Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T11:24:10.270Z Has data issue: false hasContentIssue false

26 - Astrobiological implications of Mars' surface composition and properties

from Part V - Synthesis

Published online by Cambridge University Press:  10 December 2009

D. J. Des Marais
Affiliation:
NASA Ames Research Center MS 239-4 Moffett Field, CA 94035-1000, USA
B. M. Jakosky
Affiliation:
University of Colorado, Boulder LASP/Campus Box 392 Boulder, CO 80309-0392, USA
B. M. Hynek
Affiliation:
Department of Geological Sciences, Laboratory for Atmospheric and Space Physics 392 UCB, University of Colorado Boulder, CO 80309, USA
Jim Bell
Affiliation:
Cornell University, New York
Get access

Summary

ABSTRACT

A central goal in Mars exploration is to determine whether life has ever existed there and, whether it did or not, the degree to which the Mars environment could have sustained life. To attain this goal, we can characterize the environmental context, identify places most likely to have sustained life and retained evidence of its presence, and search for “biosignatures,” namely features created only by life and that can persist long after they were formed. Life as we know it requires liquid water, source(s) of energy to sustain metabolism, and chemical building blocks for its cellular constituents. The availability of liquid water appears to be the primary limiting factor in near-surface Martian environments. Liquid water apparently was more widespread on the surface in ancient times and it has occurred within the crust at various times. Oscillations in the orbital obliquity of Mars probably influenced the distribution of water, and some evidence hints of recent liquid water. Observations by the Mars Exploration Rover (MER) Spirit in Gusev crater are consistent with the possibility that liquid water, nutrients and sources of chemical energy were simultaneously available to sustain habitable conditions in subsurface Columbia Hills materials at least some time in the distant (Noachian?) past. As of this writing Spirit rover has not yet determined that these conditions ever existed in a surface environment. MER Opportunity revealed that habitable environments might have persisted for an extended period of time in the Meridiani Planum region at some time in the distant past.

Type
Chapter
Information
The Martian Surface
Composition, Mineralogy and Physical Properties
, pp. 599 - 624
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, M., Sherwood-Lollar, B., Runnegar, B., et al., Is Mars alive?, EOS 87(41), 433, 439, 2006.CrossRefGoogle Scholar
Arvidson, R. E., Seelos, F. P., Deal, K. S., et al., Mantled and exhumed terrains in Terra Meridiani, Mars. J. Geophys. Res. – Planets 108, 8073, 2003.CrossRefGoogle Scholar
Baker, B. J. and Banfield, J. F., Microbial communities in acid mine drainage, FEMS Microb. Ecol. 44, 139–52, 2003.CrossRefGoogle ScholarPubMed
Baker, V. R., Water and the Martian landscape, Nature 412, 228–36, 2001.CrossRefGoogle ScholarPubMed
Baker, V. R., Strom, R. G., Gulick, V. C., et al., Ancient oceans, ice sheets and the hydrological cycle on Mars, Nature 352, 589–94, 1991.CrossRefGoogle Scholar
Baker, V. R., M. H. Carr, V. C. Gulick, C. R. Williams, and M. S. Marley, Channels and valley networks. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 493–522, 1992.Google Scholar
Bakermans, C., Tsapin, A. I., Souza-Egipsy, V., Gilichinisky, D. A., and Nealson, K. H., Reproduction and metabolism at − 10 degrees C of bacteria isolated from Siberian permafrost. Environ. Microbiol. 5, 321–6, 2003.CrossRefGoogle ScholarPubMed
Basaltic Volcanism Study Project, Basaltic Volcanism on the Terrestrial Planets (ed. Kaula, W. M.et al.), New York: Pergamon Press, 1981.Google Scholar
