: Lunar and Planetary Institute, Abstract #1906, (CD-ROM), 2005.
Elkins-Tanton, L. T., Parmentier, E. M., and Hess, P. C., Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars, Meteorit. Planet. Sci. 38, 1753–71, 2003.CrossRefGoogle Scholar
Elkins-Tanton, L. T., Hess, P. C., and Parmentier, E. M., Possible formation of ancient crust on Mars through magma ocean processes, J. Geophys. Res. 110, E12S01, doi:10.1029/2005JE002480, 2005.CrossRefGoogle Scholar
Floran, R. J., Printz, M., Hlava, P. F., et al., The Chassigny meteorite: a cumulate dunite with hydrous amphibole-bearing melt inclusions, Geochim. Cosmochim. Acta 42, 1213–29, 1978.CrossRefGoogle Scholar
Foley, C. N., Economou, T., and Clayton, R. N., Final chemical results from the Mars Pathfinder alpha proton X-ray spectrometer, J. Geophys. Res. 108(E12), 8096, doi:10.1029/2005JE002555, 2003.Google Scholar
Foley, C. N., Wadhwa, M., Borg, L. E., et al., The early differentiation history of Mars from 183W-142Nd isotope systematics in the Martian meteorites, Geochim. Cosmochim. Acta 69, 4557–71, 2005.CrossRefGoogle Scholar
Frey, H. v., Impact constraints on the age and origin of the lowlands of Mars, Geophys. Res. Lett. 33, L08S02, doi:10.1029/2005GL024484, 2006.CrossRefGoogle Scholar
Frey, H. V., Sakimoto, S. E. H., and Roark, J. H., Discovery of a 450 km diameter multi-ring basin on Mars through analysis of MOLA data, Geophys. Res. Lett. 26, 1657–60, 1999.CrossRefGoogle Scholar
Lentz, Friedman R. C., Taylor, G. J., and Treiman, A. H., Formation of a Martian pyroxenite: a comparative study of the nakhlite meteorites and Theo's flow, Meteorit. Planet. Sci. 34, 919–32, 1999.CrossRefGoogle Scholar
Gellert, R., Rieder, R., Anderson, R. C., et al., Chemistry of rocks and soils in Gusev crater from the Alpha Particle X-ray Spectrometer, Science 305, 829–32, 2004.CrossRefGoogle ScholarPubMed
Gellert, R., Rieder, R., Brückner, J., et al., The Alpha Particle X-ray Spectrometer (APXS): results from Gusev crater and calibration report, J. Geophys. Res. 111, E02S05, doi: 10.1029/2005 JE 002555, 2006.CrossRefGoogle Scholar
Goodrich, C. A., Petrogenesis of olivine-phyric shergottites Sayh al Uhaymir 005 and Elephant Moraine A79001 lithology A, Geochim. Cosmochim. Acta 67, 3735–71, 2003.CrossRefGoogle Scholar
Guest, A. and S. E. Smrekar, Relaxation of the Martian dichotomy and elastic thickness estimates as constraints on the thermal and volatile evolution of Mars, AGU fall meeting, Abstract #P51B-0918, 2005.
Halliday, A. N., Wänke, H., Birck, J.-L., and Clayton, R. N., The accretion, composition and early differentiation of Mars, Space Sci. Rev. 96, 197–230, 2001.CrossRefGoogle Scholar
Hamilton, V. E. and Christensen, P. R., Evidence for extensive, olivine-rich bedrock on Mars, Geology 33, 433–6, 2005.CrossRefGoogle Scholar
Hamilton, V. E. and R. D. Schneider, Alteration phases associated with high concentrations of orthopyroxene and olivine on Mars, Lunar Planet. Sci. Conf. XXXVI, Houston: Lunar and Planetary Institute, Abstract #2212, (CD-ROM), 2005.
