Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T22:32:43.418Z Has data issue: false hasContentIssue false

18 - The thermal inertia of the surface of Mars

from Part IV - Physical Properties of Surface Materials

Published online by Cambridge University Press:  10 December 2009

M. T. Mellon
Affiliation:
Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder, CO 80309-0392, USA
R. L. Fergason
Affiliation:
School of Earth & Space Exploration Arizona, State University, PO Box 876305 Tempe, AZ 85287-6305, USA
N. E. Putzig
Affiliation:
Laboratory for Atmospheric & Space Physics, University of Colorado, Campus Box 392 Boulder, CO 80309, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

The thermal inertia of Mars is a physical property that controls the diurnal and seasonal cycles in surface temperature. It is defined as a function of the thermal conductivity, heat capacity, and density, all of which depend primarily on the physical structure of the surface layer. As such, thermal inertia provides information about the nature of the surface of Mars and the types of materials from which it is composed. Interpreting thermal inertia can be complicated by the variety of structures and material properties that result in the same thermal inertia value. In general, variations in the thermal conductivity have the greatest influence on the thermal inertia. Factors such as soil grain size, cementing or induration, rock abundance, the presence of bedrock, and surface heterogeneity all play an important role. The physical processes that effect the thermal conductivity are discussed to provide a framework from which thermal inertia of the Martian surface may be better understood.

Over the years, thermal inertia has been derived from numerous Earth-based and spacecraft temperature observations of Mars. In particular, thermal inertia from Viking, Mars Global Surveyor (MGS), and Mars Odyssey data has been derived and mapped with increasing spatial resolution, in each case providing an improved understanding of the surface layer. In addition, local-scale observations from the Mars Exploration Rovers (MERs) have provided in situ thermal inertia ground truth of characteristic soils and rocks. Overall, the surface of Mars is dominated by soils to a depth of a few centimeters or more.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 399 - 427
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C. C., Morris, R. V., Jager, K. M., et al., Martian regolith simulant JSC Mars-1, Lunar Planet. Sci. Conf. XXIX, Houston, 1998.Google Scholar
Armstrong, J. C., Titus, T. N., and Kieffer, H. H., Evidence for subsurface water ice in Korolev crater, Mars, Icarus 174, 360–72, 2005.CrossRefGoogle Scholar
Arvidson, R. E., Guinness, E. A., and Zent, A. P., Classification of surface units in the equatorial region of Mars based on Viking Orbiter color, albedo and thermal data, J. Geophys. Res. 87, 10149–57, 1982.CrossRefGoogle Scholar
Arvidson, R. E., Guinness, E. A., Dale-Bannister, M. A., et al., Nature and distribution of surficial deposits in Chryse Planitia and vicinity, Mars. J. Geophys. Res. 94, 1573–87, 1989.CrossRefGoogle Scholar
Arvidson, R. E., Anderson, R. C., Bartlett, P., et al., Localization and physical property experiments conducted by Opportunity at Meridiani Planum, Science 306, 1730–3, 2004a.CrossRefGoogle Scholar
Arvidson, R. E., Anderson, R. C., Bartlett, P., et al., Localization and physical property experiments conducted by Spirit at Gusev crater, Science 305, 821–4, 2004b.CrossRefGoogle Scholar
Arvidson, R. E., Squyres, S. W., Anderson, R. C., et al., Overview of the Spirit Mars Exploration Rover mission to Gusev crater: landing site to Backstay Rock in the Columbia Hills, J. Geophys Res. 111, E02S01, 2006.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Spirit rover at Gusev crater, Science 305, 800–6, 2004a.CrossRefGoogle Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum, Science 306, 1703–9, 2004b.CrossRefGoogle Scholar
Betts, B. H., Murray, B. C., and Svitek, T., Thermal inertias in the upper millimeter of the martian surface derived using Phobos' shadow. J. Geophys. Res. 100, 5285–96, 1995.CrossRefGoogle Scholar
Binder, A. B., Arvidson, R. E., Guinness, E. A., et al., The geology of the Viking Lander 1 site, J. Geophys. Res. 82, 4439–51, 1977.CrossRefGoogle Scholar
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science 297, 81–5, 2002.CrossRefGoogle ScholarPubMed
Brady, N. C., The Nature and Properties of Soils, Old Tappan, NJ: Macmillan, 1974.Google Scholar
Bridges, N. T., Elevation-corrected thermal inertia and derived particle size on Mars and implications for the Tharsis Montes. Geophys. Res. Lett. 21, 785–8, 1994.CrossRefGoogle Scholar
Chojnacki, M., Jakosky, B. M., and Hynek, B. M., Surficial properties of landslides and surrounding units in Ophir Chasma, Mars, J. Geophys. Res. 111, E040005, 2006.CrossRefGoogle Scholar
Christensen, P. R., Martian dust mantling and surface composition: interpretation of thermophysical properties, J. Geophys. Res. 87, 9985–98, 1982.CrossRefGoogle Scholar
Christensen, P. R., The spatial distribution of rocks on Mars, Icarus 68, 217–38, 1986a.CrossRefGoogle Scholar
Christensen, P. R., Regional dust deposits on Mars: physical properties, age, and history, J. Geophys Res. 91, 3533–45, 1986b.CrossRefGoogle Scholar
Christensen, P. R., Global view of surface materials, 5th Int. Conf. Mars, Lunar Planetary Institute Contribution 972, Pasadena, 1999.