Bandfield, J. L., Glotch, T. D., and Christensen, P. R., Spectroscopic identification of carbonate minerals in the martian dust, Science 301, 1084–7, 2000.CrossRefGoogle Scholar
Bazylinski, D. A. and B. M. Moskowitz, Microbial biomineralization of magnetic iron minerals: microbiology, magnetism and environmental significance. In Geomicrobiology: Interactions between Microbes and Minerals (ed. Banfield, J. F. and Nealson, K. H.), Washington, DC: Mineralogical Society of America, pp. 181–223, 1997.Google Scholar
Bell, J. F. III, Squyres, S. W., Arvidson, R. E., et al., Pancam multispectral imaging results from the Opportunity rover at Meridiani Planum, Science 306, 1703–9, 2004.CrossRefGoogle ScholarPubMed
Benner, S. A., Devine, K. G., Matveeva, L. N., and Powell, D. H., The missing organic molecules on Mars, Proc. Natl. Acad. Sci. 97, 2425–30, 2000.CrossRefGoogle ScholarPubMed
Berman, D. C. and Hartmann, W. K., Recent fluvial, volcanic and tectonic activity on the Cerberus plains of Mars, Icarus 159, 1–17, 2002.CrossRefGoogle Scholar
Bhattacharya, J. P., Payenberg, T. H. D., Lang, S. C., and Bourke, M., Dynamic river channels suggest a long-lived Noachian crater lake on Mars, Geophys. Res. Lett. 32, L10201, 2005.CrossRefGoogle Scholar
Bibring, J. -P., Langevin, Y., Gendrin, A., et al., Mars surface diversity as revealed by the OMEGA/Mars Express observations, Science 307, 1576–81, 2005.CrossRefGoogle ScholarPubMed
Bibring, J. -P., Langevin, Y., Mustard, J. F., et al., Global mineralogical and aqueous Mars history derived from OMEGA/Mars express data, Science 312, 400–4, 2006.CrossRefGoogle ScholarPubMed
Biemann, K., Oro, J., Toulmin, P. III, et al., The search for organic substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res. 82, 4641–58, 1977.CrossRefGoogle Scholar
Bierhaus, E. B., Chapman, C. R., and Merline, W. J., Secondary craters on Europa and implications for cratered surfaces, Nature 437, 1125–7, 2005.CrossRefGoogle ScholarPubMed
Booth, I. R., Regulation of cytoplasmic pH in bacteria, Microbiol. Rev. 49, 359–78, 1985.Google ScholarPubMed
Boynton, W. V., Feldman, W. C., Squyres, S. W., et al., Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits, Science 297, 81–4, 2002.CrossRefGoogle ScholarPubMed
Brain, D. A. and Jakosky, B. M., Atmospheric loss since the onset of the martian geologic record: combined role of impact erosion and sputtering, J. Geophys. Res. 103, 22698–94, 1998.CrossRefGoogle Scholar
Brain, D. A., Bagenal, F., Acuna, M. H., and Connerney, J. E. P., Martian magnetic morphology: contributions from the solar wind and crust, J. Geophys. Res. 108, doi:10.1029/2002JA009482, 2003.CrossRefGoogle Scholar
Brock, T. D., Madigan, M. T., Martinko, J. M., and Parker, J., Biology of Microorganisms, New Jersey: Prentice Hall, 1994.Google Scholar
Brocks, J. J., Buick, R., Summons, R. E., and Logan, G. A., A reconstruction of Archean biological diversity based on molecular fossils from the 2.78–2.45 billion year old Mount Bruce Supergroup, Hamersley Basin, Western Australia, Geochim. Cosmochim. Acta 67, 4321–35, 2003.CrossRefGoogle Scholar
Brown, D. A., Kamineni, D. C., Sawicki, J. A., and Beveridge, T. J., Minerals associated with biofilms occurring on exposed rock in a granite underground research laboratory, Appl. Environ. Microbiol. 60, 3182–91, 1994.Google Scholar
Burr, D. M., Grier, J. A., McEwen, A. S., and Keszthelyi, L. P., Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars, Icarus 159, 53–73, 2002.CrossRefGoogle Scholar
Cabrol, N. A. and Grin, E. A., Distribution, classification, and ages of Martian impact crater lakes, Icarus 142, 160–72, 1999.CrossRefGoogle Scholar
Cabrol, N. A., Grin, E. A., and Dawidowicz, G., Ma'adim-Vallis revisited through new topographic data: evidence for an ancient intravalley lake, Icarus 123, 269–83, 1996.CrossRefGoogle Scholar