Hamilton, V. E., Wyatt, M. B., McSween, H. Y., and Christensen, P. R., Analysis of terrestrial and Martian volcanic compositions using thermal emission spectroscopy: 2. Application to Martian surface spectra from the Mars Global Surveyor Thermal Emission Spectrometer, J. Geophys. Res. 107(E6), 14733–46, 2001.CrossRefGoogle Scholar
Hamilton, V. E., Christensen, P. R., McSween, H. Y. Jr., and Bandfield, J. L., Searching for the source regions of Martian meteorites using MGS TES: integrating Martian meteorites into the global distribution of volcanic materials on Mars, Meteorit. Planet. Sci. 38, 871–86, 2003.CrossRefGoogle Scholar
Harper, C. L., Nyquist, L. E., Bansal, B., Wiesmann, H., and Shih, C. Y., Rapid accretion and early differentiation of Mars indicated by 142Nd/144Nd in Martian meteorites, Science 267, 213–17, 1995.CrossRefGoogle Scholar
Harvey, R. P. and V. E. Hamilton, Syrtis Major as the source region for the nakhlite/Chassigny group of Martian meteorites: implications for the geological history of Mars, Lunar Planet. Sci. Conf. XXXVI, Houston: Lunar and Planetary Institute, Abstract #1019, (CD-ROM), 2005.
Harvey, R. P., Wadhwa, M., McSween, H. Y. Jr., and Crozaz, G., Petrography, mineral chemistry, and petrogenesis of Antarctic shergottite LEW88516, Geochim. Cosmochim. Acta 56, 4769–83, 1993.CrossRefGoogle Scholar
Haskin, L. A., Wang, A., Jolliff, B. L., et al., Water alteration of rocks and soils from the Spirit rover site, Gusev crater, Mars, Nature 436, 66–9, doi:10.1038/nature03640, 2005.CrossRefGoogle ScholarPubMed
Hauck, S. A. II and Phillips, R. J., Thermal and crustal evolution of Mars. J. Geophys. Res. 107(E7), 5052, 10.1029/2001JE001801, 2002.CrossRefGoogle Scholar
Herd, C. K., Borg, L. E., Jones, J. H., and Papike, J. J., Oxygen fugacity and geochemical variations in the Martian basalts: implications for Martian basalt petrogenesis and the oxidation state of the upper mantle of Mars, Geochim. Cosmochim. Acta 66, 2025–36, 2002.CrossRefGoogle Scholar
Herd, C. K., Treiman, A. H., McKay, G. A., and Shearer, C. K., Light lithophile elements in Martian basalts: evaluating the evidence for magmatic water degassing, Geochim. Cosmochim. Acta 69, 2431–40, 2005.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Evidence from Opportunity's microscopic imager for water on Meridiani Planum, Science 306, 1727–30, 2004.CrossRefGoogle ScholarPubMed
Hoefen, T. M., Clark, R. N., Bandfield, J. L., et al., Discovery of olivine in the Nili Fossae region of Mars, Science 302, 627–30, 2003.CrossRefGoogle ScholarPubMed
Hofmann, A. W., Geochemistry and models of mantle circulation, Philos. Trans. R. Soc. Lond. A328, 425–439, 1989.CrossRefGoogle Scholar
Hofmann, A. W., Mantle geochemistry: the message from oceanic volcanism, Nature 385, 219–29, 1997.CrossRefGoogle Scholar
Hofmann, A. W., Jochum, K. P., Seufert, M., and White, W. M., Nb and Pb in oceanic basalts: new constraints on mantle evolution, Earth Planet. Sci. Lett. 79, 33–45, 1986.CrossRefGoogle Scholar
Jacobsen, S. B. and Q.-Z. Yin, The mean age of mantle and crustal reservoirs for the planet Mars, Lunar Planet. Sci. Conf. XXXIII, Houston: Lunar and Planetary Institute, Abstract #1940 (CD-ROM), 2002.