Christensen, P. R. and Kieffer, H. H., Moderate resolution mapping of Mars: the channel terrain around the Chryse basin, J. Geophys. Res. 84, 8233–8, 1979.CrossRefGoogle Scholar
Christensen, P. R. and Malin, M. C., High resolution thermal imaging of Mars. Proc. Lunar Planet. Sci. Conf. XIX, 180–1, 1988.Google Scholar
Christensen, P. R. and H. J. Moore, The martian surface layer. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, 1992.Google Scholar
Christensen, P. R., Anderson, D. L., Chase, S. C., et al., Thermal emission spectrometer experiment: Mars Observer, J. Geophys. Res. 97, 7719–34, 1992.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., et al., The Mars Global Surveyor Thermal Emission Spectrometer experiment: investigation description and surface science results, J. Geophys. Res. 106, 23823–71, 2001.CrossRefGoogle Scholar
Christensen, P. R., Bandfield, J. L., Bell, J. F., et al., Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results, Science 300, 2056–61, 2003a.CrossRefGoogle Scholar
Christensen, P. R., Mehall, G. L., Silverman, S. H., et al., Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers, J. Geophys. Res. 108(8064), 1–23, 2003b.CrossRefGoogle Scholar
Christensen, P. R., Jakosky, B. M., Kieffer, H. H., et al., The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission, Space Sci. Rev. 110, 85–130, 2004a.CrossRefGoogle Scholar
Christensen, P. R., Ruff, S. W., Fergason, R. L., et al., Initial results from the Mini-TES experiment in Gusev crater from the Spirit Rover, Science 305, 837–42, 2004b.CrossRefGoogle Scholar
Clancy, R. T., Sandor, B. J., Wolff, M. J., et al., An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere, J. Geophys. Res. 105(E4), 9553–71, 2000.CrossRefGoogle Scholar
Cook, J. G. and Leaist, D. G., An exploratory study of the thermal conductivity of methane hydrate. Geophys. Res. Lett. 10, 397–9, 1983.CrossRefGoogle Scholar
Dharma-wardana, M. W. C., Thermal conductivity of the ice polymorphs and the ice clathrates. J. Phys. Chem. 87, 4185–90, 1983.CrossRefGoogle Scholar
Ditteon, R., Daily temperature variations on Mars, J. Geophys. Res. 87, 10197–214, 1982.CrossRefGoogle Scholar
Edgett, K. S. and Christensen, P. R., Mars aeolian sand: regional variations among dark-hued crater floor features, J. Geophys. Res. 99, 1997–2018, 1994.CrossRefGoogle Scholar
Edwards, C. S., Bandfield, J. L., Christensen, P. R., and Fergason, R. L., Global distribution of bedrock on Mars using THEMIS high resolution thermal inertia, EOS Trans. AGU, 86(52), Fall Meeting Suppl., Abstract P21C-0158, 2005.Google Scholar
Fanale, F. P., Salvail, J. R., Zent, A. P., and Postawko, S. E., Global distribution and migration of subsurface ice on Mars, Icarus 67, 1–18, 1986.CrossRefGoogle Scholar
Farmer, C. B. and Doms, P. E., Global seasonal variations of water vapor on Mars and the implications for permafrost, J. Geophys. Res. 84, 2881–8, 1979.CrossRefGoogle Scholar
Farmer, C. B., Davies, D. W., and LaPorte, D. D., Mars: northern summer ice cap – water vapor observations from Viking 2, Science 194, 1339–41, 1976.CrossRefGoogle ScholarPubMed
Feldman, W. C., Prettyman, T. H., Maurice, S., et al., Global distribution of near-surface hydrogen on Mars, J. Geophys. Res. 109, E09006, 2004.CrossRefGoogle Scholar
