Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-20T12:31:04.253Z Has data issue: false hasContentIssue false

11 - Safety and Risk: Examples from the Liquefied Natural Gas and Nuclear Industries

Published online by Cambridge University Press:  10 December 2009

John M. Deutch
Affiliation:
Massachusetts Institute of Technology
Richard K. Lester
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

The application of almost all new technologies involves some degree of risk to public health and safety and the environment, and these risks must be systematically considered. For some technologies the risks are primarily confined to the manufacturing process. In other cases, it is the users who incur the main risks. In still other cases, the risks are externalized – that is, they are borne by people who are not direct beneficiaries of the technology either as suppliers or users. Where the new technology is displacing an existing product or process, the net risk to society may be either increased or reduced. A few technologies have the potential to cause harm on a large scale as a result of a single event. The probability of such events may be extremely low, but they cannot be ruled out entirely. Special methods have been developed to evaluate these low-probability, high-consequence risks. This chapter briefly introduces these methods, using nuclear power plants and liquefied natural gas facilities as examples. We also consider the question of public attitudes toward health and safety risks. Innovators and safety regulators alike need to understand how the public perceives risks, how these perceptions are formed, and what causes them to change.

LIQUEFIED NATURAL GAS

There are many areas of the world where gas exists in great abundance, either in free deposits, for example, in New Zealand, Indonesia, and Algeria, or associated with oil reserves, for example, in Nigeria and Saudi Arabia.

Type
Chapter
Information
Making Technology Work
Applications in Energy and the Environment
, pp. 181 - 193
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×