Jagoutz, E., Chronology of Martian meteorites, Space Sci. Rev. 56, 13–22, 1991.CrossRefGoogle Scholar
Jochum, K. P., Arndt, N. T., and Hofmann, A. W., Nb-Th-La in komatiites and basalts: constraints on komatiite petrogenesis and mantle evolution, Earth Planet. Sci. Lett. 107, 272–89, 1991.CrossRefGoogle Scholar
Jones, J. H., Isotopic relationships among the shergottites, the nakhlites and Chassigny, Proc. Lunar Planet. Sci. Conf. XIX, 465–74, 1989.Google Scholar
Jones, J. H., Constraints on the structure of the Martian interior determined from the chemical and isotopic systematics of Martian meteorites, Meteorit. Planet. Sci. 38, 1807–14, 2003.CrossRefGoogle Scholar
Jones, J. H., The edge of wetness: the case for dry magmatism on Mars, Lunar Planet. Sci. Conf. XXXV, Houston: Lunar and Planetary Institute, Abstract #1798 (CD-ROM), 2004.
Karlsson, H. R., Clayton, R. N., Gibson, E. K. Jr., and Mayeda, T. K., Water in Martian meteorites: evidence for a Martian hydrosphere, Science 255, 1409–11, 1992.CrossRefGoogle ScholarPubMed
Karunatillake, S. K., Squyres, S. W., Taylor, G. J., et al., Composition of northern low albedo regions of Mars: insights from the Mars Odyssey Gamma Ray Spectrometer, J. Geophys. Res. 111, E03S05, doi:10.1029/2006 JE002675, 2006.Google Scholar
Keller, J., Boynton, W. V., Karunatillake, S., et al., Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, J. Geophys. Res. 111, E03S08, doi:10.1029/2006 JE002679, 2006.Google Scholar
Kiefer, W. S., Melting in the Martian mantle: shergottite formation and implications for present-day mantle convection on Mars, Meteorit. Planet. Sci. 38, 1815–32, 2003.CrossRefGoogle Scholar
King, P. L., Hervig, R. L., Holloway, J. R., Vennemann, T. W., and Righter, K., Oxy-substitution and dehydrogenation in mantle-derived amphibole megacrysts, Geochim. Cosmochim. Acta 63, 3635–51, 1999.CrossRefGoogle Scholar
Kitts, K. and Lodders, K., Survey and evaluation of eucrite bulk compositions, Meteorit. Planet. Sci. 33, A197–A213, 1998.CrossRefGoogle Scholar
Klein, E. M., Geochemistry of the igneous oceanic crust, Treatise on Geochemistry 3, 433–63, 2003.CrossRefGoogle Scholar
Klingelhöfer, G., Morris, R. V., Beruhardt, B., et al., Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer, Science 306, 1740–5, 2004.CrossRefGoogle ScholarPubMed
Lentz, R. C. F., McSween, H. Y. Jr., Ryan, J. G., and Riciputi, L. R., Water in the Martian mantle: clues from light lithophile elements in shergottite and nakhlite pyroxenes, Geochim. Cosmochim. Acta 65, 4551–65, 2001.CrossRefGoogle Scholar
Lodders, K., A survey of shergottites, nakhlite and chassigny meteorites whole-rock compositions, Meteorit. Planet. Sci. 33, A183–A190, 1998.CrossRefGoogle Scholar
Longhi, J., Complex magmatic processes on Mars: inferences from the Martian meteorites, Proc. Lunar Planet. Sci. Conf. XXI, 695–709, 1991.Google Scholar
Longhi, J. and Pan, V., The parent magmas of the Martian meteorites, Proc. Lunar Planet. Sci. Conf. XIX, 451–464, 1989.Google Scholar
Lunine, J. I., Chambers, J., Morbidelli, A., and Leshin, L. A., The origin of water on Mars, Icarus 165, 1–8, 2003.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S., Evidence for recent groundwater seepage and surface runoff on Mars, Science 288, 2330–5, 2000.CrossRefGoogle ScholarPubMed
McCoy, T. J. and Lofgren, G. E., The crystallization of the Zagami shergottite: a 1 atm. experimental study, Lunar Planet. Sci. Conf. XXVII, 839–40, 1996.Google Scholar
McKay, G., T. Mikouchi, L. Le, C. Schwandt, and M. Hashimoto, The Shergotty paradox: an experimental perspective on intercumulus melt compositions, Lunar Planet. Sci. Conf. XXXI, Houston: Lunar and Planetary Institute, Abstract# 2000 (CD-ROM), 2000.
