Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-10T21:27:12.297Z Has data issue: false hasContentIssue false

19 - Physical properties of the Martian surface from spectrophotometric observations

from Part IV - Physical Properties of Surface Materials

Published online by Cambridge University Press:  10 December 2009

J. R. Johnson
Affiliation:
US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA
J. F. Bell III
Affiliation:
Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA
P. Geissler
Affiliation:
US Geological Survey 2255 N. Gemini Drive Flagstaff, AZ 86001, USA
W. M. Grundy
Affiliation:
Lowell Observatory 1400 W. Mars Hill Road Flagstaff, AZ 86001, USA
E. A. Guinness
Affiliation:
Washington University, Campus Box 1169 St Louis, MO 63130, USA
P. C. Pinet
Affiliation:
UMR 5562/CNRS Observatoire Midi-Pyrenees 14 Avenue Edouard Belin Toulouse, 31400, France
J. Soderblom
Affiliation:
Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd. Tucson, AZ 85721, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The reflection of visible and near-infrared light from Mars can vary significantly depending on the directional scattering characteristics of surface materials. Observations acquired under a range of illumination and viewing angles can be input to radiative transfer models to constrain the albedo, surface roughness, grain size, and/or porosity of these materials. This chapter reviews multiangular measurements of Mars obtained by Earth-based telescopes (including the Hubble Space Telescope), orbiters (Mariner, Viking, Mars Express), landers (Viking, Mars Pathfinder), and rovers (Mars Exploration Rovers), and how the photometric analyses of these datasets have been used to understand the surface properties of local and regional geologic units and terrain types. Although acquisition of data covering sufficient incidence, emission, or phase angles to fully constrain all parameters within photometric models is challenging, a common theme among these studies is the dominantly backscattering nature of the Martian surface, the magnitude of which is often related to the presence of high-albedo aeolian dust. The local and regional photometric variability observed in these data encourages further refinement of radiative transfer methods and atmospheric correction algorithms to provide additional tools with which to categorize and map distinct photometric units on Mars, particularly to provide support for ongoing and upcoming orbital and landed missions.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 428 - 450
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, D. A., Deen, R. G., Andres, P. M., et al., Processing of Mars Exploration Rover Imagery for science and operations planning, J. Geophys. Res. 111 (E2), E02S02, doi:10.1029/2005JE002462, 2006.CrossRefGoogle Scholar
Arvidson, R. E., Guinness, E. A., Dale-Bannister, M. A., et al., Nature and distribution of surficial deposits in Chryse Planitia and vicinity, Mars, J. Geophys. Res. 94, 1573–87, 1989a.CrossRefGoogle Scholar
Arvidson, R. E., Gooding, J. L., and Moore, H. J., The Martian surface as imaged, sampled, and analyzed by the Viking landers, Rev. Geophys. 27, 39–60, 1989b.CrossRefGoogle Scholar
Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al., Overview of the Spirit Mars Exploration Rover Mission to Gusev crater: landing to the crest of Husband Hill, J. Geophys. Res. 111, E02S01, doi:10.1029/2005JE002499, 2006a.CrossRefGoogle Scholar
Arvidson, R. E., Bell, J. F. III, Morris, R. V., et al., Martian surface properties as inferred from joint analyses of Earth-based, orbital, and surface observations, Ch. 22. In The Martian Surface: Composition, Mineralogy, and Physical Properties, Cambridge University Press, 2006b.Google Scholar
Bell III, J. F., MER 1 Mars Panoramic Camera EDR Ops V1.0, NASA Planetary Data System, MER1-M-PANCAM-2-EDR-OPS-V1.0, 2004.
