Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T19:18:56.262Z Has data issue: false hasContentIssue false

14 - Medical Applications

from Part V - Composite Materials

Published online by Cambridge University Press:  21 July 2017

Frank Hagelberg
Affiliation:
East Tennessee State University
Get access

Summary

Carbon nanostructures, especially carbon nanotubes, are of high interest for bio-nanotechnology, and especially medical applications. They have been considered as carrier systems, transporting drugs or other medical devices, such as contrast agents for improved diagnosis, to spatially well-defined areas of the body. Low-weight, high-chemical, mechanical, and thermal stability properties combined with a large surface area are but a few properties that make many carbon nanostructures pertinent to the purposes of biomedicine. Before employing a certain class of carbon nanostructures for clinical treatment, however, issues of its biocompatibility have to be resolved. In more detail, carbon allotropes tend to be hydrophobic, implying low solubility in an aqueous environment. As non-polar materials, pristine carbon nanostructures display only weak interactions with strongly polar molecules such as H2O. This feature has consequences for the metabolic pathway of these materials, as it promotes their aggregation, which in turn may prevent them from being excreted by the body and thus cause them to accumulate in vital organs. Laboratory studies of CNTs point further at the risk of carcinogenesis, associated with ingestion of long, rigid nanotubes that cannot be eliminated by macrophage cells and may thus act like toxic fibers, in analogy to asbestos [631]. Another concern about administering carbon nanostructures in vivo is that they may harbor metal impurities that can be hostile to the body [632].

An expedient way to enhance the solubility of carbon nanostructures is modifying their surfaces by depositing hydrophilic ligand molecules on them. The toxicity of adequateley functionalized CNTs, for instance, has been found to be very low [633]. Surface modificationmay proceed through covalent or non-covalent bonding of ligand species [634]. In the former case, functional groups may bind to carbon atoms, or they may attach to oxygen groups that are already bound to the carbon surface. The covalent connections have a significant effect on the electronic structure of graphitic surfaces, as they change sp2 into sp3 configurations. Noncovalent interactions, on the other hand, leave the sp2 network intact. They involve electrostatic, dispersive or inductive forces.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Medical Applications
  • Frank Hagelberg, East Tennessee State University
  • Book: Magnetism in Carbon Nanostructures
  • Online publication: 21 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781107707047.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Medical Applications
  • Frank Hagelberg, East Tennessee State University
  • Book: Magnetism in Carbon Nanostructures
  • Online publication: 21 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781107707047.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Medical Applications
  • Frank Hagelberg, East Tennessee State University
  • Book: Magnetism in Carbon Nanostructures
  • Online publication: 21 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781107707047.015
Available formats
×