McLennan, S. M., Recycling of continental crust, Pure Appl. Geophys. 128, 683–724, 1988.CrossRefGoogle Scholar
McLennan, S. M., Crustal heat production and the thermal evolution of Mars, Geophys. Res. Lett. 28, 4019–22, 2001.CrossRefGoogle Scholar
McLennan, S. M., Sedimentary silica on Mars, Geology 31, 315–18, 2003a.2.0.CO;2>CrossRefGoogle Scholar
McLennan, S. M., Large-ion lithophile element fractionation during the early differentiation of Mars and the composition of the Martian primitive mantle, Meteorit. Planet. Sci. 38, 895–904, 2003b.CrossRefGoogle Scholar
McSween, H. Y. Jr., The rocks of Mars, from far and near, Meteorit. Planet. Sci. 37, 7–25, 2002.CrossRefGoogle Scholar
McSween, H. Y. Jr., Mars, Treatise on Geochemistry 1, 601–21, 2003.Google Scholar
McSween, H. Y. Jr. and Harvey, R. P., Outgassed water on Mars: constraints from melt inclusions in Martian meteorites, Science 259, 1890–2, 1993.CrossRefGoogle Scholar
McSween, H. Y. Jr., Eisenhour, D. D., Taylor, L. A., Wadhwa, M., and Crozaz, G., QUE 94201 shergottite: crystallization of a Martian basaltic magma, Geochim. Cosmochim. Acta 60, 4563–9, 1996.CrossRefGoogle Scholar
McSween, H. Y. Jr., Murchie, S. L., Crisp, J., et al., Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site, J. Geophys. Res. 104(E4), 8679–715, 1999.CrossRefGoogle Scholar
McSween, H. Y. Jr., Grove, T. L., Lentz, R. C. F., et al., Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite, Nature 409, 487–90, 2001.CrossRefGoogle ScholarPubMed
McSween, H. Y. Jr., Grove, T. L., and Wyatt, M. B., Constraints on the composition and petrogenesis of the Martian crust, J. Geophys. Res. 108(E12), 5135, doi:10.1029/2003JE002175, 2003.CrossRefGoogle Scholar
McSween, H. Y. Jr., Arvidson, R. E., Bell, J. F. III, et al., Basaltic rocks analyzed by the Spirit rover in Gusev crater, Science 305, 842–5, 2004.CrossRefGoogle ScholarPubMed
McSween, H. Y. Jr, Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res. 110, E12S39, doi:10.1029/2005JE002477, 2005.Google Scholar
McSween, H. Y., Ruff, S. W., Morris, R. V., et al., Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars, J. Geophys. Res. 111, E09S91, doi:10.1029/2006JE002698, 2006.CrossRefGoogle Scholar
Meyer Jr., C., Mars Meteorite Compendium, JSC#27672 Revision C, NASA Johnson Space Center, Houston, Texas (Available at http://curator.jsc.nasa.gov/antmet/mmc/index.cfm), 2006.
Michalski, J. R., Kraft, M. D., Sharp, T. G., Williams, L. B., and Christensen, P. R., Mineralogical constraints on the high-silica Martian surface component observed by TES, Icarus 174, 161–77, doi:10.1016/j.icarus.2004.10.022, 2005.CrossRefGoogle Scholar
Mittlefehldt, D. W., ALH 84001, a cumulate orthopyroxenite member of the Martian meteorite clan, Meteoritics 29, 214–21, 1993.CrossRefGoogle Scholar
Mittlefehldt, D. and Lindstrom, M., Geochemistry and petrology of a suite of ten Yamato HED meteorites, Proc. NIPR Symp. Antarct. Meteor. 6, 268–92, 1993.Google Scholar
Morris, R. V., T. G. Graff, S. A. Mertzman, M. D. Lane, and P. R. Christensen, Palagonitic (not andesitic) Mars: evidence from Thermal Emission and VNIR spectra of palagonitic alteration rinds on basaltic rock, 6th Int. Conf. on Mars, Abstract #3211, 2003.