Fenton, L. K. and Fergason, R. L., Thermal properties of sand from TES and THEMIS: do martian dunes make a good control for thermal inertia calculations?, Lunar Planet. Sci. Conf. XXXV, Houston, 2004.Google Scholar
Fenton, L. K. and Mellon, M. T., Thermal properties of sand from Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS): spatial variations within the Proctor crater dune field on Mars, J. Geophys. Res. 111, E06014, 2006.CrossRefGoogle Scholar
Fenton, L. K., Bandfield, J. L., and Ward, A. W., Aeolian processes in Proctor crater on Mars: sedimentary history as analyzed from multiple data sets, J. Geophys. Res. 108, 5129, 2003.CrossRefGoogle Scholar
Fergason, R. L. and P. R. Christensen, Thermal inertia using THEMIS infrared data, Lunar Planet. Sci. Conf. XXXIV, Houston, 2003.
Fergason, R. L., Christensen, P. R., Bell, J. F., et al., Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES derived thermal inertia, J. Geophys. Res. 111, E02S21, 2006a.CrossRefGoogle Scholar
Fergason, R. L., Christensen, P. R., and Kieffer, H. H., High resolution thermal inertia derived from THEMIS: thermal model and applications, J. Geophys. Res. 111, E12004, 2006b.CrossRefGoogle Scholar
Fisher, J. A., Richardson, M. I., Newman, C. E., et al., A survey of Martian dust devil activity using Mars Global Surveyor Mars Orbiter Camera images, J. Geophys. Res. 110, E03004, 2005.CrossRefGoogle Scholar
Fountain, J. A. and West, E. A., Thermal conductivity of particulate basalt as a function of density in simulated lunar and martian environments, J. Geophys. Res. 75, 4063–9, 1970.CrossRefGoogle Scholar
Giauque, W. F. and Egan, C. J., Carbon dioxide; The heat capacity and vapor pressure of the solid; The heat of sublimation; Thermodynamic and spectroscopic values of the entropy, J. Chem. Phys. 5, 45–54, 1937.CrossRefGoogle Scholar
Golombek, M. P., Haldemann, A. F. C., Forsberg-Taylor, N. K., et al., Rock size-frequency distributions on Mars: at the Pathfinder landing site, in boulder fields, thermal inertia of rock populations, and rock shape and burial, and implications for Mars Exploration Rover landing safety and operations, J. Geophys. Res. 108, 8086, 2003.CrossRefGoogle Scholar
Golombek, M. P., Arvidson, R. E., Bell, J. F., et al., Assessment of Mars Exploration Rover landing site predictions, Nature 436, 44–8, 2005.CrossRefGoogle ScholarPubMed
Grant, J. A., Arvidson, R., Bell, J. F., et al., Surficial deposits at Gusev crater along Spirit Rover traverses, Science 305, 807–10, 2004.CrossRefGoogle ScholarPubMed
Greeley, R., Leach, R., White, B., Iversen, J., and Pollack, J., Threshold windspeeds for sand on Mars: wind tunnel simulations, Geophys. Res. Lett. 7, 121–4, 1980.CrossRefGoogle Scholar
Greeley, R., N. Lancaster, S. Lee, and P. Thomas, Mars aeolian processes, sediments, and features. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 730–66, 1992.Google Scholar
Greeley, R., Squyres, S. W., Arvidson, R. E., et al., Wind-related processes detected by the Spirit Rover at Gusev crater, Science 305, 810–21, 2004.CrossRefGoogle ScholarPubMed
Greeley, R., Arvidson, R., Bell, J. F., et al., Martian variable features: new insight from the Mars Express Orbiter and the Mars Exploration Rover Spirit, J. Geophys. Res. 110, E06002, 2005.CrossRefGoogle Scholar
Haberle, R. M. and Jakosky, B. M., Atmospheric effects on determination of thermal inertia on Mars, Icarus 90, 187–204, 1991.CrossRefGoogle Scholar