Bell, J. F. III, Wolff, M. J., Daley, T. C., et al., Near-infrared imaging of Mars from HST: surface reflectance, photometric properties, and implications for MOLA data, Icarus138, 25–35, 1999.CrossRefGoogle Scholar
Bell, J. F. III, McSween, H. Y. Jr., Murchie, S. L., et al., Mineralogic and compositional properties of Martian soil and dust: preliminary results from Mars Pathfinder, J. Geophys. Res, 105, 1721–55, 2000.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Herkenhoff, K. E., et al., The Mars Exploration Rover Athena panoramic camera (Pancam) investigation, J. Geophys. Res. 108(E12), doi:10.1029/2003JE002070, 2003.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Initial Pancam multispectral imaging results from the Mars Exploration Rover Gusev landing site, Science 305, 800–6, 2004a.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum, Science 306, 1703–9, 2004b.CrossRefGoogle Scholar
Bell, J. F. III, Joseph, J., Sohl-Dickstein, J. N., et al., In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments, J. Geophys. Res. 111, E02S03, doi:10.1029/2005JE002444, 2006.CrossRefGoogle Scholar
Binder, A. B. and Jones, J. C., Spectrophotometric studies of the photometric function, composition, and distribution of the surface materials of Mars, J. Geophys. Res. 77, 3005–20, 1972.CrossRefGoogle Scholar
Binder, A. R., Arvidson, R., Guinness, E., et al., The geology of the Viking Lander 1 site, J. Geophys. Res., 82, 4439–51, 1977.CrossRefGoogle Scholar
Buratti, B. J., Voyager disk resolved photometry of the Saturnian satellites, Icarus 59, 392–405, 1984.CrossRefGoogle Scholar
Buratti, B. J., Hillier, J. K., and Wang, M., The lunar opposition surge: observations by Clementine, Icarus 124, 490–9, 1996.CrossRefGoogle Scholar
Cantor, B. A., Wolff, M. J., Thomas, P. C., James, P. B., and Jensen, G., Phobos disk-integrated photometry: 1994–1997 HST observations, Icarus 142, 414–20, 1999.CrossRefGoogle Scholar
Chandrasekhar, S., Radiative Transfer, New York: Dover, 1960.Google Scholar
Christensen, P. R., Ruff, S. W., Jergason, R. L., et al., Initial results from the Miniature Thermal Emission Spectrometer experiment at the Spirit landing site in Gusev crater, Science 305, 837–42, 2004.CrossRefGoogle Scholar
Clancy, R. T., Lee, S. W., Gladstone, G. R., McMillan, W. W., and Roush, T., A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos, J. Geophys. Res. 100, 5251–63, 1995.CrossRefGoogle Scholar
Combes, M., Cara, C., Drossart, P., et al., Martian atmosphere studies from the ISM experiment, Planet. Space Sci. 39, 189–98, 1991.CrossRefGoogle Scholar
Cord, A. M., Pinet, P. C., Daydou, Y., and Chevrel, S. D., Planetary regolith surface analogs: optimized determination of Hapke parameters using multi-angular spectro-imaging laboratory data, Icarus 165, 414–27, 2003.CrossRefGoogle Scholar
Cord, A. M., Pinet, P. C., Daydou, Y., and Chevrel, S. D., Experimental determination of the surface photometric contribution in the spectral reflectance deconvolution processes for a simulated Martian crater-like regolithic target, Icarus 175, 78–91, 2005.CrossRefGoogle Scholar
Crumpler, L. S., Squyres, S. W., Arvidson, R. E., et al., Mars Exploration Rover Geologic traverse by the Spirit rover in the plains of Gusev crater, Mars, Geology 33(10), 809–12, 2005.CrossRefGoogle Scholar
Grenier, M. and Pinet, P. C., Near-opposition Martian limb darkening: quantification and implication for visible-near-infrared bidirectional reflectance studies, Icarus 115, 354–68, 1995.CrossRefGoogle Scholar
Vaucouleurs, G., Multicolor photometry of Mars in 1958, J. Planet. Space Sci. 2, 26–32, 1960.CrossRefGoogle Scholar
Vaucouleurs, G., Geometric and photometric parameters of the terrestrial planets, Icarus 3, 187–237, 1964.CrossRefGoogle Scholar
Vaucouleurs, G., A low-resolution photometric map of Mars, Icarus 7, 310–49, 1967.CrossRefGoogle Scholar
Domingue, D. and Hapke, B., Disk-resolved photometric analysis of Europan terrains, Icarus 99, 70–81, 1992.CrossRefGoogle Scholar
Domingue, D. and Verbiscer, A., Re-analysis of the solar phase curves of the icy Galilean satellites, Icarus 128, 49–74, 1997.CrossRefGoogle Scholar
Domingue, D., Lockwood, G. W., and Thompson, D. T., Surface textural properties of icy satellites: a comparison between Europa and Rhea, Icarus 115, 228–49, 1995.CrossRefGoogle Scholar
Domingue, D., Hartmann, B., and Verbiscer, A., The scattering properties of natural terrestrial snows versus icy satellite surfaces, Icarus 128, 28–48, 1997.CrossRefGoogle Scholar
Domingue, D. L., Robinson, M., Carcich, B., et al., Disk-integrated photometry of 433 Eros, Icarus 155, 205–19, 2002.CrossRefGoogle Scholar
Drossart, P., Rosenqvist, J., Erard, S., et al., Martian aerosols properties from the Phobos/ISM experiment, Ann. Geophys. 9, 754–60, 1991.Google Scholar
Egan, W. G., Polarimetric and photometric simulation of the Martian surface, Icarus 10, 223–7, 1969.CrossRefGoogle Scholar
Erard, S., Mustard, J. F., Murchie, S., et al., Martian aerosols: near-infrared spectral properties and effects on the observation of the surface, Icarus 111, 313–37, 1994.CrossRefGoogle Scholar
Farrand, W., Bell, J. F. III, Johnson, J. R., et al., Spectral variability in visible and near infrared multispectral Pancam data collected at Gusev crater: examinations using spectral mixture analysis and related techniques, J. Geophys. Res. 111, E02S15, doi:10.1029/2005JE002495, 2006.CrossRefGoogle Scholar
Geissler, P. E., Spectrophotometric mapping of Coprates Quadrangle, Mars. Ph.D. thesis, University of Arizona, 1992.