Cabrol, N. A., Grin, E. A., Landheim, R., Kuzmin, R. O., and Greeley, R., Duration of the Ma'adim Vallis/Gusev crater hydrogeologic system, Icarus 133, 98–108, 1998.CrossRefGoogle Scholar
Canfield, D. E., Biogeochemistry of sulfur isotopes. In Stable Isotope Geochemistry (ed. Valley, J. W. and Cole, D. R.), Washington, DC: Mineralogical Society of America, pp. 607–36, 2001.Google Scholar
Carr, M. H., Formation of martian flood features by release of water from confined aquifers, J. Geophys. Res. 84, 2995–3007, 1979.CrossRefGoogle Scholar
Carr, M. H., The Martian drainage system and the origin of valley networks and fretted channels, J. Geophys. Res. 100, 7479–507, 1995.CrossRefGoogle Scholar
Carr, M. H., Water on Mars, Oxford University Press, 1996.Google Scholar
Carr, M. H. and Clow, G. D., Martian channels and valleys: their characteristics, distribution, and age, Icarus 48, 91–117, 1981.CrossRefGoogle Scholar
Carr, M. H. and Head, J. W. III, Oceans on Mars: an assessment of the observational evidence and possible fate, J. Geophys. Res. 108, 5042, doi:5010,1029/2002JE001963, 2003.CrossRefGoogle Scholar
Carr, M. H. and Malin, M. C., Meter scale characteristics of martian channels and valleys. Icarus 146, 366–86, 2000.CrossRefGoogle Scholar
Chang, S., Planetary environments and the conditions of life, Philos. Trans. R. Soc. Lond. 325, 601–10, 1988.CrossRefGoogle ScholarPubMed
Chapman, C. R. and Jones, K. L., Cratering and obliteration history of Mars, Annu. Rev. Earth Planet. Sci. 5, 515–40, 1977.CrossRefGoogle Scholar
Christensen, P. R., Formation of recent martian gullies through melting of extensive water-rich snow deposits, Nature 422, 45–8, 2003.CrossRefGoogle ScholarPubMed
Christensen, P. R., Morris, R. V., Lane, M. D., Bandfield, J. L., and Malin, M. C., Global mapping of Martian hematite mineral deposits: remnants of water-driven processes on early Mars, J. Geophys. Res. – Planets 106, 23873–85, 2001.CrossRefGoogle Scholar
Christensen, P. R., Wyatt, M. B., Glotch, T. D., et al., Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover, Science 306, 1733–9, 2004.CrossRefGoogle ScholarPubMed
Clark, B. C., Morris, R. V., McLennan, S. M., et al., Chemistry and mineralogy of outcrops at Meridiani Planum, Earth Planet. Sci. Lett. 240, 73–94, 2005.CrossRefGoogle Scholar
Cleland, C. E. and C. F. Chyba, Does life have a definition? In Planets and Life (ed. Sullivan, W. and Baross, J.), Cambridge: Cambridge University Press, pp. 119–3, 2007.CrossRefGoogle Scholar
Clow, G. D., Generation of liquid water on Mars through melting of a dusty snowpack, Icarus 72, 95–127, 2003.CrossRefGoogle Scholar
Costard, F., Forget, F., Mangold, N., and Peulvast, J. P., Formation of recent Martian debris flows by melting of near surface ground ice at high obliquity, Science 295, 110–13, 2002.CrossRefGoogle ScholarPubMed
Craddock, R. A. and Howard, A. D., The case for rainfall on an early warm, wet Mars, J. Geophys. Res. 107, doi:10.1029/2001JE001505, 2002.CrossRefGoogle Scholar
Craddock, R. A. and Maxwell, T. A., Geomorphic evolution of the Martian highlands through ancient fluvial processes, J. Geophys. Res. 98, 3453–68, 1993.CrossRefGoogle Scholar
Des Marais, D. J., Isotopic evolution of the biogeochemical cycle during the Precambian. In Stable Isotope Geochemistry (ed. Valley, J. W. and Cole, D. R.), Rev. Mineral. 43, 555–78, 2001.Google Scholar
Des Marais, D. J., Allamandola, L. J., Benner, S. A., et al., The NASA astrobiology roadmap, Astrobiology 3(2), 219–35, 2003.CrossRefGoogle ScholarPubMed
Des Marais, D. J., B. C. Clark, L. S. Crumpler, et al., Astrobiology and the basaltic plans in Gusev crater, paper presented at Lunar Planet. Sci. XXXVI, Houston, TX: Lunar and Planetary Institute, Abstract #2353, March 14–18, 2005.