Hayashi, J. N., Jakosky, B. M., and Haberle, R. M., Atmospheric effects on the mapping of martian thermal inertia and thermally derived albedo, J. Geophys. Res. 100, 5277–84, 1995.CrossRefGoogle Scholar
Herkenhoff, K. E. and Vasavada, A. R., Dark material in the polar layered deposits and dunes on Mars, J. Geophys. Res. 104, 16487–500, 1999.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Textures of the soils and rocks at Gusev crater from Spirit's Microscopic Imager, Science 305, 824–6, 2004a.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Evidence from Opportunity's Microscopic Imager for water on Meridani Planum, Science 306, 1727–30, 2004b.CrossRefGoogle Scholar
Hillel, D., Fundamentals of Soil Physics, New York: Academic Press, 1980.Google Scholar
Hobbs, P. V., Ice Physics, London: Oxford University Press, 1974.Google Scholar
Holder, G. D., Cugini, A. V., and Warzinski, R. P., Modeling clathrate hydrate formation during carbon dioxide injection into the ocean, Environ. Sci. Tech. 29, 276–8, 1995.CrossRefGoogle ScholarPubMed
Honda, Y. P. and Cook, J. G., Thermal conductivity of xenon hydrate. J. Phys. Chem. 91, 6327–8, 1987.CrossRefGoogle Scholar
Hynek, B. M., Implications for hydrologic processes on Mars from extensive bedrock outcrops throughout Terra Meridiani, Nature 431, 156–9, 2004.CrossRefGoogle ScholarPubMed
Jakosky, B. M., The effects of nonideal surfaces on the derived thermal properties of Mars. J. Geophys. Res. 84, 8252–62, 1979.CrossRefGoogle Scholar
Jakosky, B. M., On the thermal properties of martian fines. Icarus 66, 117–24, 1986.CrossRefGoogle Scholar
Jakosky, B. M. and Christensen, P. R., Global duricrust on Mars: analysis of remote-sensing data. J. Geophys. Res. 91, 3547–59, 1986a.CrossRefGoogle Scholar
Jakosky, B. M. and Christensen, P. R., Are the Viking Lander sites representative of the surface of Mars?, Icarus 66, 125–33, 1986b.CrossRefGoogle Scholar
Jakosky, B. M. and Mellon, M. T., Thermal inertia of Mars: sites of exobiological interest, J. Geophys. Res. 106, 23887–908, 2001.CrossRefGoogle Scholar
Jakosky, B. M. and Muhleman, D. O., A comparison of the thermal and radar characteristics of Mars, Icarus 45, 25–38, 1981.CrossRefGoogle Scholar
Jakosky, B. M., Mellon, M. T., Kieffer, H. H., et al., The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer, J. Geophys. Res. 105, 9643–52, 2000.CrossRefGoogle Scholar
Jakosky, B. M., Hynek, B. M., Pelkey, S. M., et al., Thermophysical properties of the MER and Beagle II landing site regions on Mars, J. Geophys Res. 111, E08008, 2006.CrossRefGoogle Scholar
Johnson, J. B. and Lorenz, R. D., Thermophysical properties of Alaskan loess: an analog material for the martian polar layered terrain?, Geophys. Res. Lett. 27, 2769–72, 2000.CrossRefGoogle Scholar
Judd, W. R. and A. Shakoor, Density in Physical Properties of Rocks and Minerals (ed. Ho, C. Y.et al.), Philadelphia, PA: Taylor and Francis, pp. 409–502, 1989.Google Scholar
Kahn, R. A., T. Z. Martin, and R. W. Zurek, The martian dust cycle. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 1017–53, 1992.Google Scholar
Kennard, E. H., Kinetic Theory of Gases, with an Introduction to Statistical Mechanics, New York: McGraw-Hill, 1938.Google Scholar
Kieffer, H. H., Chase, S. C., Miner, E., Münch, G., and Neugebauer, G., Preliminary report on infrared radiometric measurements from the Mariner 9 spacecraft. J. Geophys. Res. 78, 4291–312, 1973.CrossRefGoogle Scholar
