Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-20T19:20:02.811Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  21 July 2017

Frank Hagelberg
Affiliation:
East Tennessee State University
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] E., Tretkoff, Nanofoam exhibits surprising magnetic properties, APS News 13, 7 (2004)
[2] R., Singh, Unexpected magnetism in nanomaterials, J. Mag. Mag. Mat. 346, 58 (2013)
[3] A.L., Kuzemsky, Unconventional and exotic magnetism in carbon-based structures and related materials, Int. J. Mod. Phys. B, 27, 1330007 (2013)
[4] N., Tombros, C., Jozsa, M., Popinciuc, H.T., Jonkman, B.J. van, Wees, Electronic spin transport and spin precession in single graphene layers at room temperature, Nature 448, 571 (2007)
[5] F., Kuemmeth, S., Ilani, D.C., Ralph, P.L., McEuen, Coupling of spin and orbital motion of electrons in carbon nanotubes, Nature 453, 448 (2008)
[6] O.V., Yazyev, Emergence of magnetism in graphene materials and nanostructures, Rep. Prog. Phys. 73, 056501 (2010)
[7] M., Sepioni, R.R., Nair, S., Rablen, J., Narayanan, F., Tuna, R., Winpenny, A.K., Geim, I.V., Grigorieva, Limits on intrinsic magnetism in graphene, Phys. Rev. Lett. 105, 207205
[8] C.L., Kane, E.J., Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett., 95, 226801 (2005)
[9] M.I., Katsnelson, K.S., Novoselov, Graphene: new bridge between condensed matter physics and quantum electrodynamics, Solid State Comm. 143, 3 (2007)
[10] e.g. M., Getzlaff, Fundamentals of Magnetism, Springer 2008
[11] J.C., Slater, Quantum Theory of the Atomic Structure, Vol. II. McGraw-Hill, New York, 1960
[12] M.E., Rose, Elementary Theory of Angular Momentum, John Wiley, 1957
[13] C., Elster, Advanced Quantum Mechanics, www.phy.ohiou.edu/ elster/phys735/ index.html
[14] L.H., Thomas, The motion of the spinning electron, Nature 117, 514 (1926)
[15] I.N., Levine, Quantum Chemistry, Prentice-Hall, 4th ed., 1991
[16] M.A., Ruderman, C., Kittel, Indirect exchange coupling of nuclear magnetic moments by conduction electrons, Phys. Rev. 96, 99 (1954)
[17] T., Kasuya, A theory of metallic ferro- and antiferromagnetism on Zener's model, Prog. Theor. Phys. 16, 45 (1956)
[18] K., Yosida, Magnetic properties of Cu-Mn alloys, Phys. Rev. 106, 893 (1957)
[19] H., Zhigao, C., Huang, L., Hen, Z., Minyoug, GMR from RKKY coupling in multilayered films, Jour. Mag. Soc. Japan 23, 129 (1999)
[20] R.M., White, Quantum Theory of Magnetism, 3rd ed., Springer 2006
[21] J., Kondo, Resistance minimum in dilute magnetic alloys, Progr. Theo. Phys. 32, 37 (1964)
[22] C., Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with Perovskite structure, Phys. Rev. 82, 403 (1951)
[23] P.-G. de, Gennes, Effects of double exchange in magnetic crystals, Phys. Rev. 118, 141 (1960)
[24] e.g. S., Blundell, Magnetism in Condensed Matter, Oxford University Press 2001
[25] R., Schumann, D., Zwicker, The Hubbard model extended by nearest-neighbor Coulomb and exchange interaction on a cubic cluster rigorous and exact results, Annalen der Physik 522, 419 (2010)
[26] J., Keeling, Quantum Magnetism, www.tcm.phy.cam.ac.uk/jmjk2/qm//
[27] E., Ising, Beitrag zur Theorie des Ferromagnetismus, Z. Phys. 31: 253 (1925)
[28] K., Huang, Statistical Mechanics, 2nd ed., John Wiley 1987
[29] F., London, Quantum theory of interatomic currents in aromatic compounds, J. Phys. Radium 8, 397 (1937)
[30] M., Springborg, Methods for Electronic Structure Calculations, John Wiley, New York 2000
[31] K., Hirao, ed., Recent Advances in Multireference Methods, World Scientific 1999
[32] D.B., Cook, Handbook of Computational Quantum Chemistry, Dover Publications, Mineola, NY 2004
[33] F., Hagelberg, Electron Dynamics inMolecular Interactions, Imperial College Press, London 2013
[34] e.g. G.A., Webb, ed., Modern Magnetic Resonance, 1st ed., Springer 2006
[35] B.J., Hammond, W.A., Lester, P.J., Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry, Singapore, World Scientific 1994
[36] L.H., Thomas, The calculation of atomic fields, Proc. Cambridge Phil. Soc. 23, 542 (1926)
[37] E., Fermi, Un metodo statistico per la determinazione di alcune proprieta dell'atomo, Rend. Acad. Lincei 6, 602 (1927)
[38] J.C., Slater, A simplification of the Hartree–Fock method, Phys. Rev. 81, 385 (1951)
[39] R., Gáspár, Über eine Approximation des Hartree–Fockschen Potentials Durch eine Universelle Potentialfunktion, Acta Phys. Acad. Sci. Hung. 3, 263 (1954)
[40] P., Hohenberg,W., Kohn, Inhomogeneous electron gas, Phys. Rev. 136, B864 (1956)
[41] W., Kohn, L.J., Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 A1133 (1965)
[42] G., Vignale, M., Rasolt, Current- and spin-density-functional theory for inhomogeneous electronic systems in strong magnetic fields, Phys. Rev. B 37, 10685 (1988)
[43] G., Vignale,W., Kohn, Current-dependent exchange-correlation potential for dynamical linear response theory, Phys. Rev. Lett. 77, 2037 (1996)
[44] S.H., Vosko, L., Wilk, M., Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis, Can. J. Phys. 58, 1200 (1980)
[45] J.P., Perdew, A., Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23, 5048 (1981)
[46] L.A., Cole and J.P., Perdew, Calculated electron affinities of the elements, Phys. Rev. A 25, 1265 (1982)
[47] John P., Perdew, Y., Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 13244 (1992)
[48] R.G., Parr, W., Yang, Density Functional Theory of Atoms and Molecules, The international series of monographs on chemistry, 1st ed., Oxford University Press 1989
[49] A.D., Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A 38, 3098 (1988)
[50] J.P., Perdew, in Electronic Structure of Solids –91 ed. P., Ziesche, H., Eschrig, Akademie Verlag, Berlin 1991
[51] J.P., Perdew, Y., Wang, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B 33, 8800 (1986)
[52] A., Becke, Density functional thermochemistry. III. The role of exact exchange, Jour. Chem. Phys. 98, 5648 (1993)
[53] C., Lee, W., Yang, R.G., Parr, Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 785 (1988)
[54] J.A., Weil, J.R., Bolton, Electron Paramagnetic Resonance, 2nd ed., John Wiley & Sons 2007
[55] A., Carrington, A.D., McLachlan, Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics, Chapman & Hall, London 1967
[56] www.chm.bris.ac.uk/emr/Phil/Phil1
[57] E.J., Zavoisky, Relaxation of liquid solutions in perpendicular fields, J. Phys. (USSR) 9, 211 (1945)
[58] www.tf.uni-kiel.de/servicezentrum/neutral/praktika/anleitungen/m106
[59] www.wmi.badw.de/teaching/Lecturenotes/AS/AS_Chapter4.pdf
[60] C., Kittel, Introduction to Solid State Physics, 8th ed., John Wiley & Sons, Inc.