Ehrlich, H. L., How microbes influence mineral growth and dissolution, Chem. Geol. 132, 5–9, 1996.CrossRefGoogle Scholar
Farmer, J. D. and Des Marais, D. J., Exploring for a record of ancient Martian life, J. Geophys. Res. 104, 26977–95, 1999.CrossRefGoogle ScholarPubMed
Feldman, W. C., Boynton, W. V., Tokar, R. L., et al., Global distribution of neutrons from Mars Odyssey, Science 297, 75–8, 2002.CrossRefGoogle ScholarPubMed
Fishbaugh, K. E. and Head, J. W. III, Topographic characterization from Mars Orbiter Laser Altimeter data and implications for mechanisms of formation, J. Geophys. Res. 107, 5013, doi:5010.1029/2000JE001351, 2002.CrossRefGoogle Scholar
Fisk, M. R. and Giovannoni, S. J., Sources of nutrients and energy for a deep biosphere on Mars, J. Geophys. Res. 104, 11805–15, 1999.CrossRefGoogle Scholar
Fisk, M. R., Bence, A. E., and Schilling, J. G., Major-element chemistry of Galapagos Rift Zone magmas and their phenocrysts, Earth Planet. Sci. Lett. 61, 171–89, 1982.CrossRefGoogle Scholar
Forget, F. and Pierrehumbert, R. T., Warming early Mars with carbon dioxide clouds that scatter infrared radiation, Science 278, 1273–6, 1997.CrossRefGoogle ScholarPubMed
Forget, F., Haberle, R. M., Montmessin, F., Levrard, B., and Head, J. W., Formation of glaciers on Mars by atmospheric precipitation at high obliquity, Science 311, 368–71, 2006.CrossRefGoogle ScholarPubMed
Friedmann, E. I., Wierzchos, J., and Winkelhofer, M., Chains of magnetite crystals in the meteorite ALH84001: evidence of biological origin, Proc. Natl. Acad. Sci. 98, 2176–81, 2001.CrossRefGoogle ScholarPubMed
Galinski, E. A. and Trueper, H. G., Microbial behaviour in salt-stressed ecosystems, FEMS Microb. Rev. 15, 95–108, 1994.CrossRefGoogle Scholar
Gendrin, A., Mangold, N., Bibring, J.-P., et al., Sulfates in martian layered terrains: the OMEGA/Mars Express view, Science 307, 1587–91, 2005.CrossRefGoogle ScholarPubMed
Ghosal, D., Omelchenko, M. V., Gaidamakova, E. K., et al., How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress, FEMS Microbiol. Rev. 29, 361–75, 2005.Google ScholarPubMed
Golden, D. C., Ming, D. W., Schwandt, C. S., et al., A simple inorganic process for formation of carbonates, magnetite, and sulfides in martian meteorites, Am. Mineral. 86, 370–5, 2001.CrossRefGoogle Scholar
Golden, D., D. W. Ming, R. Morris, G. Lofgren, and G. A. McKay, Inorganic formation of “truncated hexa-octahedral” magnetite: implications for inorganic processes, in Martian meteorite ALH84001, paper presented at Lunar Planet. Sci Conf. XXXIII, 2002.
Golombek, M. P., Arvidson, R. E., Bell, J. F. III, et al., Assessment of Mars exploration Rover landing site predictions, Nature 436, 44–8, 2005.CrossRefGoogle ScholarPubMed
Golombek, M. P., Crumpler, L. S., Grant, J. A., et al., Geology of the Gusev cratered plains from the Spirit rover traverse, J. Geophys. Res. – Planets 111, doi:10:1029/2005/JEO02503, 2006.CrossRefGoogle Scholar
Grant, J. A., Life at low water activity, Philos. Trans. R. Soc. Lond. Series B – Biological Sciences 359, 1249–66, 2004.CrossRefGoogle ScholarPubMed
Greeley, R. and Schneid, B. D., Magma generation on Mars: amounts, rates, and comparisons with Earth, Moon, and Venus, Science 254, 996–8, 1991.CrossRefGoogle ScholarPubMed
Griffith, L. L. and Schock, E. L., A geochemical model for the formation of hydrothermal carbonate on Mars, Nature 377, 406–8, 1995.CrossRefGoogle ScholarPubMed
Grotzinger, J. P., Arvidson, R. E., Bell, J. F. III, et al., Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 11–72, 2005.CrossRefGoogle Scholar
Gulick, V. C. and Baker, V. R., Origin and evolution of valleys on Martian volcanoes, J. Geophys. Res. 95, 14325–44, 1990.CrossRefGoogle Scholar
Haskin, L. A., Wang, A., Jolliff, B. L., et al., Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater, Nature 436, 66–9, 2005.CrossRefGoogle ScholarPubMed
Hauck, S. A. II and Phillips, R. J., Thermal and crustal evolution of Mars, J. Geophys. Res. 107(E7), doi:10.1029/2001JE001801, 2002.CrossRefGoogle Scholar