Kieffer, H. H., Chase, S. C., Martin, T. Z., Miner, E. D., and Palluconi, F. D., Martian north pole summer temperatures: dirty water ice, Science, 194, 1341–4, 1976.CrossRefGoogle ScholarPubMed
Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., et al., Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res. 82, 4249–91, 1977.CrossRefGoogle Scholar
Krovchenko, Yu. G. and Krupskii, I. N., Thermal conductivity of solid N2O and CO2, Sov. J. Low Temp. Phys. 12, 46–8, 1986.Google Scholar
Ksanfomaliti, L. V. and Moroz, V. I., Infrared radiometry on board Mars-5, Cosmic Res. 13, 65–7, 1975.Google Scholar
Leaist, D. G., Murray, J. J., Post, M. L., and Davidson, D. W., Enthalpies of decomposition and heat capacity of ethylene oxide and tetrahydrofuran hydrates, J. Phys. Chem. 86, 4175–8, 1982.CrossRefGoogle Scholar
Leighton, R. B. and Murray, B. C., Behavior of carbon dioxide and other volatiles on Mars, Science 153, 136–44, 1966.CrossRefGoogle ScholarPubMed
Leovy, C., Note on thermal properties of Mars, Icarus 5, 1–6, 1966.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S., Mars Global Surveyor, Mars Orbiter Camera: interplanetary cruise through primary mission, J. Geophys. Res. 106, 23429–570, 2001.CrossRefGoogle Scholar
Martinez-Alonso, S., Jakosky, B. M., Mellon, M. T., and Putzig, N. E., A volcanic interpretation of Gusev crater surface materials from thermophysical, spectral, and morphological evidence, J. Geophys. Res. 110, E01003, 2005.CrossRefGoogle Scholar
Masamune, S. and Smith, J. M., Thermal conductivity of beds of spherical particles, I & EC Fundamentals 2(2), 136–43, 1963.CrossRefGoogle Scholar
Mellon, M. T., Limits on the CO2 content of the martian polar deposits, Icarus 124, 268–79, 1996.CrossRefGoogle Scholar
Mellon, M. T. and Jakosky, B. M., Geographic variations in the thermal and diffusive stability of ground ice on Mars, J. Geophys. Res. 98, 3345–64, 1993.CrossRefGoogle Scholar
Mellon, M. T. and Jakosky, B. M., The distribution and behavior of martian ground ice during past and present epochs, J. Geophys. Res. 100, 11781–99, 1995.CrossRefGoogle Scholar
Mellon, M. T. and N. E. Putzig, The apparent thermal inertia of layered surfaces on Mars, Lunar Planet. Sci. Conf. XXXVIII, Houston, 2007.
Mellon, M. T., Jakosky, B. M., and Postawko, S. E., The persistence of equatorial ground ice on Mars, J. Geophys. Res. 102, 19357–69, 1997.CrossRefGoogle Scholar
Mellon, M. T., Jakosky, B., Kieffer, H., and Christensen, P., High resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer, Icarus 148, 437–55, 2000.CrossRefGoogle Scholar
Mellon, M. T., Feldman, W. C., and Prettyman, T. H., The presence and stability of ground ice in the southern hemisphere of Mars, Icarus 169, 324–40, 2004.CrossRefGoogle Scholar
Merényi, E., Edgett, K. S., and Singer, R. B., Deucalionis Regio, Mars: evidence for a new type of immobile weathered soil unit, Icarus 124, 296–307, 1996.CrossRefGoogle Scholar
Moore, H. J. and Jakosky, B. M., Viking landing sites, remote sensing observations, and the physical properties of Martian surface materials, Icarus 81, 164–84, 1989.CrossRefGoogle Scholar
Moore, H. J. and J. M. Keller, Surface-material maps of the Viking landing sites on Mars (abstract), in Rep. Planet. Geol. Geophys. Prog. – 1990, NASA Technical Memorandum, 4210, 160–2, 1990.