[61] R., Gross, A., Marx, Applied superconductivity: The Josephson effect and superconducting electronics, www.wmi.badw.de/teaching/Lecturenotes
[62] T., Holstein, H., Primakoff, Field Dependence of the Intrinsic Domain Magnetization of a Ferromagnet, Phys. Rev. 58, 1098 (1940)
[63] C., Kittel, Quantum Theory of Solids, John Wiley 1963
[64] K.S., Novoselov, A.K., Geim, S.V., Morozov, D., Jiang, M.I., Katsnelson, I.V., Grigorieva, S.V., Dubonos, A.A., Firsov, Two-dimensional gas ofmassless Dirac fermions in graphene, Nature 438, 197 (2005)
[65] K.S., Novoselov, A.K., Geim, S.V., Morozov, D., Jiang, Y., Zhang, S.V., Dubonos, I.V., Grigorieva, A.A., Firsov, Electric field effect in atomically thin carbon films, Science 306, 666 (2004)
[66] Y., Zhang, L., Zhang, C., Zhou, Review of chemical vapor deposition of graphene and related applications, Accts Chem. Res. 46, 2329 (2013)
[67] A., Geim, Random Walk to Graphene, Nobel Lecture, December 8, 2010
[68] R., Saito, G., Dresselhaus, M.S., Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London 1998
[69] H.S., PhilipWong, D., Akinwande, Carbon Nanotube and Graphene Device Physics, Cambridge University Press, Cambridge 2011
[70] S., Reich, J., Maultzch, C., Thomsen, P., Ordejon, Tight binding description of graphene, Phys. Rev. B 66, 35412 (2002)
[71] D.W., Boukhvalov, M.I., Katsnelson, A.I., Lichtenstein, Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from firstprinciples calculations, Phys. Rev. B 77, 035427 (2008)
[72] A.H., Castro-Neto, F., Guinea, N.M.R., Peres, K.S., Novoselov, A.K., Geim, The electronic properties of graphene, Rev. Mod. Phys. 81, 109 (2009)
[73] M.V., Berry, Quantal phase factors accompanying adiabatic changes, Proc. Royal Soc. A 392, 45 (1984)
[74] G.W., Semenoff, Condensed-matter simulation of a three-dimensional anomaly, Phys. Rev. Lett. 53, 2449 (1984)
[75] M., Katsnelson, Graphene – Carbon in Two Dimensions, Cambridge University Press, Cambridge 2012
[76] Y., Sui, J., Appenzeller, Screening and interlayer coupling in multilayer graphene field-effect transistors, Nano Lett. 9, 2973 (2009)
[77] E., McCann, M., Koshino, The electronic properties of bilayer graphene, Rep. Prog. Phys. 76, 056503 (2013)
[78] T., Ohta, A., Bostowick, T., Seyller, K., Horn, E., Rotenberg, Controlling the electronic structure of bilayer graphene, Science 313, 951 (2006)
[79] E.V., Castro, K.S., Novoselov, S.V., Morozov, N.M.R., Peres, J.M.B. Lopes dos, Santos, J., Nilsson, F., Guinea, A.K., Geim, A.H. Castro, Neto, Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect, Phys. Rev. Lett. 99, 216802 (2007)
[80] J.W., McClure, Diamagnetism of graphite, Phys. Rev. 104, 666 (1956)
[81] J.W., McClure, Theory of diamagnetism of graphite, Phys. Rev. 119, 606 (1960)
[82] H., Fukuyama, Theory of orbital magnetism of Bloch electrons: Coulomb interactions, Progr. Theor. Phys. 45, 704 (1971)
[83] L., Jiao, L., Zhang, X., Wang, G., Diankov, H., Dai, Narrow graphene nanoribbons from carbon nanotubes, Nature 458, 877 (2009)
[84] M.Y., Han, B., Özyilmaz, Y., Zhang, P., Kim, Energy band gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98, 206805 (2007)
[85] E., McCann, V.I., Falko, Landau-level degeneracy and quantum Hall effect in a graphite bilayer, Phys. Rev. Lett. 96, 086805 (2006)
[86] L.D., Landau, Paramagnetism of metals, Z. Phys. 64 629 (1930)
[87] www.physics.rutgers.edu/ aluican/research.html
[88] J.N., Fuchs, F., Piéchon, M.O., Görbig and G., Montambaux, Topological Berry phase and semiclassical quantization of cyclotron orbits for two-dimensional electrons in coupled band models, The Europ. Phys. Jour. B 77, 351 (2010)
[89] M., Brack, R.K., Bhaduri, Semiclassical Physics,Westview Press, Boulder, CO 2003
[90] A., Young, Y., Zhang, P., Kim, Experimental manifestation of Berry phase in graphene, in: H., Aoki, M.S., Dresselhaus (eds.), Physics of graphene, Springer 2014
[91] R.S., Deacon, K.C., Chuang, R.J., Nicholas, K.S., Novoselov, A.K., Geim, Cyclotron resonance study of the electron and hole velocity in graphene monolayers, Phys. Rev. B 76, 81406 (2007)
[92] G., Li, E.Y., Andrei, Observation of Landau levels of Dirac fermions in graphite. Nature Physics 3, 623 (2007)
[93] Z., Chen, Y.-M., Lin, M.G., Rooks, P., Avouris, Graphene nano-ribbon electronics, Physica E 40, 228 (2007)
[94] C., Tao, L., Jiao, O.V., Yazyev, Y.-C., Chen, J., Feng, X., Zhang, R.B., Capaz, J.M., Tour, A., Zettl, S.G., Louie, H., Dai, M.F., Crommie, Spatially resolving edge states of chiral graphene nanoribbons, Nature Physics 7, 616 (2011)
[95] L., Jiao, X., Wang, G., Diankov, H., Wang, H., Dai, Facile synthesis of high-quality graphene nanoribbons, Nature Nanotech. 5, 321 (2010)
[96] D.V., Kosynkin1, A.L., Higginbotham, A., Sinitskii, J.R., Lomeda, A., Dimiev, B.K., Price, J.M., Tour, Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458, 872 (2009)
[97] P., Han, K., Akagi, F.F., Canova, H., Mutoh, S., Shiraki, K., Iwaya, P.S., Weiss, N., Asao, T., Hitosugi, Bottom-up graphene- nanoribbon fabrication reveals chiral edges and enantioselectivity, ACS Nano 8, 9181 (2014)
[98] D.A., Areshkin, D., Gunlycke, C.T., White, Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects, Nano Letters 7, 204 (2007)
[99] D., Gunlycke, D.A., Areshkin, C.T., White, Semiconducting graphene nanostrips with edge disorder, Appl. Phys. Lett. 90, 142104 (2007)
[100] F., Sols, F., Guinea, A.H., Castro-Neto, Coulomb blockade in graphene nanoribbons, Phys. Rev. Lett. 99, 166803 (2007)
[101] A.H., Castro-Neto, F., Guinea, N.M.R., Peres, Edge and surface states in the quantum Hall effect in graphene, Phys. Rev. B 73 205408 (2006)
[102] A.K., Geim, K.S., Novoselov, The rise of graphene, Nat. Mater. 6, 183 (2007)
[103]Nanotube modeler, copyright JCrystalSoft 2005–2016, www.jcrystal.com/products/wincnt/
[104] S., Reich, J., Janina, C., Thomsen, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley, New York 2004
[105] R., Saito, G., Dresselhaus, M.S., Dresselhaus, Trigonal warping effect of carbon nanotubes, Phys. Rev. B 61, 2981 (2000)
[106] J.W., Mintmire, C.T., White, Universal Density of States for Carbon Nanotubes Phys. Rev. Lett. 81, 2506 (1998)
[107] T., Ando, S., Seri, Quantum transport in a carbon nanotube in magnetic fields, J. Phys. Soc. Jpn. 66, 3558 (1997)
[108] T., Ando, Theory of electronic states and transport in carbon nanotubes, J. Phys. Soc. Jpn. 74, 777 (2005)
[109] J.P., Lu, Novel magnetic properties of carbon nanotubes, Phys. Rev. Lett. 74, 1123 (1995)
[110] H., Ajiki, T., Ando, Energy bands of carbon nanotubes in magnetic fields, J. Phys. Soc. Jpn. 65, 505(1995)
[111] T.A., Searles, Y., Imanaka, T., Takamasu, H., Ajiki, J.A., Fagan, E.K., Hobbie, J., Kono, Large anisotropy in the magnetic susceptibility of metallic carbon nanotubes, Phys. Rev. Lett. 105, 017403 (2010)