Head, J. W. and Marchant, D. R., Cold-based mountain glaciers on Mars: Western Arsia Mons. Geology 31, 641–4, 2003.2.0.CO;2>CrossRefGoogle Scholar
Head, J. W., Kreslavsky, M. A., and Pratt, S., Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian Period, J. Geophys. Res. 107, doi:10.1029/2000JE001445, 2002.CrossRefGoogle Scholar
Heldmann, J. L. and Mellon, M. T., Observations of martian gullies and constraints on potential formation mechanisms, Icarus 168, 285–304, 2004.CrossRefGoogle Scholar
Herkenhoff, K. E., Squyres, S. W., Arvidson, R., et al., Evidence from Opportunity's Microscopic Imager for water on Meridiani Planum, Science 306, 1727–30, 2004.CrossRefGoogle ScholarPubMed
Hoffman, N., White Mars: a new model for Mars' surface and atmosphere based on CO2, Icarus 146, 326–42, 2000.CrossRefGoogle Scholar
Hurowitz, J. A., McLennan, S. M., and McSween, H. Y. Jr., Mixing relationships and the effects of secondary alteration in the Wishstone and Watchtower Classes of Husband Hill, Gusev crater, Mars, J. Geophys Res. 111(E12), 2006.CrossRefGoogle Scholar
Hynek, B. M. and Phillips, R. J., New data reveal mature, integrated drainage systems on Mars indicative of past precipitation, Geology 31, 757–60, 2003.CrossRefGoogle Scholar
Hynek, B. M., Arvidson, R. E., and Phillips, R. J., Geologic setting and origin of Terra Meridiani hematite deposit on Mars, J. Geophys. Res. 107, 5088, doi:10.1029/2002JE001891, 2002.CrossRefGoogle Scholar
Jakosky, B. M., Search for Life on Other Planets, Cambridge: Cambridge University Press, 1998.Google Scholar
Jakosky, B. M., Science, Society, and the Search for Life in the Universe, Tuscon: University of Arizona Press, 2006.Google Scholar
Jakosky, B. M. and Carr, M. H., Possible precipitation of ice at low latitudes of Mars during periods of high obliquity, Nature 315, 559–61, 1985.CrossRefGoogle Scholar
Jakosky, B. M. and Phillips, R. J., Mars' volatile and climate history, Nature 412, 237–44, 2001.CrossRefGoogle ScholarPubMed
Jakosky, B. M. and Shock, E. L., The biological potential of Mars, the early Earth, and Europa, J. Geophys. Res. 103, 19359–64, 1998.CrossRefGoogle ScholarPubMed
Jakosky, B. M., Pepin, R. O., Johnson, R. E., and Fox, J. L., Mars atmospheric loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape, Icarus 111, 271–88, 1994.CrossRefGoogle Scholar
Jakosky, B. M., Henderson, B. G., and Mellon, M. T., Chaotic obliquity and the nature of the martian climate, J. Geophys. Res. 100, 1579–84, 1995.CrossRefGoogle Scholar
Jakosky, B. M., Nealson, K. H., Bakermans, C., Ley, R. E., and Mellon, M. T., Sub-freezing activity of microorganisms and the potential hability of Mars' polar regions, Astrobiology 3, 343–50, 2003.CrossRefGoogle Scholar
Kasting, J. F., CO2 condensation and the climate of early Mars, Icarus 94, 1–13, 1991.CrossRefGoogle ScholarPubMed
Kieffer, H. H. and A. P. Zent, Quasi-periodic climate change on Mars. In Mars (ed. Kieffer, H., Jakosky, B., Snyder, C., Matthews, M.), Tucson: University of Arizona Press, pp. 1180–218, 1992.Google Scholar
Klein, H. P., The Viking mission and the search for life on Mars, Rev. Geophys. Space Phys. 17, 1655–62, 1979.CrossRefGoogle Scholar
Klein, H. P., Did Viking discover life on Mars?, Orig. Life Evol. Biosphere 29, 625–31, 1999.CrossRefGoogle ScholarPubMed
Klein, H. P., N. H. Horowitz, and K. Biemann, The search for extant life on Mars. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 1221–33, 1992.Google Scholar
Klingelhöfer, G., Morris, R. V., Bernhardt, B., et al., Jarosite and hematite at Meridiani Planum from Opportunity's Mössbauer spectrometer, Science 306, 1740–5, 2004.CrossRefGoogle ScholarPubMed
Knoll, A. H., The evolution of ecological tolerance in prokaryotes, Trans. R. Soc. Edinburgh Earth Sci. 80, 209–23, 1989.CrossRefGoogle ScholarPubMed
Knoll, A. H., An astrobiological perspective on Meridiani Planum, Earth Planet. Sci. Lett. 240, 179–89, 2005.CrossRefGoogle Scholar