Moore, H. J., Hutton, R. E., Clow, G. D., and Spitzer, C. R., Physical properties of the surface materials at the Viking landing sites on Mars, US Gs. Prof. Paper, 1389, 1987.Google Scholar
Moore, H. J., Bickler, D. B., Crisp, J. A., et al., Soil-like deposits observed by Sojourner, the Pathfinder rover, J. Geophys. Res. 104, 8729–46, 1999.CrossRefGoogle Scholar
Moroz, V. I. and Ksanfomaliti, L. V., Preliminary results of astrophysical observations of Mars from Mars-3, Icarus 17, 408–22, 1972.CrossRefGoogle Scholar
Moroz, V. I., Ksanfomaliti, L. V., Krasovskii, G. N., et al., Infrared temperatures and thermal properties of the martian surface measured by the Mars 3 Orbiter, Cosmic Res. 13, 346–56, 1976.Google Scholar
Morrison, D., Sagan, C., and Pollack, J. B., Martian temperatures and thermal properties, Icarus 11, 36–45, 1969.CrossRefGoogle Scholar
Mustard, J. F., Cooper, C. D., and Rifkin, M. K., Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice, Nature 412, 411–14, 2001.CrossRefGoogle ScholarPubMed
Mutch, T. A., Arvidson, R. E., Binder, A. B., Guinness, E. A., and Morris, E. C., The geology of the Viking Lander 2 site, J. Geophys. Res. 82, 4452–67, 1977.CrossRefGoogle Scholar
Neugebauer, G., Münch, G., Kieffer, H., Chase, S. C., and Miner, E., Mariner 1969 infrared radiometer results: temperatures and thermal properties of the martian surface, Astron. J. 76, 719–28, 1971.CrossRefGoogle Scholar
Paige, D. A., The thermal stability of near-surface ground ice on Mars, Nature 356, 43–5, 1992.CrossRefGoogle Scholar
Paige, D. A. and Ingersoll, A. P., Annual heat balance of martian polar caps: Viking observations, Science 228, 1160–8, 1985.CrossRefGoogle ScholarPubMed
Paige, D. A. and Keegan, K. D., Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. South polar region, J. Geophys. Res. 99, 25992–6013, 1994.Google Scholar
Paige, D. A., Bachman, J. E., and Keegan, K. D., Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 1. North polar region, J. Geophys. Res. 99, 25959–91, 1994.CrossRefGoogle Scholar
Palluconi, F. D. and Kieffer, H. H., Thermal inertia mapping of Mars from 60° S to 60° N, Icarus 45, 415–26, 1981.CrossRefGoogle Scholar
Pelkey, S. M. and Jakosky, B. M., Surficial geologic surveys of Gale crater and Melas Chasma, Mars: integration of remote sensing data, Icarus 160, 228–57, 2002.CrossRefGoogle Scholar
Pelkey, S. M., Jakosky, B. M., and Mellon, M. T., Thermal in inertia of crater-related wind streaks on Mars, J. Geophys. Res. 106, 23909–20, 2001.CrossRefGoogle Scholar
Petrenko, V. F. and Whitworth, R. W., Physics of Ice, New York: Oxford University Press, 1999.Google Scholar
Pollack, J. B., Haberle, R. M., Schaffer, J., and Lee, H., Simulations of the general circulation of the martian atmosphere: 1. Polar processes, J. Geophys. Res. 95, 1447–73, 1990.CrossRefGoogle Scholar
Present, R. D., Kinetic Theory of Gases, New York: McGraw-Hill, 1958.Google Scholar
Presley, M. A. and Arvidson, R. E., Nature and origin of materials exposed in Oxia Palus – Western Arabia – Sinus Meridiani Region of Mars, Icarus 75, 499–517, 1988.CrossRefGoogle Scholar
Presley, M. A. and Christensen, P. R., Thermal conductivity measurements of particulate materials: 2. Results, J. Geophys. Res. 102, 6551–66, 1997a.CrossRefGoogle Scholar
Presley, M. A. and Christensen, P. R., The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under martian atmospheric pressures, J. Geophys. Res. 102, 9221–9, 1997b.CrossRefGoogle Scholar
Presley, M. A. and Craddock, R. A., Thermal conductivity measurements of particulate materials: 3. Natural samples and mixtures of particle sizes, J. Geophys Res. 111, E09013, 2006.CrossRefGoogle Scholar
Prettyman, T. H., Feldman, W. C., Mellon, M. T., et al., Composition and structure of the martian surface in the high southern latitudes from neutron spectroscopy, J. Geophys. Res. 109, E05001, 2004.CrossRefGoogle Scholar
Putkonen, J., R. S. Sletten, and B. Hallet, Atmosphere/ice energy exchange through thin debris cover in Beacon Valley, Antarctica, Proc. 8th Intern. Conf. (ed. Phillips, M., Springman, S. M., and Arenson, L. U.), Permafrost, Zurich, Switzerland, pp. 913–28, July 21–25, 2003.Google Scholar
Putzig, N. E., Thermal inertia and surface heterogeneity on Mars, Ph.D. dissertation, University of Colorado, Boulder, 2006.