[112] M., Bockrath, D.H., Cobden, P.L., McEuen, N.G., Chopra, A., Zettl, A., Thess, R.E., Smalley, Single-electron transport in ropes of carbon nanotubes, Science 275, 1922 (1997)
[113] S.J., Tans, M.H., Devoret, H., Dai, A., Thess, R.E., Smalley, L.J., Geerligs, C., Dekker, Individual single-wall carbon nanotubes as quantum wires, Nature 386, 474 (1997)
[114] R.de, Picciotto, H.L., Stormer, L.N., Pfeiffer, K.W., Baldwin, K.W., Wes, Four-terminal resistance of a ballistic quantum wire, Nature 411, 51 (2001)
[115] S., Datta, Quantum Transport: Atom to Transistor, Cambridge University Press, Cambridge 2005
[116] M., Büttiker, Y., Imry, R., Landauer, S., Pinhas, Generalized many-channel conductance formula with application to small rings, Phys. Rev. B 31, 6207 (1985)
[117] Y., Imry, R., Landauer, Conductance viewed as transmission, Rev. Mod. Phys. 71, S305 (1999), and references therein
[118] J.-C., Charlier, X., Blase, S., Roche, Electronic and transport properties of nanotubes, Rev. Mod. Phys. 79, 677 (2007)
[119] S., Heinze, J., Tersoff, R., Martel, V., Derycke, J., Appenzeller, Ph., Avouris, Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett. 89, 106801 (2002)
[120] M., Biercuk, S., Ilani, C., Marcus, P., McEuen, Electrical transport in single-walled carbon nanotubes, in: A., Jorio, G., Dresselhaus, M.S., Dresselhaus (eds.), Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications – Topics in Applied Physics Vol. III, 455, Springer 2008
[121] E.A., Laird, F., Kuemmeth, G.A., Steele, K., Grove-Rasmussen, J., Nygrd, K., Flensberg, L.P., Kouwenhoven, Quantum transport in carbon nanotubes, Rev. Mod. Phys. 87, 703 (2015)
[122] L.P., Kouwenhoven, D.G., Austing, S., Tarucha, Few-electron quantum dots, Rep. Prog. Phys. 64, 701 (2001)
[123] R., Hanson, L.P., Kouwenhoven, J.R., Petta, S., Tarucha, L.M.K., Vandersypen, Spins in few-electron quantum dots, Rev. Mod. Phys. 79, 1217 (2007)
[124] R., Taylor (ed.), The Chemistry of Fullerenes, Advanced series in fullerenes, Vol. 4, World Scientific 1995
[125] M.S., Dresselhaus, G., Dresselhaus, P.C., Eklund, Fullerenes, J. Mater. Res. 8, 2054 (1993)
[126] P.W., Fowler, J.I., Steer, J. Chem.Soc., The leapfrog principle: a rule for electron counts of carbon clusters, Chem.Commun., 1403 (1987)
[127] Y.Z., Tan, R.T., Chen, Z.J., Liao, J., Li, F., Zhu, X., Lu, S.Y., Xie, J., Li, R.B., Huang, L.S., Zheng, Y.Z., Tan, R.T., Chen, Z.J., Liao, J., Li, F., Zhu, X., Lu, S.Y., Xie, J., Li, R.B., Huang, and L.S., Zheng, Carbon arc production of heptagon-containing fullerene, Nat. Commun., Aug. 9; 2, 420 (2011)
[128] A., Sorkin, B., Tay, H., Su, Three-stage transformation pathway from nanodiamonds to fullerenes, J. Phys. Chem. A 115, 8327 (2011)
[129] Y.Z., Tan, S.Y., Xie, R.B., Huang, L.S., Zheng, Y.Z., Tan, S.Y., Xie, R.B., Huang and L.S., Zheng, The stabilization of fused-pentagon fullerene molecules, Nat. Chem. Sept; 1(6), 450 (2009)
[130] S., Stevenson, P.W., Fowler, T., Heine, J.C., Ducham, G., Rice, T., Glass, K., Harich, F., Hadju, R., Bible, H.C., Dorn, A stable non-classical metallofullerene family, Nature 408, 427 (2000)
[131] S.S., Park, D., Liu, F., Hagelberg, Comparative investigation on non-IPR C68 and IPR C78 fullerenes encaging Sc3N molecules, J. Phys. Chem. A 109, 8865 (2005)
[132] M.S., Dresselhaus, G., Dresselhaus, Fullerenes and fullerene derived solids as electronic materials, Annu. Rev. Mat. Sci. 25, 487 (1995)
[133] W.I.F., David, R.M., Ibberson, J.C., Matthewman, K., Prassides, T.J.S., Dennis, J.P., Hare, H.W., Kroto, R., Taylor, D.R.M., Walton, Crystal structure and bonding of ordered C60, Nature 353, 156 (1991)
[134] R.C., Haddon, L.F., Schneemeyer, J.V., Waszczak, S.H., Glarum, R., Tycko, G., Dabbagh, A.R., Kortan, A.J., Muller, A.M., Mujsce, M.J., Rosseinsky, S.M., Zahurak, A.V., Makhija, F.A., Thiel, K., Raghavachari, E., Cockayne, V., Elser, Experimental and theoretical determination of the magnetic susceptibility of C60 and C70, Nature 350, 46 (1991)
[135] www.users.csbsju.edu/ frioux/c60/BondingC60.pdf
[136] R., Taylor, The pattern of additions to fullerenes, Phil. Trans. R. Soc. Lond. A, 343, 87 (1993)
[137] R.S., Ruoff, D., Beach, J., Cuomo, T., McGuire, R.L., Whetten, F., Diederich, Conformation of a vanishingly small ring-current magnetic susceptibility of icosahedral C60, J. Phys. Chem. 95, 3457 (1991)
[138] H., Tanaka, K., Takeuchi, Diameter determination of C60 and C70 monomers in the gas phase using a differential mobility analyzer, Appl. Phys. A 80, 759 (2005)
[139] M.S., Dresselhaus, G., Dresselhaus, P.C., Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, New York 1996
[140] P.W., Fowler, D.E., Manolopoulos, An Atlas of Fullerenes, Clarendon Press 1995
[141] W., Krätschmer, L.D., Lamb, K., Fostiropoulos, D.R., Huffman, Solid C60: a new form of carbon, Nature, 347, 354 (1990)
[142] A.A., Popov, S., Yang, L., Dunsch, Endohedral fullerenes, Chem. Rev. 113, 5989 (2013)
[143] R.D., Bolskar, J.M., Alford, A.F., Benedetto, L.O., Husebo, R.E., Price, E.F., Jackson, S., Wallace, L.J., Wilson, First soluble M@C60 derivatives provide enhanced access to metallofullerenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent, J. Am. Chem. Soc. 125, 5471 (2003)
[144] C., Ju, D., Suter, J., Du, An endohedral fullerene-based nuclear spin quantum computer, Phys. Lett. A 375, 1441 (2011)
[145] J.R., Heath, S.C., O'Brien, Q., Zhang, Y., Liu, R.F., Curl, K.K., Tittel, R.E., Smalley, Lanthanum complexes of spheroidal carbon shells, J. Am. Chem. Soc 107, 7779 (1985)
[146] Y., Chai, T., Guo, C., Jin, R.E., Haufler, L.P.F., Chibante, J., Fure, L., Wang, J.M., Alford, R.E., Smalley, Fullerenes with metals inside, J. Phys. Chem. 95, 7564 (1991)
[147] M., Takata, B., Umeda, E., Nishibori, M., Sakata, Y., Saito, M., Ohno, H., Shinohara, Confirmation by x-ray diffraction of the endohedral nature of the metallofullereneY@C82, Nature 377, 46 (1995)
[148] K., Kobayashi, S., Nagase, Structures and electronic states of M@C82 (M=Sc, Y, La and lanthanides), Chem. Phys. Lett. 282, 325 (1998)
[149] E., Nishibori, M., Takata, M., Sakata, M., Inakuma, H., Shinohara, Determination of the cage structure of Sc@C82 by synchrotron powder diffraction, Chem. Phys. Lett. 298, 79 (1998)
[150] R.D., Johnson, M.S., Devries, J., Salem, D.S., Bethune, C.S., Yannoni, Electron paramagnetic resonance studies of lanthanum-containing C82, Nature 355, 239 (1992)
[151] H., Shinohara, H., Sato, Y., Saito, M., Ohkohchi, Y., Ando, Mass spectroscopic and ESR characterization of soluble yttrium-containing metallofullerenes YC82 and Y2C82, J. Phys. Chem. 96, 3571 (1992)
[152] H., Shinohara, Endohedral metallofullerenes, Rep. Prog. Phys. 63, 843 (2000)
[153] B., Kessler, A., Bringer, S., Cramm, C., Schlebusch, W., Eberhardt, S., Suzuki, Y., Achiba, F., Esch, M., Barnaba, D., Cocco, Evidence for incomplete charge transfer and La-derived states in the valence bands of endohedrally doped La@C82, Phys. Rev. Lett. 79, 2289 (1997)