Geissler, P. E. and R. B. Singer, Spectrophotometric mapping of Coprates Quadrangle, Mars. Lunar Planet. Inst. Conf., Abstract 23, 403, 1992.
Gellert, R., Rieder, R., Brückner, J., et al., Alpha Particle X-Ray Spectrometer (APXS): results from Gusev crater and calibration report, J. Geophys. Res. 111, E02S05, doi:10.1029/2005JE002555, 2006.CrossRefGoogle Scholar
Golombek, M. P., Arvidson, R. E., Bell, J. F. III, et al., Assessment of Mars Exploration Rover landing site predictions, Nature, 436, 44–8, 2005.CrossRefGoogle ScholarPubMed
Gradie, J. and Veverka, J., Photometric properties of powered sulfur, Icarus 58, 227–45.CrossRef
Grant, J. A., Arvidson, R., Bell, J. F. III, et al., Surficial deposits at Gusev crater along Spirit Rover traverses, Science, 305, 807–10, 2004.CrossRefGoogle ScholarPubMed
Grotzinger, J. P., Arvidson, R. E., Bell, J. F. III, et al., Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 11–72, 2005.CrossRefGoogle Scholar
Guinness, E. A., Spectral properties (0.40 to 0.75 microns) of soils exposed at the Viking 1 landing site, J. Geophys. Res. 86, 7983–92, 1981.CrossRefGoogle Scholar
Guinness, E. A., Arvidson, R. E., Gehret, D. C., and Bolef, L. K., Color changes at the Viking landing sites over the course of a Mars year, J. Geophys. Res. 84, 8355–64, 1979.CrossRefGoogle Scholar
Guinness, E. A., Arvidson, R. E., Dale-Bannister, M. A., Singer, R. B., and Bruckenthal, E. A., On the spectral reflectance properties of materials exposed at the Viking landing sites, J. Geophys. Res. 92, E575–E587, 1987.CrossRefGoogle Scholar
Guinness, E. A., Arvidson, R. E., and Shepard, M. K., Specular scattering from rock surfaces at the Viking lander sites, Lunar Planet. Sci. Conf. XXVII, 471–2, 1996.Google Scholar
Guinness, E. A., Arvidson, R. E., Clark, I. H. D., and Shepard, M. K., Optical scattering properties of terrestrial varnished basalts compared with rocks and soils at the Viking Lander sites, J. Geophys. Res. 102, 28687–703, 1997.CrossRefGoogle Scholar
Hapke, B., Bi-directional reflectance spectroscopy: 1. Theory, J. Geophys. Res. 86, 3039–54, 1981.CrossRefGoogle Scholar
Hapke, B., Bidirectional reflectance spectroscopy: 3. Correction for macroscopic roughness, Icarus 59, 41–59, 1984.CrossRefGoogle Scholar
Hapke, B., Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect, Icarus 67, 264–80, 1986.CrossRefGoogle Scholar
Hapke, B., Theory of Reflectance and Emittance Spectroscopy, Cambridge University Press, 455pp., 1993.CrossRefGoogle Scholar
Harris, D. L., Photometry and colorimetry of planets and satellites. In Planets and Satellites, (ed. Kuiper, G. P. and Middlehurst, B. M.), Chicago, IL: University of Chicago Press, p. 272, 1961.Google Scholar
Hartmann, B. and Domingue, D., Scattering of light by individual particles and the implications for models of planetary surfaces, Icarus 131, 421–48, 1998.CrossRefGoogle Scholar
Helfenstein, P., The geological interpretation of photometric surface roughness, Icarus 73, 462–81, 1988.CrossRefGoogle Scholar
Helfenstein, P. and Shepard, M. K., Submillimeter-scale topography of the lunar regolith, Icarus 141, 107–31, 1999.CrossRefGoogle Scholar
Helfenstein, P. and M. Shepard, A blind test of Hapke's photometric model, Lunar Planet. Sci. Conf. XXXIV, Abstract 1968, 2003.