Putzig, N. E. and Mellon, M. T., Thermal behavior of horizontally mixed surfaces on Mars, Icarus, 191, 52–67, 2007a.CrossRefGoogle Scholar
Putzig, N. E. and Mellon, M. T., Apparent thermal inertia and the surface heterogeneity of Mars, Icarus, 191, 68–94, 2007b.CrossRefGoogle Scholar
Putzig, N. E., M. T. Mellon, B. M. Jakosky, et al., Mars thermal inertia from THEMIS data, Lunar Planet. Sci. Conf. XXXV, Houston, 2004.
Putzig, N. E., Mellon, M. T., Kretke, K. A., and Arvidson, R. E., Global thermal inertia and surface properties of Mars from the MGS mapping mission, Icarus 173, 325–41, 2005.CrossRefGoogle Scholar
Rogers, A. D., J. L. Bandfield, and P. R. Christensen, Global bedrock composition mapping on Mars using THEMIS and TES data, Lunar Planet. Sci. Conf. XXXIV, Houston, 2003.
Rogers, A. D., Christensen, P. R., and Bandfield, J. L., Compositional heterogeneity of the ancient Martian crust: analysis of Ares Vallis bedrock with THEMIS and TES data, J. Geophys. Res. 110, E05010, 2005.CrossRefGoogle Scholar
Roy, R. F., A. E. Beck, and Y. S. Touloukian, Thermophysical properties of rocks. In Physical Properties of Rocks and Minerals (ed. Ho, C. Y., et al.), Philadelphia, PA: Taylor and Francis, pp. 409–502, 1989.Google Scholar
Ruff, S. W. and Christensen, P. R., Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data, J. Geophys. Res. 107, 5127, 2002.CrossRefGoogle Scholar
Sagan, C., Smith, B. A., Veverka, J., et al., Variable features on Mars: preliminary Mariner 9 Television results, Icarus 17, 346–72, 1972.CrossRefGoogle Scholar
Selivanov, A. S., Yu. M. Gektin, N. K. Naraeva, et al., Atlas of Mars by the TERMOSCAN Radiometer data, Assoc. Adv. Space Sci. Tech., Moscow, 1998.
Sinton, W. M. and Strong, J., Radiometric observations of Mars, Astrophys. J. 131, 459–69, 1960.CrossRefGoogle Scholar
Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R., One martian year of atmospheric observations by the Thermal Emission Spectrometer, Geophys. Res. Lett. 28(22), 4263–55, 2001.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F., et al., The Spirit Rover's Athena Science investigation at Gusev crater, Mars, Science 305, 794–9, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F., et al., The Opportunity Rover's Athena Science investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004b.CrossRefGoogle Scholar
Storrs, A. D., Fanale, F. P., Saunders, R. S., and Stephens, J. B., The formation of filamentary sublimate residues (FSR) from mineral grains, Icarus 76, 493–512, 1988.CrossRefGoogle Scholar
Strum, M., Perovich, D. K., and Holmgren, J., Thermal conductivity and heat transfer through the snow on the ice of Beaufort Sea, J. Geophys. Res. 107, 8043, 2002.CrossRefGoogle Scholar
Thomas, P. and Gierasch, P. J., Dust devils on Mars, Science 230, 175–7, 1985.CrossRefGoogle ScholarPubMed
Thomas, P., Veverka, J., Lee, S., and Bloom, A., Classification of wind streaks on Mars, Icarus 45(1), 124–53, 1981.CrossRefGoogle Scholar
Tillman, J. E., Johnson, N. C., Guttorp, P., and Percival, D. B., The martian annual atmospheric pressure cycle: years without great dust storms, J. Geophys. Res. 98, 10963–71, 1993.CrossRefGoogle Scholar
Titus, T. N., Kieffer, H. H., and Christensen, P. R., Exposed water ice discovered near the south pole of Mars, Science 299, 1048–51, 2003.CrossRefGoogle ScholarPubMed
Titus, T. N., T. H. Prettyman, and A. Colaprete, Thermal characterization of the three proposed Phoenix Landing sites, Lunar Planet. Sci. Conf. XXXVII, Houston, 2006.