[154] J., Lu, X., Zhang, X., Zhao, S., Nagase, K., Kobayashi, Strong metal-cage hybridization in endohedral La@C82, Y@C82 and Sc@C82, Chem. Phys. Lett. 332, 219 (2000)
[155] D., Liu, F., Hagelberg, Impact of internal electron transfer on the structure of C74 encapsulating Sc and La metal atom impurities, Int. J. Quant. Chem. 107, 2253 (2007)
[156] K., Shibata, Y., Rikiishi, T., Hosokawa, Y., Haruyama, Y., Kubozono, S., Kashino, T., Uruga, A., Fujiwara, H., Kitagawa, T., Takano, Y., Iwasa, Structural and electronic properties of Ce@C82. Phys. Rev. B 68, 094104 (2003)
[157] L., Mora, R.S., Ruoff, C.H., Becker, D.C., Lorents, R., Malhotra, Studies of metallofullerene primary soots by laser and thermal desorption mass spectrometry, J. Phys. Chem. 97, 6801 (1993)
[158] H., Funasaka, K., Sugiyama, K., Yamamoto, T., Takahashi, Magnetic properties of rare-earth metallofullerenes. J. Phys. Chem. 99, 1826 (1995)
[159] K., Laasonen, W., Andreoni, M., Parrinello, Structural and electronic properties of La@C82, Science 258, 1916 (1992)
[160] J., Ding, L.T., Weng S., Yang, Electronic structure of Ce@C82: An Experimental study, J. Phys. Chem. 100, 11120 (1996)
[161] T., Pichler, M.S., Golden, M., Knupfer, J., Fink, U., Kirbach, P., Kuran and L., Dunsch, Monometallofullerene Tm@C82: proof of an encapsulated divalent Tm ion by highenergy spectroscopy, Phys. Rev. Lett. 79, 3026 (1997)
[162] J., Liu, X., Zhang, X., Zhao, Metal-cage hybridization in endohedral La@C60, Y@C60 and Sc@C60, Chem. Phys. Lett. 332, 51 (2000)
[163] M.M., Alvarez, E.G., Gillan, K., Holczer, R.B., Kaner, K.S., Min, R.L., Whetten, La2@C80: a soluble dimetallofullerene, J. Phys. Chem. 95, 10561 (1991)
[164] H., Shinohara, H., Yamaguchi, N., Hayashi, H., Sato, M., Ohkohchi, Y., Ando, Y., Saito, Isolation and spectroscopic properties of scandium fullerenes (Sc2@C74, Sc2@C82, and Sc2@C84, J. Phys. Chem. 97, 4259 (1993)
[165] E., Nishibori, M., Takata, M., Sakata, A., Taninaka, H., Shinohara, Pentagonaldodecahedral La2 charge density in [80-Ih]fullerene: La2@C80, Angew. Chem. Int. Ed. 40, 2998 (2001)
[166] T., Akasaka, S., Nagase, K., Kobayashi, M., Waelchli, K., Yamamoto, H., Funasaka, M., Kako, T., Hushino, T., Erata, 13C and 139La NMR studies of La2@C80: first evidence for circular motion of metal atoms in endohedral dimetallofullerene, Angew. Chem. Int. Ed. Engl. 36, 1643 (1997)
[167] H., Shinohara, H., Sato, M., Ohchochi, Y., Ando, T., Kodama, T., Shida, T., Kato, Y., Saito, Encapsulation of a scandium trimer in C82, Nature, 357, 52 (1992)
[168] M., Takata, E., Nishibori, B., Umeda, M., Sakata, M., Inakuma, Y., Yamamoto, H., Shinohara, Triangle scandium cluster imprisoned in a fullerene cage, Phys. Rev. Lett, 83 2214 (1999)
[169] J., Ungerer, T., Hughbanks, The electronic structure of Sc3@C82, J. Am. Chem. Soc. 115, 2054 (1993)
[170] S., Stevenson, G., Rice, T., Glass, K., Harich, F., Cromer, M.R., Jordan, J., Craft, E., Hadju, R., Bible, M.M., Olmstead, K., Maitra, A.J., Fisher, A.L., Balch, H.C., Dorn, Small-bandgap endohedral metallofullerenes in high yield and purity, Nature 401, 55 (1999)
[171] E.B., Iezzi, J.C., Duchamp, K.R., Fletcher, T.E., Glass, H.C., Dorn, Lutetium-based trimetallic nitride endohedral metallofullerenes: New contrast agents, Nano Lett. 2, 1187 (2002)
[172] M.M., Olmstead, A.de, Bettencourt-Dias, J.C., Duchamp, S., Stevenson, H.C., Dorn, A.L., Balch, Isolation and crystallographic characterization of ErSc2N@C80? an endohedral fullerene which crystallizes with remarkable internal order, J. Am. Chem. Soc 122, 12220 (2000)
[173] R.M., Macfarlane, D.S., Bethune, S., Stevenson, H.C., Dorn, Fluorescence spectroscopy and emission lifetimes of Er3+ in ErxSc3-xN@C80 (x=13), Chem. Phys. Lett. 343, 229 (2002)
[174] I.N., Ioffe, A.S., Ievlev, O.V., Boltalina, L.N., Sidorov, H.C., Dorn, S., Stevenson, G., Rice, Electron affinity of some trimetallic nitride and conventional metallofullerenes, Int. J. Mass. Spec. 213, 183 (2002)
[175]LUNA nanoMaterials (www.lunananomaterials.com)
[176] T., Almeida Murphy, T., Pawlik, A., Weidinger, M., Hohne, R., Alcala, J.M., Spaeth, Observation of atomlike nitrogen in nitrogen-implanted solid C60, Phys. Rev. Lett. 77, 1075 (1996)
[177] M., Saunders, H.A. Jimenez, Vazquez, R.J., Cross, R.J., Poreda, Stable compounds of helium and neon - He@C60 and He@C60, Science 259, 1428 (1993)
[178] K., Komatsu, M., Murata, Y., Murata, Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis, Science 307, 238 (2005)
[179] E., Dietel, A., Hirsch, B., Pietzak, M., Waiblinger, K., Lips, A., Weidinger, A., Gruss, K.P., Dinse, Atomic nitrogen encapsulated in fullerenes: Effects of cage variations, J. Am. Chem. Soc. 121, 2432 (1999)
[180] K., Kurotobi, Y., Murata, A single molecule of water encapsulated in fullerene C60, Science 333, 613 (2011)
[181] T., Rõõm, L., Peedu, Min, Ge, D., Hüvonen, U., Nagel, S., Ye, M., Xu, Z., Bačić, S., Mamone, M.H., Levitt, M., Carravetta, J.Y.-C., Chen, X., Lei, N.J., Turro, Y., Murata, K., Komatsu, Infrared spectroscopy of small-molecule endo fullerenes, Phil. Trans. R. Soc. A 371, 20110631 (2013)
[182] T., Liu, A., Troisi, What makes fullerene acceptors special as electron acceptors in organic solar cells and how to replace them, Adv. Mat. 25, 1038 (2013)
[183] L.S., Wang, J., Conceicao, C., Jin, R.E., Smalley, Threshold photodetachment of cold C60, Chem. Phys. Lett. 182, 5 (1991)
[184] T.P., Martin, N., Malinowski, U., Zimmermann, U., Näher, H., Schaber, Metal coated fullerene molecules and clusters, J. Chem. Phys. 99, 4210 (1994)
[185] U., Zimmermann, N., Malinowski, U., Näher, S., Frank, T.P., Martin, Multilayer metal coverage of fullerene molecules, Phys. Rev. Lett. 72, 3542 (1994)
[186] M.S., Dresselhaus, Future directions in carbon science, Annu. Rev. Mater. Sci. 27, 1 (1997)
[187] A.R., Koran, N., Kopylov, S., Glarum, E.M., Gyorgy, A.P., Ramirez, R.M., Fleming, F.A., Thiel, R.C., Haddon, Superconductivity at 8.4 K in calcium-doped C60, Nature 355, 529 (1992)
[188] K., Kikuchi, S., Suzuki, K., Saito, H., Shiramaru, I., Ikemoto, Y., Achiba, A.A., Zhakidov, A., Ugawa, K., Imaeda, H., Inokuchi, K., Yakushi, Structure and superconductivity of single crystalline C60, Physica C, 185, 415 (1991)
[189] R., Tycko, R.C., Haddon, C., Dabbagh, S.H., Glarun, D.C., Douglass, A.M., Mujsce, Solid-state magnetic resonance spectroscopy of fullerenes, J. Phys. Chem. 95, 518 (1991)
[190] R., Tycko, G., Dabbagh, R.M., Fleming, R.C., Haddon, A.V., Makhija, S.M., Zahurak, Molecular dynamics and the phase transition in solid C60, Phys. Rev. Lett. 67, 1886 (1991)
[191] W.I.F., David, R.M., Ibbersen, T.J.S., Dennis, J.P., Hare, A., Prassides, Structural phase transitions in the fullerene C60, Europhys. Lett. 18, 219 (1992)
[192] E., Koch, The Doped Fullerenes, Max Planck Institut fuer Festkörperforschung (2003)