Laskar, J., Correia, A. C. M., Gastineau, M., et al., Long term evolution and chaotic diffusion of the insolation quantities of Mars, Icarus 170, 343–64, 2004.CrossRefGoogle Scholar
Levin, G. V. and Straat, P. A., Recent results from the Viking labeled release experiment on Mars, J. Geophys. Res. 82, 4663–8, 1977.CrossRefGoogle Scholar
Levrard, B., Forget, F., Montmessin, F., and Laskar, J., Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity, Nature 431, 1072–5, 2004.CrossRefGoogle ScholarPubMed
Link, L. S., Jakosky, B. M., and Thyne, G. D., Biological potential of low-temperature aqueous environments on Mars, Int. J. Astrobiol. 4, 155–64, 2005.CrossRefGoogle Scholar
Luhmann, J. G., Johnson, R. E., and Zhang, M. H. G., Evolutionary impact of sputtering of the martian atmosphere by O + pickup ions, Geophys. Res. Lett. 19, 2151–4, 1992.CrossRefGoogle Scholar
Lunine, J. I., Earth: Evolution of a Habitable World, Cambridge: Cambridge University Press, 344pp., 1998.CrossRefGoogle Scholar
Malin, M. C. and Edgett, K. S., Evidence for recent ground water seepage and surface runoff on Mars, Science 288, 2330–5, 2000.CrossRefGoogle ScholarPubMed
Malin, M. C. and Edgett, K. S., Evidence for persistent flow and aqueous sedimentation on early Mars, Science 302, 1931–4, 2003.CrossRefGoogle ScholarPubMed
Mancinelli, R. L., The search for nitrogen compounds on the surface of Mars, Adv. Space Res. 18, 241–8, 1996.CrossRefGoogle Scholar
Martínez-Alonso, S., Jakosky, B. M., Mellon, M. T., and Putzig, N. E., A volcanic interpretation of Gusev crater surface materials from thermophysical, spectral, and morphological evidence, J. Geophys. Res. 110, E01003, doi:10.1029/2004JE002327, 2005.CrossRefGoogle Scholar
McCollom, T. M. and Hynek, B. M., A volcanic environment for bedrock diagenesis at Meridiani Planum on Mars, Nature 438, 1129–31, 2005.CrossRefGoogle ScholarPubMed
McCollom, T. M. and Hynek, B. M., Planetary science: bedrock formation at Meridiani Planum (Reply), Nature 443, 2, 2006.CrossRefGoogle Scholar
McKay, C. P., R. L. Mancinelli, C. R. Stoker, and J. R. A. Wharton, The possibility of life on Mars during a water-rich past. In Mars (ed. Jakosky, B. M., Kieffer, H. H., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 1234–45, 1992.Google Scholar
McKay, D. S., Gibson, E. K. Jr., Thomas-Keprta, K. L., et al., Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001, Science 273, 24–30, 1996.CrossRefGoogle ScholarPubMed
McLennan, S. M., Bell, J. F. III, Calvin, W. M., et al., Provenance and diagenesis of the evaporite-bearing Burns formation, Meridiani Planum, Mars, Earth Planet. Sci. Lett. 240, 95–121, 2005.CrossRefGoogle Scholar
McSween, H. Y. Jr., What have we learned about Mars from SNC Meteorites, Meteoritics 29, 757–79, 1994.CrossRefGoogle Scholar
McSween, H. Y. Jr., Grove, T. L., Lentz, R. C. F., et al., Geochemical evidence for magmatic water within Mars from pyroxenes in the Shergotty meteorite, Nature 409, 487–90, 2001.CrossRefGoogle ScholarPubMed
Mellon, M. T. and Jakosky, B. M., The distribution and behavior of martian ground ice during past and present epochs, J. Geophys. Res. 100, 11781–99, 1995.CrossRefGoogle Scholar
Mellon, M. T. and Phillips, R. J., Recent gullies on Mars and the source of liquid water, J. Geophys. Res. 106, 23165–79, 2001.CrossRefGoogle Scholar
Melosh, H. J., The rocky road to Panspermia, Nature 332, 687–8, 1988.CrossRefGoogle ScholarPubMed
Melosh, H. J. and Vickery, A. M., Impact erosion of the primordial atmosphere of Mars, Nature 338, 487–9, 1989.CrossRefGoogle ScholarPubMed
Miller, S. L. and Orgel, L. E., The Origins of Life on the Earth, Englewood Cliffs, NJ: Prentice-Hall, 1974.Google Scholar
Ming, D. W., Mittlefehldt, D. W., Morris, R. V., et al., Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars, J. Geophys. Res. – Planets 11, E02S12, 2006.Google Scholar
Mittlefehldt, D. W., ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan, Meteoritics 29, 214–21, 1994.CrossRefGoogle Scholar