Morris, R. V., Klingelhöfer, G., Bernhardt, B., et al., Mineralogy at Gusev crater from the Mössbauer Spectrometer on the Spirit rover, Science 305, 833–6, 2004.CrossRefGoogle ScholarPubMed
Mustard, J. F. and Sunshine, J. M., Seeing through the dust: Martian crustal heterogeneity and links to the SNC meteorites, Science 267, 1623–6, 1995.CrossRefGoogle ScholarPubMed
Mustard, J. F., Poulet, F., Gendrin, A., et al., Olivine and pyroxene diversity in the crust of Mars, Science 307, 594–7, 2005.CrossRefGoogle ScholarPubMed
Norman, M. D., The composition and thickness of the crust of Mars estimated from rare earth elements and neodymium-isotopic composition of Martian meteorites, Meteorit. Planet. Sci. 34, 439–49, 1999.CrossRefGoogle Scholar
Norman, M. D., Thickness and composition of the Martian crust revisited: implications of an ultradepleted mantle with a Nd isotopic composition like that of QUE 94201, Lunar Planet. Sci. XXXIII, Houston: Lunar and Planetary Institute, Abstract #1175 (CD-ROM), 2002.
Nyquist, L. E., Bansal, B. M., Wiesmann, H., and Shih, C.-Y., “Martians” young and old: zagami and ALH 8400 1 (abstract), Lunar Planet. Sci. Conf. XXVI, 1065–66, 1995.Google Scholar
Nyquist, L. E., Bogard, D. D., Shih, C.-Y., et al., Ages and geologic histories of Martian meteorites, Space Sci. Rev. 96, 105–64, 2001.CrossRefGoogle Scholar
Owen, T., Maillard, J. P., Bergh, C., and Lutz, B. L., Deuterium on Mars: the abundance of HDO and the value of D/H, Science 240, 1767–70, 1988.CrossRefGoogle ScholarPubMed
Popp, R. K., Virgo, D., Yoder, H. S. Jr., Hoering, T. C., and Phillips, M. W., An experimental study of phase equilibria and Fe oxy-component in kaersutitic amphibole: implications for the fH2 and aH2O in the upper mantle, Am. Miner 80, 534–48, 1995.CrossRefGoogle Scholar
Rieder, R., Economou, T., Wänke, H., et al., The chemical composition of Martian soil and rocks returned by the mobile Alpha Proton X-ray Spectrometer: preliminary results from the x-ray mode, Science 278, 1771–4, 1997.CrossRefGoogle ScholarPubMed
Robinson, M. S. and Taylor, G. J., Ferrous oxide in Mercury's crust and mantle, Meteorit. Planet. Sci. 36, 841–7, 2001.CrossRefGoogle Scholar
Rogers, A. D. and Christensen, P. R., Age relationship of basaltic and andesitic surface compositions on Mars: analysis of high-resolution TES observations of the northern hemisphere, J. Geophys. Res. 108(E4), 5030, doi:10.1029/2002JE001913, 2003.CrossRefGoogle Scholar
Rogers, A. D. and Christensen, P. R., Surface mineralogy of martian low-albedo regions from MGS-TES data: implications for upper crustal evolution and surface alteration, J. Geophys. Res. 112, E01003, doi:10.1029/2006JE002727, 2007.CrossRefGoogle Scholar
Rogers, A. D., Christensen, P. R., and Bandfield, J. L., Compositional heterogeneity of the ancient Martian crust: analysis of Ares Vallis bedrock with THEMIS and TES data, J. Geophys. Res. 110, doi:10.1029/2005/JE002399, 2005.CrossRefGoogle Scholar
Ruff, S. R., Spectral evidence for zeolite in the dust on Mars, Icarus 168, 131–43, 2004.CrossRefGoogle Scholar
Ruff, S. W., Christensen, P. R., Blaney, D. L., et al., The rocks of Gusev crater as viewed by the Mini-TES instrument, J. Geophys. Res. 111(E12), doi:10.1029/2006JE002747, 2006.CrossRefGoogle Scholar