Urquhart, M. L. and Jakosky, B. M., Lunar thermal emission and remote determination of surface properties, J. Geophys. Res. 102, 10959–69, 1997.CrossRefGoogle Scholar
Vasavada, A. R., Williams, J. P., Paige, D. A., et al., Surface properties of Mars' polar layered deposits and polar landing sites. J. Geophys. Res. 105, 6961–9, 2000.CrossRefGoogle Scholar
Ward, A. W., Gaddis, L. R., Kirk, R. L., et al., General geology and geomorphology of the Pathfinder landing site, J. Geophys. Res. 104, 8555–71, 1999.CrossRefGoogle Scholar
Weast, R. C. (ed.), CRC Handbook of Chemistry and Physics, 67th edn., Boca Raton, FL: CRC Press, p. B-82, 1986.Google Scholar
Wechsler, A. E. and Glaser, P. E., Pressure effects on postulated lunar materials, Icarus 4, 335–52, 1965.CrossRefGoogle Scholar
Wechsler, A. E., P. E. Glaser, A. D. Little, and J. A. Fountain, Thermal properties of granulated materials. In Thermal Characteristics of the Moon (ed. Lucas, J. W.), Cambridge, MA: MIT Press, pp. 215–41, 1972.CrossRefGoogle Scholar
Wesselink, A. F., Heat conductivity and nature of the lunar surface material, Bull. Astr. Insts. Netherlands 10, 351–63, 1948.Google Scholar
Wilson, S. A. and Zimbelman, J. R., Latitude-dependent nature and physical characteristics of transverse aeolian ridges on Mars, J. Geophys. Res. 109, E10003, 2004.CrossRefGoogle Scholar
Woodside, W. and Messmer, J. H., Thermal conductivity of porous media: I. Unconsolidated sands, J. Appl. Phys. 32, 1688–99, 1961a.CrossRefGoogle Scholar
Woodside, W. and Messmer, J. H., Thermal conductivity of porous media: I. Consolidated rock. J. Appl. Phys. 32, 1699–706, 1961b.CrossRefGoogle Scholar
Zimbelman, J. R., Surface properties of the Pettit wind streak on Mars: implications for sediment transport, Icarus 66, 83–93, 1986.CrossRefGoogle Scholar
Zimbelman, J. R. and Greeley, R., Surface properties of ancient cratered terrain in the northern hemisphere of Mars, J. Geophys. Res. 87, 10181–9, 1982.CrossRefGoogle Scholar
Zimbelman, J. R. and Kieffer, H. H., Thermal mapping of the northern equatorial and temperate latitudes of Mars, J. Geophys. Res. 84, 8239–51, 1979.CrossRefGoogle Scholar
Zurek, R. W., J. R. Barnes, R. M. Haberle, et al., Dynamics of the atmosphere of Mars. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 835–933, 1992.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • The thermal inertia of the surface of Mars
    • By M. T. Mellon, Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder, CO 80309-0392, USA, R. L. Fergason, School of Earth & Space Exploration Arizona, State University, PO Box 876305 Tempe, AZ 85287-6305, USA, N. E. Putzig, Laboratory for Atmospheric & Space Physics, University of Colorado, Campus Box 392 Boulder, CO 80309, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • The thermal inertia of the surface of Mars
    • By M. T. Mellon, Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder, CO 80309-0392, USA, R. L. Fergason, School of Earth & Space Exploration Arizona, State University, PO Box 876305 Tempe, AZ 85287-6305, USA, N. E. Putzig, Laboratory for Atmospheric & Space Physics, University of Colorado, Campus Box 392 Boulder, CO 80309, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • The thermal inertia of the surface of Mars
    • By M. T. Mellon, Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder, CO 80309-0392, USA, R. L. Fergason, School of Earth & Space Exploration Arizona, State University, PO Box 876305 Tempe, AZ 85287-6305, USA, N. E. Putzig, Laboratory for Atmospheric & Space Physics, University of Colorado, Campus Box 392 Boulder, CO 80309, USA
  • Edited by Jim Bell, Cornell University, New York
  • Book: The Martian Surface
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511536076.019
Available formats
×