Moore, J. M., Martian layered fluvial deposits: implications for Noachian climate scenarios. Geophys. Res. Lett. doi:10.1029/2003GL019002, 2003.CrossRefGoogle Scholar
Morowitz, H., Beginnings of Cellular Life, New Haven, CT: Yale University Press, 1992.Google Scholar
Morris, R. V., Klingelhöfer, G., Schröder, C., et al., Mössbauer mineralogy of rock, soil, and dust at Guesev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res. 111, E02S13, doi:10.1029/2005JE002584, 2006.CrossRefGoogle Scholar
Musselwhite, D. S., Swindle, T. D., and Lunine, J. L., Liquid CO2 breakout and the formation of recent gullies on Mars, Geophys. Res. Lett. 28, 1283–5, 2001.CrossRefGoogle Scholar
Mustard, J. F., Cooper, C. D., and Rifkin, J. F., Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice, Nature 412, 411–14, 2001.CrossRefGoogle ScholarPubMed
Nealson, K. H., The limits of life on Earth and searching for life on Mars, J. Geophys. Res. 102, 23675–86, 1997.CrossRefGoogle ScholarPubMed
Neukum, G., Jaumann, R., Hoffmann, H., et al., Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera, Nature 432, 971–9, 2004.CrossRefGoogle ScholarPubMed
Newsom, H. E., Hydrothermal alteration of impact melt sheets with implications for Mars, Icarus 44, 207–16, 1980.CrossRefGoogle Scholar
Nimmo, F. and Tanaka, K. L., Early crustal evolution of Mars, Annu. Rev. Earth Planet. Sci. 33, doi:10.1146/annurev.earth.1133.092203.122637, 2005.CrossRefGoogle Scholar
Owen, T., The composition and early history of the atmosphere of Mars. In Mars (ed. Kieffer, H. H., Jakosky, B. M., Snyder, C. W., and Matthews, M. S.), Tucson: University of Arizona Press, pp. 818–34, 1992.Google Scholar
Parker, T. S., Saunders, R. S., and Schneeberger, D. M., Transitional morphology in the west Deuteronilus Mensae region of Mars: implications for modification of the lowland/upland boundary, Icarus 82, 111–45, 1989.CrossRefGoogle Scholar
Pepin, R. O., Evolution of the Martian atmosphere, Icarus 111, 289–304, 1994.CrossRefGoogle Scholar
Phillips, R. J., Zuber, M. T., Solomon, S. C., et al., Ancient geodynamics and global-scale hydrology on Mars, Science 291, 2587–91, 2001.CrossRefGoogle ScholarPubMed
Pohorille, A., Protocells as universal ancestors of living systems. In Protocells: Bridging Nonliving and Living Matter (ed. Rasmussen, S., Bedau, M., Chen, L., et al.), Cambridge, MA: MIT Press, 2006.Google Scholar
Pollack, J. B., Kasting, J. F., Richardson, S. M., and Poliakoff, K., The case for a warm, wet climate on early Mars, Icarus 71, 203–24, 1987.CrossRefGoogle ScholarPubMed
Rieder, R., Gellert, R., Anderson, R. C., et al., Chemistry of rocks and soils at Meridiani Planum from the alpha particle X-ray spectrometer, Science 306, 1746–9, 2004.CrossRefGoogle ScholarPubMed
Rothschild, L. J. and Mancinelli, R. L., Life in extreme environments, Nature 409, 1092–101, 2001.CrossRefGoogle ScholarPubMed
Russell, M. J. and Hall, A. J., The emergence of life from monosulphide bubbles at a submarine hydrothermal redox and pH front, J. Geol. Soc. Lond. 154, 377–402, 1997.CrossRefGoogle Scholar
Sackman, I. J. and Boothroyd, A. I., Our Sun: V. A bright young Sun consistent with helioseismology and warm temperatures on ancient Earth and Mars, Astrophys. J. 583, 1024–39, 2003.CrossRefGoogle Scholar
Sagan, C. and Mullen, G., Earth and Mars: evolution of atmospheres and surface temperatures, Science 177, 52–6, 1972.CrossRefGoogle ScholarPubMed
Schopf, J. W., S. Chang, W. G. Ernst, et al., Geology and paleobiology of the Archean Earth. In The Proterozoic Biosphere (ed. Schopf, J. W. and Klein, C.), Cambridge: Cambridge University Press, pp. 5–42, 1992.CrossRefGoogle Scholar
Scott, D. H. and Tanaka, K. L., Geologic map of the western equatorial region of Mars, 1:15,000,000 geologic map, Map I-1802-A USGS, Reston, VA, 1986.Google Scholar
Segura, T. L., Impact-triggered greenhouses on Mars, Ph.D. dissertation, University of Colorado, 2005.