Helfenstein, P. and Veverka, J., Photometric properties of lunar terrains derived from Hapke's equation, Icarus 72, 342–57, 1987.CrossRefGoogle Scholar
Helfenstein, P. and J. Veverka, Physical characterization of asteroid surfaces from photometric analysis. In Asteroids II (ed. Binzel, R. P., Gehrels, T., and Matthews, M. S.), University of Arizona Press, pp. 557–93, 1989.Google Scholar
Helfenstein, P., Veverka, J., and Hillier, J., The lunar opposition effect: a test of alternative models, Icarus 128, 2–14, 1997.CrossRefGoogle Scholar
Hendrix, A. R., Domingue, D. L., and King, K., The icy Galilean satellites: ultraviolet phase curve analysis, Icarus 173, 29–49, 2005.CrossRefGoogle Scholar
Henyey, L. G. and Greenstein, J., Diffuse radiation in the galaxy, Astrophys. J. 93, 70–83, 1941.CrossRefGoogle Scholar
Herkenhoff, K. E., et al., Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater, J. Geophys. Res. 111, E02S04, doi:10.1029/2005JE002574, 2006.CrossRefGoogle Scholar
Hord, C. W., Mariner 6 and 7 ultraviolet spectrometer experiment: photometry and topography of Mars, Icarus 16, 253–80, 1972.CrossRefGoogle Scholar
Hord, C. W., Barth, C. A., Stewart, A. I., and Lane, A. L., Mariner 9 ultraviolet spectrometer experiment: photometry and topography of Mars, Icarus 17, 443–56, 1972.CrossRefGoogle Scholar
Huck, F. O., McCall, H. F., Patterson, W. R., and Taylor, G. R., The Viking Mars lander camera, Space Sci. Instr. 1, 189–241, 1975.Google Scholar
Hviid, S. F., J. M. Knudsen, M. B. Madsen, R. B. Hargraves, Spectroscopic investigation of the dust attracted to the magnetic properties experiments on the Mars Pathfinder lander, Lunar Planet. Sci. Conf. XXXI, Abstract #1641, 2000.
Israel, E. J., Arvidson, R. E., Wang, A., Pasteris, J. D., and Jolliff, B. L., Laser Raman spectroscopy of varnished basalt and implications for in situ measurements of Martian rocks, J. Geophys. Res. 102, 28705–16, 1997.CrossRefGoogle Scholar
Jehl, A., P. C. Pinet, A. Cord, et al., Improved surface photometric mapping across Gusev and Apollinaris from an HRSC/Mars Express integrated multi-orbit dataset: implication on Hapke parameters determination, Lunar Planet. Sci. Conf. XXXVII Houston, Abstract #1219, 2006.
Johnson, H. L. and Gardiner, A. J., The magnitude and color of Mars during the 1954 opposition. Publs. Astron. Soc. Pacific 67, 74–7, 1955.CrossRefGoogle Scholar
Johnson, J. R., Kirk, R., Soderblom, L. A., et al., Preliminary results on photometric properties of materials at the Sagan Memorial Station, Mars, J. Geophys. Res., 104, 8809–30, 1999.CrossRefGoogle Scholar
Johnson, J. R., Grundy, W. M., and Lemmon, M. T., Dust deposition at the Mars Pathfinder landing site: observations and modeling of visible/near-infrared spectra, Icarus 163, 330–46, 2003.CrossRefGoogle Scholar
Johnson, J. R., Grundy, W. M., Lemmon, M. T., et al., Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 1. Spirit, J. Geophys. Res. 111, E02S14, doi:10.1029/2005JE002494, 2006a.Google Scholar
Johnson, J. R., Grundy, W. M., Lemmon, M. T., et al., Spectrophotometric properties of materials observed by Pancam on the Mars Exploration Rovers: 2. Opportunity, J. Geophys. Res. 111(E12), doi:10.1029/2006JE002762, 2006b.Google Scholar
Kinch, K. M., Sohl-Dickstein, J., Bell, J. F. III, et al., A preliminary radiative transfer analysis of dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets, J. Geophys. Res., 112, Cite ID E06S03, doi:10.1029/2006JE002807, 2007.