[193] K., Thirunavukkuarasu, V.C., Long, J.L., Musfeldt, F., Borondics, G., Klupp, K., Kamaras, C.A., Kuntscher, Rotational Dynamics in C70: temperature- and pressuredependent infrared studies, J. Phys. Chem. C 115, 3646 (2011)
[194] P.W., Stephens, L., Mihaly, P.L., Lee, R.L., Whetten, S.M., Huang, R., Kaner, F., Diederich, K., Holczer, Structure of single-phase superconducting K3C60, Nature 351, 632 (1991)
[195] R.M., Fleming, A.P., Ramirez, M.J., Rosseinsky, D.W., Murphy, R.C., Haddon, S.M., Zahurak, A.V., Makhija, Relation of structure and superconducting transition temperatures in A3C60, Nature 352, 787 (1991)
[196] O., Zhou, J.E., Fischer, N., Coustel, S., Kycia, Q., Zhu, A.R., McGhie, W.J., Romanow, J.P., McCauley, Jr., A.B., Smith III, D.E., Cox, Structure and bonding in alkali-metaldoped C60, Nature 351, 462 (1991)
[197] M.J., Rosseinsky, D.W., Murphy, R.M., Fleming, R., Tycko, A.P., Ramirez, T., Siegrist, G., Dabbagh, S.E., Barrett, Structural and electronic properties of sodiumintercalated C60, Nature 356, 416 (1992)
[198] T., Yildirim, O., Zhou, J.E., Fischer, R.A., Strongin, M.A., Cichy, A.B., Smith III, C.I., Lin, R., Jelinek, Intercalation of sodium heteroclusters into the C60 lattice, Nature 360, 568 (1992)
[199] W., Andreoni, P., Gianozzi, J.F., Armbruster, M., Knupfer, Anomalous electronic behavior of NaxC60 (x ≤ 10): Theory and Experiment Europhys. Lett. 34, 699 (1996)
[200] L., Christofolini, M., Ricco, R. De, Renzi, NMR and high-resolution x-ray diffraction evidence for an alkali-metal fulleride with large interstitial clusters: Li12C60, Phys. Rev. B 59, 8343 (1999)
[201] Q., Zhu, O., Zhou, J.E., Fischer, A.R., McGhie, W.J., Romanow, R.M., Strongin, M.A., Cichy, A.B., Smith III, Unusual thermal stability of a site-ordered MC60 rocksalt structure (M=K, Rb, or Cs), Phys. Rev. B 47, 13948 (1993)
[202] T., Yildirim, J.E., Fischer. A.B., Harris, P.W., Stephens, D., Liu, L., Brard, R.A., Strongin, A.B., Smith III, Orientational phase transition in NaxC60 (1 ≤ x ≤ 3), Phys. Rev. Lett. 71, 1383 (1993)
[203] J., Winter, H., Kuzmany, Potassium-doped fullerene KxC60 with x = 0, 1, 2, 3, 4, and 6, Solid State Commun. 83, 1321 (1992)
[204] D.M., Poirier, J.H., Weaver, KC60 fulleride phase formation: an x-ray photoemission study, Phys. Rev. B 47, 10959 (1993)
[205] P.W., Stephens, G., Bortel, G., Faigel, M., Tezge, A., Janossy, S., Pekker, G., Oszlanyi, L., Forro, Polymeric fullerene chains in RbC60 and KC60, Nature 370, 636 (1994)
[206] A.R., Kortan, N., Kopylov, R.M., Fleming, O., Zhou, F.A., Thiel, R.C., Haddon, K.M., Rabe, Novel A15 phase in barium-doped fullerite, Phys. Rev. B 47, 13070 (1993)
[207] A.R., Kortan, N., Kopylov, E. A., Özdas, A.P., Ramirez, R.M., Fleming, R.C., Haddon, Strontium doped fullerite compounds, Chem. Phys. Lett. 223, 501 (1994)
[208] S., Saito, A., Oshiyama, Electronic and geometric structures of fullerenes and metallofullerenes, Jpn. J. Appl. Phys. 32, 1438 (1993)
[209] P., Zhou, A.M., Rao, K.A., Wang, J.D., Robertson, C., Eloi,M.S., Meier, S.L., Ren, X.X., Bi, P.C., Eklund, M.S., Dresselhaus, Photo-assisted structural transition and oxygen diffusion in solid C60 films, Appl. Phys. Lett. 60, 2871 (1992)
[210] Y., Iwasa, T., Arima, R.M., Fleming, T., Siegrist, O., Zhou, R.C., Haddon et al.,New phases of C60 synthesized at high pressure, Science 264, 1570 (1994)
[211] M., Núez-Regueiro, L., Marques, J.L., Hodeau, O., Béthoux, M., Perroux, Polymerized fullerite structures Phys. Rev. Lett. 74, 278 (1994)
[212] K.P., Meletov, G.A., Kourouklis, Pressure- and temperature-induced transformations in crystalline polymers of C60, J. Exp. Theo. Phys. 115, 706 (2012)
[213] L., Pisani, J.A., Chan, B., Montanari, N.M., Harrison, Electronic structure and magnetic properties of graphitic ribbons, Phys. Rev. B 75, 064418 (2007)
[214] M., Fujita, K., Wakabayashi, N., Nakada, K., Kusakabe, Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65, 1920 (1996)
[215] K., Wakabayashi, Electronic and magnetic properties of nanographites, Chapter 12 in: Carbon-Based Magnetism, T., Makarova, F., Palacio, eds. Elsevier 2006
[216] Y.W., Son, M.L., Cohen, S.G., Louie, Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006)
[217] M.M., Ugeda, I., Brihuega, F., Guinea, J.M., Gomez-Rodriguez, Missing atom as a source of carbon magnetism, Phys. Rev. Lett. 104, 096804 (2010)
[218] P.O., Lehtinen, A.S., Foster, Y., Ma, V., Krasheninnikov, R.M., Nieminen, Irradiationinduced magnetism in graphite: a density-functional study, Phys. Rev. Lett. 93, 187202 (2004)
[219] J., Červenka, M., Katsnelson, C.F., Flipse, Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects, Nature Physics, 5, 840 (2009)
[220] J., Chen, L., Li, W.G., Cullen, E.D., Williams, M.S., Fuhrer, Tunable Kondo effect in graphene with defects, Nature Physics 7, 535 (2011)
[221] V.L., Joly,M., Kiguchi, S., Hao et al., Observation of magnetic edge state in graphene nanoribbons, Phys. Rev. B 81, 245428 (2010)
[222] Y., Shibayama, H., Sato, T., Enoki, M., Endo, Disordered magnetism at the metalinsulator threshold in nano-graphite-based carbon materials, Phys. Rev. Lett. 84, 1744 (2000)
[223] V.L., Joly, K., Takahara, K., Takai, K., Sugihara, T., Enoki, M., Koshino, H., Tanaka, Effect of electron localization on the edge-state spins in a disordered network of nano graphene sheets, Phys. Rev. B 81, 115408 (2010)
[224] K., Tada, J., Haruyama, H.X., Yang, M., Chshiev, T., Matsui, H., Fukuyama, Ferromagnetism in hydrogenated graphene nanopore arrays, Phys. Rev. Lett. 107, 217203 (2011)
[225] J.J., Palacios, J., Fernandez-Rossier, L., Brey, Vacancy-induced magnetism in graphene and graphene ribbons, Phys. Rev. B 77, 195428 (2008)
[226] V.M., Pereira, J.M.B., Lopes dos Santos, A.H. Castro, Neto, Modeling disorder in graphene, Phys. Rev. B 77, 115109 (2008)
[227] H.A., Mizes, J.S., Foster, Long-range electronic perturbations caused by defects using scanning tunneling microscopy, Science 244, 559 (1989)
[228] K.F., Kelly, N.J., Halas, Determination of α and β site defects on graphite using C60-adsorbed STM tips, Surf. Sci. 416, L1085 (1998)
[229] P., Ruffieux, O., Gröning, P., Schwaller, L., Schlapbach, P., Gröning, Hydrogen atoms cause long-range electronic effects on graphite, Phys. Rev. Lett. 84, 4910 (2000)
[230] S., Fajtlowicz, P.E., John, H., Sachs, On maximum matchings and eigenvalues of benzenoid graphs, Croat. Chem. Acta 78, 195 (2005)
[231] B., Cheng, B., Liu, On the nullity of graphs, El. Jour. Lin. Alg. 16, 60 (2007)
[232] E.H., Lieb, Two theorems on the Hubbard model, Phys. Rev. Lett. 62, 1201 (1989)
[233] A.A., Abrikosov, On the magnetic properties of superconductors of the second group, Soviet Physics, JETP 5, 1774 (1957)
[234] O.V., Yazyev, L., Helm, Defect-induced magnetism in graphene, Phys. Rev. B 75, 125408 (2007)
[235] Ö., Girit, J.C., Meyer, R., Erni, M.D., Rossell, C., Kisielowski, L., Yang, C.H., Park et al., graphene at the edge: stability and dynamics, Science 323, 1705 (2009)