Segura, T. L., Toon, O. B., Colaprete, A., and Zahnle, K., Environmental effects of large impacts on Mars, Science 298, 1977–80, 2002.CrossRefGoogle ScholarPubMed
Shean, D. E., Head, J. W., and Marchant, D. R., Origin and evolution of a cold-based tropical mountain glacier on Mars: the Pavonis Mons fan-shaped deposit, J. Geophys. Res. 110, CiteID E05001, doi:10.1029/2004JE002360, 2005.CrossRefGoogle Scholar
Shock, E. L., High-temperature life without photosynthesis as a model for Mars, J. Geophys. Res. 102, 23687–94, 1997.CrossRefGoogle ScholarPubMed
Sleep, N. H., Meibom, A., Fridriksson, Th., Coleman, R. G., and Bird, D. K., H2-rich fluids from serpentinization: geochemical and biotic implications, Proc. Natl. Acad. Sci. 101, 12818–23, 2004.CrossRefGoogle ScholarPubMed
Solomon, S. C., Aharonson, O., Aurnou, J. M., et al., New perspectives on ancient Mars, Science 307, 1214–20, 2005.CrossRefGoogle ScholarPubMed
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Spirit Rover's Athena science investigation at Gusev crater, Mars, Science 305, 794–9, 2004a.CrossRefGoogle Scholar
Squyres, S. W., Arvidson, R. E., Bell, J. F. III, et al., The Opportunity Rover's Athena science investigation at Meridiani Planum, Mars, Science 306, 1698–703, 2004b.CrossRefGoogle Scholar
Squyres, S. W., Aharonson, O., Arvidson, R. E., et al., Planetary science: bedrock formation at Meridiani Planum, Nature 443, E1–E2, 2006.CrossRefGoogle ScholarPubMed
Steele, A., Goddard, D. T., Stapleton, D. V., et al., Investigations into an unknown organism on the martian meteorite Allan Hills 84001, Meteorit. Planet. Sci. 35, 237–41, 2000.CrossRefGoogle ScholarPubMed
Stetter, K. O., Hyperthermophilic microorganisms, FEMS Microb. Rev. 75, 117–24, 1990.CrossRefGoogle Scholar
Stewart, S. T. and Nimmo, F., Surface runoff features on Mars: testing the carbon dioxide formation hypothesis, J. Geophys. Res. 107, 5069, doi:5010.1029/2000JE001465, 2002.CrossRefGoogle Scholar
Tanaka, K. L., Isbell, N. K., Scott, D. H., Greeley, R., and Grant, J. E., The resurfacing history of Mars: a synthesis of digitized, Viking-based geology, Proc. Lunar Planet. Sci. Conf. XVIII, Cambridge University Press, pp. 665–78, 1988.Google Scholar
Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A., and Bilski, K., The astronomical theory of climatic change on Mars, Icarus 44, 552–607, 1980.CrossRefGoogle Scholar
Tosca, N. J., McLennan, S. M., Clark, B. C., et al., Geochemical modeling of evaporation processes on Mars: insight from the sedimentary record at Meridiani Planum, Earth Planet. Sci. Lett. 240, 122–48, 2005.CrossRefGoogle Scholar
Touma, J. and Wisdom, J., The chaotic obliquity of Mars, Science 259, 1294–7, 1993.CrossRefGoogle ScholarPubMed
Treiman, A. H., Geologic setting of martian gullies: implications for their origins, J. Geophys. Res. 108, doi:10.1029/2002JE001900, 2003.CrossRefGoogle Scholar
Varnes, E. S., Jakosky, B. M., and McCollom, T. M., Biological potential of Martian hydrothermal systems, Astrobiology 3, 407–14, 2003.CrossRefGoogle ScholarPubMed
Walter, M. R., Stromatolites, Amsterdam: Elsevier, 790pp., 1976.Google Scholar
Walter, M. R. and Des Marais, D. J., Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars, Icarus 101, 129–43, 1993.CrossRefGoogle ScholarPubMed
Ward, P. D. and Brownlee, D., Rare Earth: Why Complex Life is Uncommon in the Universe, New York: Springer-Verlag, 2000.Google Scholar
Ward, W. R., Astronomical theory of insolation, J. Geophys. Res. 79, 3375–86, 1974.CrossRefGoogle Scholar
Williams, R. M. and Phillips, R. J., Morphometric measurements from Mars Orbital Laser Altimeter (MOLA) measurements, J. Geophys. Res. 106, 23737–51, 2001.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×