King, E. S., Revised magnitudes and color indices of the planets, Ann. Harvard Obs. 85, 63–72, 1923.Google Scholar
Kreslavsky, M. A., N. V. Bondarenko, P. C. Pinet, J. Raitala, G. Neukum, and The Mars Express HRSC Co-Investigator Team, Mapping of photometric anomalies of martian surface with HRSC data, Lunar Planet. Sci. Conf. XXXVII, Houston, Abstract #2211 2006.
Lambert, J. H., Photometria Sive de Mensura et Gradibus Luminis, Colorum et Umbrae. Augsburg: Detleffsen, 1760.Google Scholar
Lemmon, M. T., Wolff, M. J., Smith, M. D., et al., Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity, Science 306, 1753–6, 2004.CrossRefGoogle ScholarPubMed
Livlander, R., Publ. Obs. Astron. Universiti de Tartu 27 (6), 1933.
Madsen, M. B., Hviid, S. F., Gunnlaugsson, H. P., et al., The magnetic properties experiment on Mars Pathfinder, J. Geophys. Res. 104, 8761–79, 1999.CrossRefGoogle Scholar
Martin, P. D., A. Cord, B. Foing, et al., Photometric and compositional surface properties of the Gusev crater region, Mars, as derived from multi-angle, multi-spectral investigation of Mars Express HRSC data, Lunar Planet. Sci. Conf. XXXVI, Abstract #1687, 2005.
Martinez-Alonso, S., Jakosky, B. M., Mellon, M. T., and Putzig, N. E., A volcanic interpretation of Gusev crater surface materials from thermophysical, spectral, and morphological evidence, J. Geophys. Res. 110, E01003, doi:10.1029/2004JE002327, 2005.CrossRefGoogle Scholar
McLennan, S. M., Bell, J. F., Calvin, W. M., et al., Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 95–121, 2005.CrossRefGoogle Scholar
McEwen, A. S., Photometric functions for photoclinometry and other applications, Icarus 92, 298–311, 1991.CrossRefGoogle Scholar
McGuire, A. F. and Hapke, B. W., An experimental study of light scattering by large, irregular particles, Icarus 113, 134–55, 1995.CrossRefGoogle Scholar
McSween, H. Y. Jr, Murchie, S. L., Crisp, J. A., et al., Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site, J. Geophys. Res. 104, 8679–715, 1999.CrossRefGoogle Scholar
McSween, H. Y. Jr, Wyatt, M. B., Gellert, R., et al., Characterization and petrologic interpretation of olivine-rich basalts at Gusev crater, Mars, J. Geophys. Res, 111, E02S10, doi:10.1029/2005JE002477, 2006.CrossRefGoogle Scholar
Mead, J. M., The contribution of atmospheric aerosols to the Martian opposition effect, Icarus 13, 82–95, 1970.CrossRefGoogle Scholar
Meador, W. E. and Weaver, W. R., A photometric function for diffuse reflection by particulate materials, NASA Tech. Note, D-7903, 1975.Google Scholar
Minnaert, M., The reciprocity principle in lunar photometry, Astrophys. J. 93, 403–10, 1941.CrossRefGoogle Scholar
Moore, H. J., R. E. Hutton, G. D. Clow, and C. R. Spitzer, Physical properties of the surface materials at the Viking landings sites on Mars, USGS Prof. Paper, 1389, 1987.