Schneider, R. D. and Hamilton, V. E., Evidence for locally-derived, ultramafic intracrater materials in Amazonis Planitia, Mars, J. Geophys. Res. 111(E9), 2006.CrossRefGoogle Scholar
Solomon, S. C., Aharonson, O., Aurnou, J. M., et al., New perspectives on ancient Mars, Science 307, 1214–20, 2005.CrossRefGoogle ScholarPubMed
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Opportunity rover's Athena science investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Grotzinger, J. P., Arvidson, R. E., et al., In situ evidence for an ancient aqueous environment at Meridiani Planum, Mars, Science 306, 1709–14, 2004b.CrossRefGoogle Scholar
Stolper, E. M. and McSween, H. Y. Jr., Petrology and origin of the shergottite meteorites, Geochim. Cosmochim. Acta 43, 1475–98, 1979.CrossRefGoogle Scholar
Taylor, G. J., Boynton, W., Brückner, J., et al., Bulk composition and early differentiation of Mars, J. Geophys. Res. 111, E03S10, doi: 10.1029/2005JE002645, 2006a.Google Scholar
Taylor, G. J., Stopar, J. D., Boynton, W. V., et al., Variations in K/Th on Mars, J. Geophys. Res. 111, E03S06, doi:10.1029/2006JE002676, 2006b.Google Scholar
Taylor, S. R., Growth of planetary crusts, Tectonophysics. 161, 147–56, 1989.CrossRefGoogle Scholar
Taylor, S. R., Solar System Evolution: A New Perspective, 2nd edn., Cambridge: Cambridge University Press, 460pp., 2001.CrossRefGoogle Scholar
Taylor, S. R. and McLennan, S. M., The Continental Crust: Its Composition and Evolution. Oxford: Blackwell, 312pp., 1985.Google Scholar
Taylor, S. R. and McLennan, S. M., Chemical composition and element distribution in the Earth's crust, Encyclopedia of Physical Science and Technology, (3rd edn.) Academic Press, 2, pp. 697–719, 2002.Google Scholar
Treiman, A. H., The nakhlite meteorites: augite-rich igneous rocks from Mars, Chem. Erde 65, 203–70, 2005.CrossRefGoogle Scholar
Treiman, A. H., Musselwhite, D. S., Herd, C. D. K., and Shearer, C. K. Jr., Light lithophile elements in pyroxenes of Northwest Africa (NWA) 817 and other Martian meteorites: implications for water in Martian magmas, Geochim. Cosmochim. Acta 70, 2919–34, 2006.CrossRefGoogle Scholar
Wadhwa, M., Redox state of Mars' upper mantle and crust from Eu anomalies in shergottite pyroxenes, Science 291, 1527–30, 2001.CrossRefGoogle ScholarPubMed
Wänke, H., Chemistry, accretion, and evolution of Mars, Space Sci. Rev. 56, 108, 1991.CrossRefGoogle Scholar
Wänke, H. and Dreibus, G., Chemical composition and accretion history of terrestrial planets. Philos. Trans. R. Soc. Lond. A325, 545–57, 1988.CrossRefGoogle Scholar
Wänke, H. and Dreibus, G., Chemistry and accretion history of Mars. Philos. Trans. R. Soc. Lond. A349, 285–93, 1994.CrossRefGoogle Scholar
Warren, P. H., MgO-FeO mass balance constraints and a more detailed model for the relationship between eucrites and diogenites, Meteorit. Planet. Sci. 32, 945–63, 1997.CrossRefGoogle Scholar
Watson, L. L., Hutcheon, I. D., Epstein, S., and Stolper, E. M., Water on Mars: clues from deuterium/hydrogen and water contents of hydrous phases in Martian meteorites, Science 265, 86–90, 1994.CrossRefGoogle Scholar