[236] X.Y., Cui, R.K., Zheng, Z.W., Liu, L., Li, B., Delley, C., Stampfl, S.P., Ringer, Magic magnetic nanoholes for tunable semiconducting graphene, Phys. Rev. B 84, 125410 (2011)
[237] Y., Wang, Y., Huang, Y., Song, X., Zhang, Y., Ma, J., Liang, Y., Chen, Room-temperature ferromagnetism of graphene, Nano Lett. 9, 220 (2009)
[238] M., Topsakal, E., Aktürk, H., Sevinli, S., Ciraci, First-principles approach to monitoring the band gap and magnetic state of a graphene nanoribbon via its vacancies, Phys. Rev. B 78, 235435 (2008)
[239] N.D., Mermin, H., Wagner, Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models, Phys. Rev. Lett. 17, 1133 (1966)
[240] O.V., Yazyev, M.I., Katsnelson, Magnetic correlations at graphene edges: basis for novel spintronics devices, Phys. Rev. Lett. 100, 047209 (2008)
[241] T., Oda, A., Pasquarello, R., Car, Fully unconstrained approach to noncollinear magnetism: application to small Fe clusters, Phys. Rev. Lett. 80, 3622 (1998)
[242] R., Gebauer, S., Baroni, Magnons in real materials from density-functional theory, Phys. Rev. B 61, R6459 (2000)
[243] D., Huertas-Hernando, F., Guinea, A., Brataas, Spin-orbit coupling in curved graphene, fullerenes, nanotubes, and nanotube caps, Phys. Rev. B 74,155426 (2006)
[244] S.V., Morozov, K.S., Novoselov, M.I., Katsnelson, F., Schedin, L.A., Ponomarenko, D., Jiang, A.K., Geim, Strong suppression of weak localization in graphene, Phys. Rev. Lett. 97, 016801 (2006)
[245] J.C., Meyer, A.K., Geim, M.I., Katsnelson,K.S., Novoselov, T.J., Booth, S., Roth, The structure of suspended graphene sheets, Nature (London) 446, 60 (2007)
[246] D., Barzola-Quiquia, P., Esquinazi, M., Rothermel, D., Spemann, T., Butz, N., Garcia, Experimental evidence for two-dimensional magnetic order in proton bombarded graphite, Phys. Rev. B 76, 161403 (R) (2007)
[247] A.C., Faria, A.T., Pires, Symmetry crossover in the one-dimensional Heisenberg ferromagnet, J. Phys. C 12, 2637 (1979)
[248] H., Terrones, R., Lv, M., Terrones, M.S., Dresselhaus, The role of defects and doping in 2D graphene sheets and 1D nanoribbons, Rep. Prog. Phys. 75, 062501 (2012)
[249] P.A., Thrower, The study of defects in graphite by transmission electron microscopy, Chem. Phys. Carbon 5, 217 (1969)
[250] M.E., Fisher, Magnetism in one-dimensional systems – the Heisenberg model for infinite spin, Am. J. Phys. 32, 343 (1964)
[251] T., Enoki, K., Takai, Unconventional magnetic properties of nanographite, Chapter 17 in: T., Makarova, F., Palacio, eds., Carbon-Based Magnetism, Elsevier 2006
[252] A.J., Stone, D.J., Wales, Theoretical studies of icosahedral C60 and some related species, Chem. Phys. Lett. 128, 501 (1986)
[253] A.R., Botello-Mndez, E., Cruz-Silva, F., Lopez-Uras, B.G., Sumpter, V., Meunier, M., Terrones, H., Terrones, Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects, ACS Nano 3, 3606 (2009)
[254] S., Okada, K., Nakada, K., Kuwabara, K., Daigoku, T., Kawai, Ferromagnetic spin ordering on carbon nanotubes with topological line defects, Phys. Rev. B 74, 121412 (2006)
[255] J., Lahiri, Y., Lin, P., Bozkurt, I.I., Oleynik, M., Batzill, An extended defect in graphene as a metallic wire, Nature Nanotech. 5, 326 (2010)
[256] X., Lin, J., Ni, Half-metallicity in graphene nanoribbons with topological line defects, Phys. Rev. B 84, 075461 (2011)
[257] M., Kan, J., Zhou, Q., Sun, Q., Wang, Y., Kawazoe, P., Jena, Tuning magnetic properties of graphene nanoribbons with topological line defects: from antiferromagnetic to ferromagnetic, Phys. Rev. B 85, 155450 (2012)
[258] P., Simonis, C., Goffaux, P.A., Thiry, L.P., Biro, P., Lambin, V., Meunier, STM study of a grain boundary in graphite, Surf. Sci. 511, 319 (2002)
[259] L., Kou, C., Tang, W., Guo, C., Chen, Tunable magnetism in strained graphene with topological line defects, ACS Nano 5, 1012 (2011)
[260] J., Wu, F., Hagelberg, Magnetism in finite-sized single-walled carbon nanotubes of the zigzag type, Phys. Rev. B 79, 115436 (2009)
[261] J., Wu, F., Hagelberg, Impact of tube curvature on the ground-state magnetism of axially confined single-walled carbon nanotubes of the zigzag type, Chem. Phys. Chem. 14, 1696 (2013)
[262] J., Wu, W., Nolting, Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films, Phys. Rev. B 60, 12226 (1999)
[263] A., Mananes, F., Duque, A., Ayuela, M.J., Lopez, J.A., Alonso, Half-metallic finite zigzag single-walled carbon nanotubes from first principles, Phys. Rev. B 78, 035432 (2009)
[264] A.J., Du, Y., Chen, G.Q., Lu, S.C., Smith, Half metallicity in finite-length zigzag single-walled carbon nanotube: a first-principle prediction, Appl. Phys. Lett. 93, 073101 (2008)
[265] S.S.P., Parkin, N., More, K.P., Roche, Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr, Phys. Rev. Lett. 64, 2304 (1990)
[266] D.M., Edwards, J., Mathon, R.B., Muniz, M.S., Phan, Oscillations of the exchange in magnetic multilayers as an analog of de Haas-van-Alphen effect, Phys. Rev. Lett. 67, 493 (1991)
[267] P., Bruno, C., Chappert, Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer, Phys. Rev. Lett. 67, 1602 (1991)
[268] M.S., Ferreira, J. dAlbuquerque e, Castro, D.M., Edwards, J., Mathon, Fundamental oscillation periods of the interlayer exchange coupling beyond the RKKY approximation, J. Phys.: Condens. Matter 8, 11259 (1996)
[269] N., Park, M., Yoon, S., Berber, J., Ihm, E., Osawa, D., Tomanek, Magnetism in allcarbon nanostructures with negative gaussian curvature, Phys. Rev. Lett. 91, 237204 (2003)
[270] M., Menon, D., Srivastava, carbon nanotube T junctions: nanoscale metalsemiconductor- metal contact devices, Phys. Rev. Lett. 79, 4453 (1997)
[271] A.N., Andriotis, M., Menon, D., Srivastava, L., Chernozatonskii, Rectification properties of carbon nanotube Y-junctions, Phys. Rev. Lett. 87, 066802 (2002)
[272] J., Wu, Anahita, Ayasoufi, J., Leszczynski, F., Hagelberg, Geometric, magnetic, and adsorption properties of cross-linking carbon nanotubes: a computational study, J. Phys. Chem. C 117, 3646 (2013)
[273] D., Qian, G.J., Wagner, W.K., Liu, M.-F., Yu, R.D., Ruoff, Mechanics of carbon nanotubes, Appl. Mech. Rev. 55, 495 (2002)
[274] A.N., Andriotis, M., Menon, R.M., Sheetz, E., Richter, McConnel model for the magnetism of C60-based polymers, chapter 21 in: Carbon-Based Magnetism, T., Makarova, F., Palacio, eds., Elsevier 2006
[275] O., Chauvet, G., Oszlnyi, L., Forro, P.W., Stephens, M., Tegze, G., Faigel, and A., Jnossy, Quasi-one-dimensional electronic structure in orthorhombic RbC60, Phys. Rev. Lett. 72, 2721 (1994)
[276] T.L., Makarova, B., Sundqvist, R., Höhne, P., Esquinazi, Y., Kopelevich, P., Scharff, V.A., Davydov, L.S., Kashevarova, A.V., Rakhmanina, Magnetic carbon, Nature 413, 716 (2001)
[277] R., Höhne, P., Esquinazi, Can carbon be ferromagnetic?, Adv. Mater. 14, 753 (2002)