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Spirit's Journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the columbia Hills, J. Geophys. Res., 111, E02S13, doi:10.1029/2005JE002584, 2006.CrossRefGoogle Scholar
Mustard, J. F. and Pieters, C. M., Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra, J. Geophys. Res. 94, 13619–34, 1989.CrossRefGoogle Scholar
Mutch, T., Arvidson, R., Binder, A., Guinness, E., and Morris, E., The geology of the Viking Lander 2 site, J. Geophys. Res. 82, 4452–67, 1977.CrossRefGoogle Scholar
Nelson, R. M., Hapke, B. W., Smythe, W. D., and Horn, L. J., Phase curves of selected particulate materials: the contribution of coherent backscattering to the opposition surge, Icarus 131, 223–30, 1998.CrossRefGoogle Scholar
O'Leary, B. T., The opposition effect of Mars, Astrophys. J. 149, L147–L149, 1967.CrossRefGoogle Scholar
O'Leary, B. T. and Pollack, J. B., A critique of the paper by Walter G. Egan, “Polarimetric and photometric simulation of the Martian surface,” Icarus 10, 228–40, 1969.CrossRefGoogle Scholar
O'Leary, B. T. and Rea, D. G., The opposition effect of Mars and its implications, Icarus 9, 405–28, 1968.CrossRefGoogle Scholar
Pang, K. and Hord, C. W., Mariner 7 ultraviolet spectrometer experiment: photometric function and roughness of Mars' polar cap surface, Icarus 15, 443–53, 1971.CrossRefGoogle Scholar
Pappalardo, R. T., Collins, G. C., Head, J. W. III, et al., Geology of Ganymede, Ch. 16, Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press, 2004.Google Scholar
Patterson, W. R., Huck, F. O., Wall, S. D., and Wolf, M. R., Calibration and performance of the Viking Lander cameras, J. Geophys. Res. 82, 4391–400, 1977.CrossRefGoogle Scholar
Pinet, P. C. and Chevrel, S. D., Spectral identification of geological units on the surface of Mars related to the presence of silicates from earthbased near-infrared telescopic CCD imaging, J. Geophys. Res. 95 (B9), 14435–46, 1990.CrossRefGoogle Scholar
Pinet, P. C. and C. Rosemberg, Regional photometry and spectral albedo of the eastern hemisphere of Mars in the 0.7–1 micron domain, Lunar Planet. Sci. XXXII, Houston, Abstract #1640, 2001.
Pinet, P. C., A. Cord, A. Jehl, et al., Mars Express imaging photometry and surface geologic processes at Mars: what can be monitored within Gusev crater?, Lunar Planet. Sci. Conf. XXXVI, Abstract #1721, 2005a.
Pinet, P. C., Y. Daydou, A. Cord, et al., Derivation of mars surface scattering properties from OMEGA spot pointing observations, Lunar Planet. Sci. Conf. XXXVI, Abstract #1694, 2005b.
Pinet, P. C., A. Jehl, A. Cord, et al., Mars Express/HRSC Imaging photometry and MER Spirit/PANCAM in situ spectrophotometry within Gusev, Lunar Planet. Sci. Conf. XXXVII, Houston, Abstract #1220, 2006.
Pleskot, L. K. and Kieffer, H. H., The infrared photometric function of Mars and its bolometric albedo, Icarus 30, 341–59, 1977.CrossRefGoogle Scholar
Pollack, J. B. and Sagan, C., An analysis of Martian photometry and polarimetry, Space Sci. Rev. 9, 243–99, 1968.CrossRefGoogle Scholar
Pollack, J. B., Colburn, D., Flasar, F. M., et al., Properties and effects of dust particles suspended in the Martian atmosphere, J. Geophys. Res. 84, 2929–45, 1979.CrossRefGoogle Scholar
Regner, P., Photometric analyses for the determination of physical and structural properties of the Martian surface in the Oxia Palus region, Ph.D. thesis, Ludwig-Maximilians-University, 1990.
Regner, P., L. Kamp, and G. Neukum, Multispectral photometric classification and mapping of the Martian surface in the Oxia Palus region, Lunar Planet. Inst. Conf., Abstracts 19, 968, 1988.
Reid, R. J., Smith, P. H., Lemmon, M., et al., Imager for Mars Pathfinder (IMP) image calibration, J. Geophys. Res. 104, 8907–26, 1999.CrossRefGoogle Scholar
Ruff, S., Christensen, P. R., Blaney, D. L., et al., The rocks of Gusev crater as viewed by Mini-TES, J. Geophys. Res. 111 (E12), 2006.CrossRefGoogle Scholar
Schultz, P. H. and J. F. Mustard, Martian impact glass: generation and evidence, Lunar Planet. Sci. Conf. XXIX, Abstract #1847 (CD-ROM), 1998.
Seelos, F. P., R. E. Arvidson, E. A. Guinness, M. J. Wolff, and the Athena Science Team, Radiative transfer photometric analyses at the Mars Exploration Rover landing sites, Lunar Planet. Sci. Conf. XXXVI, Abstract #2054, 2005.