Wetherill, G. W., The provenance of the terrestrial planets, Geochem. Cosmochem. Acta 58, 4513–20, 1994.CrossRefGoogle ScholarPubMed
Wetherill, G. W. and Stewart, G. R., Formation of planetary embryos: effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination, Icarus 106, 190–209, 1993.CrossRefGoogle ScholarPubMed
Wieczorek, M. A. and Zuber, M. T., Thickness of the Martian crust: improved constraints from geoid-to-topography ratios, J. Geophys. Res. 109, E01009, doi:10.1029/2003JE002153, 2004.CrossRefGoogle Scholar
Wyatt, M. B. and McSween, H. Y. Jr., Spectral evidence for weathered basalt as an alternative to andesite in the northern lowlands of Mars, Nature 417, 263–6, 2002.CrossRefGoogle ScholarPubMed
Wyatt, M. B., McSween, H. Y., Tanaka, K. L., and Head, J. W., Global geologic context for rock types and surface alteration on Mars, Geology 32, 645–8, doi:10.1130/G20527.1, 2004.CrossRefGoogle Scholar
Zipfel, J., Anderson, R., Brückner, J., et al., APXS analyses of Bounce Rock: the first shergottite on Mars (abstract), Meteorit. Planet. Sci. 39 (Suppl)., A118, 2004.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Implications of observed primary lithologies
    • By G. J. Taylor, Hawaii Institute of Geophysics & Planetology, 1680 East-West Road, Post 504 Honolulu, HI 96822, USA, S. M. McLennan, Department of Geosciences, SUNY Stony Brook Stony Brook, NY 11794-2100, USA, H. Y. McSween, Jr., Department of Earth & Planetary, Science University of Tennessee, Knoxville, TN 37996-1410, USA, M. B. Wyatt, Brown University, Department of Geological, Science 324 Brook Street Providence, RI 02912-1846, USA, R. C. F. Lentz, University of Hawai'i at Manoa Hawai'i, Institute of Geophysics and Planetology 1680 East-West Road, POST 602 Honolulu, HI 96822, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Implications of observed primary lithologies
    • By G. J. Taylor, Hawaii Institute of Geophysics & Planetology, 1680 East-West Road, Post 504 Honolulu, HI 96822, USA, S. M. McLennan, Department of Geosciences, SUNY Stony Brook Stony Brook, NY 11794-2100, USA, H. Y. McSween, Jr., Department of Earth & Planetary, Science University of Tennessee, Knoxville, TN 37996-1410, USA, M. B. Wyatt, Brown University, Department of Geological, Science 324 Brook Street Providence, RI 02912-1846, USA, R. C. F. Lentz, University of Hawai'i at Manoa Hawai'i, Institute of Geophysics and Planetology 1680 East-West Road, POST 602 Honolulu, HI 96822, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Implications of observed primary lithologies
    • By G. J. Taylor, Hawaii Institute of Geophysics & Planetology, 1680 East-West Road, Post 504 Honolulu, HI 96822, USA, S. M. McLennan, Department of Geosciences, SUNY Stony Brook Stony Brook, NY 11794-2100, USA, H. Y. McSween, Jr., Department of Earth & Planetary, Science University of Tennessee, Knoxville, TN 37996-1410, USA, M. B. Wyatt, Brown University, Department of Geological, Science 324 Brook Street Providence, RI 02912-1846, USA, R. C. F. Lentz, University of Hawai'i at Manoa Hawai'i, Institute of Geophysics and Planetology 1680 East-West Road, POST 602 Honolulu, HI 96822, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.023
Available formats
×