[278] R.A., Wood, M.H., Lewis, M.R., Lees, S.M., Bennington, M.G., Cain, N., Kitamura, Ferromagnetic fullerene, J. Phys.: Condens. Matter 14, L385 (2002)
[279] V.N., Narozhnyi, K-H., Müller, D., Eckert, A., Teresiak, L., Dunsch, V.A., Davydov, L.S., Kashevarova, A.V., Rakhmanina, Ferromagnetic carbon with enhanced Curie temperature, Physica B 329, 1217 (2003)
[280] M., Mito, T., Kawae, K., Takeda, S., Takagi, Y., Matsushita, H., Deguchi, J.M., Rawson, F., Palacio, Pressure-induced enhancement of the transition temperature of a genuine organic weak-ferromagnet up to 65 K, Polyhedron 20,1509 (2001)
[281] J.A., Chan, B., Montanari, N.M., Harrison, Ferromagnetism in defective polymerised C60, Chapter 23 in: T., Makarova, F., Palacio, eds., Carbon-Based Magnetism, Elsevier 2006
[282] J., Ribas-Ari˜no, J.J., Nuvoa, The origin of the magnetic moments in compressed crsytals of polymeric C60, Angew. Chem. Int. Ed. 43, 577 (2004)
[283] D., Spemann, K.-H., Han, R., Höhne, T., Makarova, P., Esquinazi, T., Butz, Evidence for intrinsic weak ferromagnetism in a C60 polymer by PIXE and MFM, Nucl. Inst. Meth. B 210, 531 (2003)
[284] D.W., Boukhvalov, P.F., Karimov, E.Z., Kurmaev, T., Hamilton, A., Moewes, L.D., Finkelstein, M.I., Katsnelson, V.A., Davydov, A.V., Rakhmanina, T.L., Makarova, Y., Kopelevich, S., Chiuzbaian, M., Neumann, Testing the magnetism of polymerized fullerene, Phys. Rev. B 69, 1154 25 (2004)
[285] T.L., Makarova, B., Sundqvist, R., Höhne, P., Esquinazi, Y., Kopelevich, P., Scharff, V.A., Davydov, L.S., Kashevarova, A.V., Rakhmanina, Magnetic carbon, Nature 440, 707 (2006)
[286] A., Kumar, D.K., Avasthi, J.C., Pivin, A., Tripathi, F., Singh, ferromagnetism induced by heavy-ion irradiation in fullerene films, Phys. Rev. B 74, 153409 (2006)
[287] A., Kumar, D. Kumar, Avasthi, J.C., Pivin, Defect induced intrinsic ferromagnetism in fullerene thin films, Appl. Phys. Express 1, 125002 (2008)
[288] F., Kuemmeth, Spin States and Spin-Orbit Coupling in Nanostructures, Dissertation, Cornell 2008
[289] http://physics.nist.gov/PhysicsRefData/DFTdata/
[290] S., Konschuh, M., Gmitra, J., Fabian, Tight-binding theory of the spin-orbit coupling in graphene, Phys. Rev. B 82, 245412 (2010)
[291] H., Min, J.E., Hill, N.A., Sinitsyn, B.R., Sahu, L., Kleinman, A.H., MacDonald, Intrinsic and Rashba spin-orbit interactions in graphene sheets, Phys. Rev. B 74, 165310 (2006)
[292] Y., Yao, F., Ye, X.L., Qi, S.C., Zhang, Z., Fang, Spin-orbit gap of graphene: Firstprinciples calculations, Phys. Rev. B 75, 041401 (2007)
[293] J.C., Slater, G.F., Koster, Wave functions for impurity levels, Phys. Rev. 94, 1498 (1954)
[294] D.A., Papaconstantopoulos, M.J., Mehl, The Slater-Koster tight-binding method: a computationally efficient and accurate approach, J. Phys.: Condens.Matter 15 R413 (2003)
[295] M., Gmitra, S., Konschuh, C., Ertler, C., Ambrosch-Draxl, J., Fabian, Band structure topologies of graphene: spin-orbit coupling effects from first principles, Phys. Rev. B 80, 235431 (2009)
[296] J.C., Boettger, S.B., Trickey, First-principles calculation of the spin-orbit splitting in graphene, Phys. Rev. B 75, 121402 (2007)
[297] D.C., Elias, R.V., Gorbachev, A.S., Mayorov, S.V., Morozov, A.A., Zhukov, P., Blake, L.A., Ponomarenko, I.V., Grigorieva, K.S., Novoselov, F., Guinea, A.K., Geim, Dirac cones reshaped by interaction effects in suspended graphene, Nature Materials 7, 701 (2011)
[298] A., Avsar, T.Y., Yang, S., Bae, J., Balakrishnan, F., Volmer, M., Jaiswal, Z., Yi, S.R., Ali, G., Güntherodt, B.H., Hong, B., Beschoten, B., Özyilmaz, Toward wafer scale fabrication of graphene based spin valve devices, Nano Lett. 11, 2363 (2011)
[299] A.H. Castro, Neto, N.M.R., Peres, Impurity-induced spin-orbit coupling in graphene, Phys. Rev. Lett. 103, 126804(2009)
[300] S., Jo, D.K., Chi, D., Jeong, H.J., Lee, S., Kettermann, Spin relaxation properties in graphene due to its linear dispersion, Phys. Rev. B 84 075453 (2011)
[301] E.D., Minot, Y., Yaish, V., Sazonova, P.L., McEuen, Determination of electron orbital magnetic moments in carbon nanotubes, Nature 428, 536 (2004)
[302] W., Liang, M., Bockrath, H., Park, Electronic shell filling in metallic single-walled carbon nanotubes, Phys. Rev. Lett. 88, 126801 (2002)
[303] P., Jarillo-Herrero, J., Kong, H.S.J.van der, Zant, C., Dekker, L.P., Kouwenhoven, S. De, Franceschi, Electronic transport spectroscopy of carbon nanotubes in a magnetic field, Phys. Rev. Lett. 94, 156802 (2005)
[304] T., Ando, Spin-orbit interaction in carbon nanotubes, J. Phys. Soc. Jpn. 69, 1757 (2000)
[305] W., Izumida, K., Sato, R., Saito, Spin-orbit interaction in single wall carbon nanotubes: symmetry adapted tight-binding calculation and effective model analysis, J. Phys. Soc. Jpn. 78, 074707 (2009)
[306] J.-S., Jeong, H.-W., Lee, Curvature-enhanced spin-orbit coupling in a carbon nano, Phys. Rev. B 80, 075409 (2009)
[307] S.H., Jhang, M., Marganska, Y., Skourski, D., Preusche, B., Witkamp, M., Grifoni, H. van der, Zant, J., Wosnitza, C., Strunk, Spin-orbit interaction in chiral carbon nanotubes probed in pulsed magnetic fields, Phys. Rev. B 82, 041404 (2010)
[308] G.A., Steele, F., Pei, E.A., Laird, J.M., Jol, H.B., Meerwaldt, L.p., Kouwenhoven, Large spin-orbit coupling in carbon nanotubes, Nat. Commun. 4, 1573 (2013)
[309] S., Maekawa, S.O., Valenzuela, E., Saitoh, T., Kimura, Spin Current, Oxford University Press, Oxford 2012
[310] J., Fabian, A., Matos-Abiague, C., Ertler, P., Stano, I., Žutič, Semiconductor spintronics, Acta Phys. Slov. 57, 565 (2007)
[311] I., Žutič, J., Fabian, S. Das, Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76, 323 (2004)
[312] A., Fert, I.A., Campbell, Two-current conduction in nickel, Phys. Rev. Lett. 21, 1190 (1968)
[313] A., Fert, I.A., Campbell, Transport properties of ferromagnetic transition metals, J. Phys. 32, C1-46 (1971)
[314] A., Fert, I.A., Campbell, Electrical resistivity of ferromagnetic nickel and iron based alloys, J. Phys. F: Met. Phys. 6, 849 (1976)
[315] B.K., Nicolić, L.P., Zârbo, S., Souma, The Oxford Handbook on Nanoscience and Technology: Frontiersand Advances, Vol. 1, Chapter 24, A.V., Narlikar, Y.Y., Fu, eds., Oxford University Press, Oxford 2010
[316] M.N., Baibich, J.M., Broto, A., Fert, F. Nguyen Van, Dau, F., Petroff, P., Etienne, G., Creuzet, A., Friederich, J., Chazelas, Phys. Rev. Lett. 61, 2472 (1988)
[317] J., Bass, W.P., Pratt, Current-perpendicular (CPP) magnetoresistance in magnetic metallic multilayers, J. Mag. Mag. Mat. 200, 274 (1999)
[318] G.A., Prinz, Magnetoelectronics, Science 282, 1660 (1998)
[319] S., Datta, B., Das, Electronic analog of the electro-optic modulator, Appl. Phys. Lett. 56, 665 (1990)
[320] Y.A., Bychkov, E.I., Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C, 17, 6039 (1984)
[321] H.C., Koo, J.H., Kwon, J., Eom, J., Chang, S.H., Han, M., Johnson, Control of spin precession in a spin-injected field effect transistor. Science 325, 1515 (2009).