Shepard, M. K. and Campbell, B. A., Shadows on a planetary surface and implications for photometric roughness, Icarus 134, 279–91, 1998.CrossRefGoogle Scholar
Shepard, M. K., Arvidson, R. E., and Guinness, E. A., Specular scattering on a terrestrial playa and implications for planetary surface studies, J. Geophys. Res. 98, 18707–18, 1993.CrossRefGoogle Scholar
Simonelli, D. P., Wisz, M., Switala, A., et al., Photometric properties of Phobos surface materials from Viking images, Icarus 131, 52–77, 1998.CrossRefGoogle Scholar
Slater, P. N., Remote Sensing, Optics and Optical Systems, ISBN 0–201–07250–5, Reading, Massachusetts, USA: Addison-Wesley Publishing Company, 575pp., 1980.Google Scholar
Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R., Mars Global Surveyor Thermal Emission Spectometer (TES) observations of dust opacity during aerobraking and science phasing, J. Geophys. Res. 105, 9539–52, 2000.CrossRefGoogle Scholar
Smith, P. H., Tomasko, M. G., Britt, B., et al., The imager for Mars Pathfinder experiment, J. Geophys. Res. 102, 4003–26, 1997.CrossRefGoogle Scholar
Soderblom, J. M., Bell, J. F., Arvidson, R. E., et al., Mars Exploration Rover Pancam photometric data QUBs: definition and example uses, EOS Trans. AGU 85(47), Fall Meeting Suppl., Abstract P21A-0198, 2004.Google Scholar
Soderblom, J. M., Bell, J. F. III, Hubbard, M. Y., and Wolff, M. J., Martian phase function: modeling the visible to near-infrared surface photometric function using HST-WFPC2 data, Icarus 2, 401–23, 2006a.CrossRefGoogle Scholar
Soderblom, J. M., J. F. Bell III, J. R. Johnson, J. N. Maki, and M. J. Wolff, Photometry of the Martian surface using data from the Navigation Cameras on the Mars Exploration Rovers Spirit and Opportunity, Lunar Planet. Sci. Conf. XXXVII, Abstract #1935, 2006b.
Soderblom, L. A., Edwards, K., Eliason, E. M., Sanchez, E. M., and Charette, M. P., Global color variations on the Martian surface, Icarus 34, 446–64, 1978.CrossRefGoogle Scholar
Soffen, G. A., The Viking Project, J. Geophys. Res. 82, 3959–70, 1977.CrossRefGoogle Scholar
Strickland, E. L., Surface photometric properties and albedo changes in the central equatorial of Mars, Lunar Planet. Inst. Conf., Abstracts 20, 1081, 1989.
Tejfel, U. G., Shinyaeva, N. U., Aksenov, A. N., and Kharitonova, G., The experience of the Mars normal albedo and limb darkening coefficient from the observations during 1990 opposition, Proc. Lunar Planet. Sci. Conf. XXIII, 1417–18, 1992.Google Scholar
Thomas, N., Photometry of resolved planetary surfaces. In Solar and Extra-Solar Planetary Systems (ed. I. P. Williams and N. Thomas), Lect. Notes Phys. 577, 153, 2001a.
Thomas, N., Light scattering in the Martian atmosphere: effects on surface photometry. In Solar and Extra-Solar Planetary Systems (ed. I. P. Williams and N. Thomas), Lect. Notes Phys. 577, 191, 2001b.
Thomas, N., Markiewicz, W. J., Sablotny, R. M., et al., The color of the Martian sky and its influence on the illumination of the Martian surface, J. Geophys. Res. 104, 8795–808, 1999.CrossRefGoogle Scholar
Thomas, P. C., Adinolfi, D., Helfenstein, P., Simonelli, D., and Veverka, J., The surface of Deimos: contribution of materials and processes to its unique appearance, Icarus 123, 536–56, 1996.CrossRefGoogle Scholar
Thorpe, T. E., Mariner 9 photometric observations of Mars from November 1971 through March 1972, Icarus 20, 482–9, 1973.CrossRefGoogle Scholar
Thorpe, T. E., Viking Orbiter photometric observations of the Mars phase function: July through November 1976, J. Geophys. Res. 82, 4161–5, 1977.CrossRefGoogle Scholar
Thorpe, T. E., Viking Orbiter observations of the Mars opposition effect, Icarus 36, 204–15, 1978.CrossRefGoogle Scholar
Thorpe, T. E., The Mars opposition effect at 20 deg N. latitude and 20 deg W. longitude, Icarus 37, 389–98, 1979.CrossRefGoogle Scholar
Thorpe, T. E., Martian surface properties indicated by the opposition effect, Icarus 49, 398–415, 1982.CrossRefGoogle Scholar
Tomasko, M. G., Doose, L. R., Lemmon, M. T., Smith, P. H., and Wegryn, E., Properties of dust in the Martian atmosphere from the imager on Mars Pathfinder, J. Geophys. Res. 104, 8987–9007, 1999.CrossRefGoogle Scholar
Veverka, J., Robinson, M., Thomas, P., et al., NEAR at Eros: imaging and spectral results, Science 289, 2088–97, 2000.CrossRefGoogle ScholarPubMed
Ward, J. G., Arvidson, R. E., and Golombek, M., The size-frequency and areal distribution of rock clasts at the Spirit landing site, Gusev crater, Mars, Geophys. Res. Lett. 32, L11203, doi:10.1029/2005GL022705, 2005.CrossRefGoogle Scholar
Weitz, C. M., Anderson, R. C., Bell, J. F. III, et al., Soil grain analyses at Meridian Planum, Mars, J. Geophys. Res. 111 (E12), 2006.CrossRefGoogle Scholar
Wolff, M. J., Bell, J. F. III, James, P. B., Clancy, R. T., and Lee, S. W., Hubble Space Telescope Observations of the Martin aphelion could belt prior the Pathfinder mission: Seasonal and interannual variations, J. Geophys. Res., 98JEO1967, 104, E4, 9027, 1999.CrossRefGoogle Scholar
Young, A. T., High-resolution photometry of a thin planetary atmosphere, Icarus 11, 1–23, 1969.CrossRefGoogle Scholar
Young, A. T., UBV photometry of Mars. In Exploration of the Planetary System (ed. Woszczyk, A. and Iwaniszewska, C.), Boston, Massachusetts: D. Reidel Publishing Co., pp. 253–85, 1975.Google Scholar
Young, A. T. and Collins, S. A., Photometric properties of the Mariner cameras and of selected regions on Mars, J. Geophys. Res. 76, 432–7, 1971.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Physical properties of the Martian surface from spectrophotometric observations
    • By J. R. Johnson, US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, P. Geissler, US Geological Survey 2255 N. Gemini Drive Flagstaff, AZ 86001, USA, W. M. Grundy, Lowell Observatory 1400 W. Mars Hill Road Flagstaff, AZ 86001, USA, E. A. Guinness, Washington University, Campus Box 1169 St Louis, MO 63130, USA, P. C. Pinet, UMR 5562/CNRS Observatoire Midi-Pyrenees 14 Avenue Edouard Belin Toulouse, 31400, France, J. Soderblom, Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd. Tucson, AZ 85721, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Physical properties of the Martian surface from spectrophotometric observations
    • By J. R. Johnson, US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, P. Geissler, US Geological Survey 2255 N. Gemini Drive Flagstaff, AZ 86001, USA, W. M. Grundy, Lowell Observatory 1400 W. Mars Hill Road Flagstaff, AZ 86001, USA, E. A. Guinness, Washington University, Campus Box 1169 St Louis, MO 63130, USA, P. C. Pinet, UMR 5562/CNRS Observatoire Midi-Pyrenees 14 Avenue Edouard Belin Toulouse, 31400, France, J. Soderblom, Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd. Tucson, AZ 85721, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Physical properties of the Martian surface from spectrophotometric observations
    • By J. R. Johnson, US Geological Survey Astrogeology Team 2255 N. Gemini Drive Flagstaff, AZ 86001-1698, USA, J. F. Bell III, Cornell University, Department of Astronomy, 402 Space Sciences Building, Ithaca, NY 14853-6801, USA, P. Geissler, US Geological Survey 2255 N. Gemini Drive Flagstaff, AZ 86001, USA, W. M. Grundy, Lowell Observatory 1400 W. Mars Hill Road Flagstaff, AZ 86001, USA, E. A. Guinness, Washington University, Campus Box 1169 St Louis, MO 63130, USA, P. C. Pinet, UMR 5562/CNRS Observatoire Midi-Pyrenees 14 Avenue Edouard Belin Toulouse, 31400, France, J. Soderblom, Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd. Tucson, AZ 85721, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.020
Available formats
×