[322] M.E., Flatté, Z.G., Yu, E., Johnston-Halperin, D.D., Awschalom, Theory of semiconductor magnetic bipolar transistors, Appl. Phys. Lett. 82, 4740 (2003)
[323] R.A.de, Groot, F.M., Mueller, P.J. van, Engen, K.H.J., Buschow, New class of materials: half-metallic ferromagnets, Phys. Rev. Lett. 50, 2024 (1983)
[324] M., Springborg, B., Sang, M.L., Persson, Electronic and structural properties of two semi-Heusler alloys: NbIrSn and NbIrSb, J. Phys.: Condens. Matt. 11 6169-6178 (1999)
[325] J.H., Park, E., Vescovo, H.J., Kim, C., Kwon, R., Ramesh, T., Venkatesan, Direct evidence for a half-metallic ferromagnet, Nature 392, 794-796 (1998)
[326] I., Galanakis, P., Mavropoulos, Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se and Te as half-metallic systems, Phys. Rev. B 67, 104417 (2003)
[327] W.H., Rippard, R.A., Buhrmann, Spin-dependent hot-electron transport in Co/Cu thin films, Phys. Rev. Lett. 88, 046805 (2000)
[328] C., Cacho, Y., Lassailly, H., Drouhin, G., Lampel, J., Peretti, Spin filtering of free electrons by magnetic multilayers: towards an efficient self-calibrated spin multimeter, Phys. Rev. Lett. 88, 066601 (2002)
[329] S. van, Dijken, X., Jiang, S.S.P., Parkin, Spin-dependent hot electron transport in Ni81Fe19 and Co84Fe16 films on GaAs(001), Phys. Rev. B 66, 094417 (2002)
[330] P.S. Anil, Kumar, R., Jansen, O.M.J.van't, Erve, R., Vlutters, P.de, Haan, J.C., Lodder, Low-field magnetocurrent above 200 per cent in a spin-valve transistor at room temperature, Jour. Magn. Magn. Mater. 214, L1-L6 (2000)
[331] I., Žutič, J., Fabian, S. Das, Sarma, Spin injection through the depletion layer: a theory of spin-polarized p - n junctions and solar cells, Phys. Rev. B 64, 121201 (2001)
[332] A., Einwanger, Spin-Injection into GaAs using ferromagnetic (Ga, Mn)As contacts, Dissertation, Regensburg 2012
[333] J., Fabian, I., Žutič, The standard model of spin injection, in : From GMR to Quantum Information, S., Blügel, ed., Forschungszentrum Jülich 2009.
[334] R.J., Elliott, Theory of the effect of spin-orbit coupling on magnetic resonance in some semiconductors, Phys. Rev. 96, 266-279 (1954)
[335] P., Boross, B., Dora, A., Kiss, F., Simon, A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors, Sci. Rep. 3, 3233 (2013)
[336] E.Y., Tsymbal, I., Žutč, Handbook of spin transport and magnetism, CRC Press 2012
[337] Y., Yafet, g-factors and spin-lattice relaxation, in: Solid State Physics, Vol. 14, Academic Press, New York 1963
[338] www.physik.uni-regensburg.de/forschung/fabian/pages/mainframes/lecturenotes/ lecturenotes_files/Spin-orbit-coupling-in-solids.pdf
[339] J.S., Vrentas, C.M., Vrentas, Diffusion and Mass Transfer, CRC Press 2012
[340] G.L., Bir, A.G., Arononv, G.E., Pikus, Sov. Phys. JETP 33,1053 (1976)
[341] P.H., Song, K.W., Kim, Spin relaxation of conduction electrons in bulk III-V semiconductors, Phys. Rev. B 66, 035207 (2002)
[342] L., Cywiňski, W.M., Witzel, S. Das, Sarma, Electron dephasing due to hyperfine intercations with a nuclear spin bath, Phys. Rev. Lett. 102, 057601 (2009)
[343] M., Seck, M., Potemski, W., Wyder, High-field spin resonance of weakly bound electrons in GaAs, Phys. Rev. B 56, 7422-742 (1997)
[344] M., Wojtaszek, I.J., Vera-Marun, E., Whiteway, M., Hilke, B.J.van, Wees, Absence of hyperfine effects in 13C-graphene spin-valve devices, Phys. Rev. B 89, 035417 (2014)
[345] F., Bloch, Nuclear induction, Phys. Rev. 70, 460-474 (1946)
[346] H.C., Torrey, Bloch equations with diffusion terms, Phys. Rev. 104, 563-565 (1956)
[347] K.I., Bolotin, K.J., Sikes, Z., Jing, M., Klima, G., Fudenberg, J., Hone, P., Kim, H.L., Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun., 146, 351 (2008)
[348] L., Liao, Y.C., Lin, M., Bao, R., Cheng, J., Bai, Y., Liu, Y., Qu, K.L., Wang, Y., Huang, X., Duan, High-speed graphene transistors with a self-aligned nanowire gate, Nature 467, 305 (2010)
[349] Y.M., Lin, A., Valdes-Garcia, S.J., Han, D.B., Farmer, I., Meric, Y., Sun, Y., Wu, C., Dimitrakopoulos, A., Grill, P., Avouris, K.A., Jenkins, Wafer-scale graphene integrated circuit, Science 332, 1294 (2011)
[350] W., Han, R.K., Kawakami, M., Gmitra, J., Fabian, Graphene spintronics, Nature Nanotech. 9, 794 (2014)
[351] W.Y., Kim, K.S., Kim, Prediction of very large values of magnetoresistance in a graphene nanoribbon device, Nature Nanotech. 3, 408 (2008)
[352] Y.W., Son, M.L., Cohen, S.G., Louie, Half-metallic graphene nanoribbons, Nature 444, 347 (2006)
[353] S., Yuasa, T., Nagahama, A., Fukushima, Y., Suzuki, K., Ando, Giant roomtemperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Mater. 3, 868 (2004)
[354] Th., Maassen, Electron Spin Transport in Graphene-Based Devices, Dissertation, Groningen 2013
[355] G., Schmidt, D., Ferrand, L.W., Molenkamp, A.T., Filip, B.J.van, Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor, Phys. Rev. B 62, R4790 (2000)
[356] A., Fert, H., Jaffrès, Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor, Phys. Rev. B 64, 184420 (2001)
[357] W., Han, R.K., Kawakami, Spin relaxation in single-layer and bilayer graphene, Phys. Rev. Lett 107, 047207 (2011)
[358] F.J., Jedema, Electrical Spin Injection in Metallic Mesoscopic Spin Valves, Dissertation, Rijksuniversiteit Groningen 2002
[359] H., Ochoa, A.H. Castro, Neto, F., Guinea, Elliott–Yafet mechanism in graphene, Phys. Rev. Lett. 108, 206808 (2012)
[360] D., Pesin, A.H., MacDonald, Spintronics and pseudo spintronics in graphene and topological insulators, Nature Materials 11, 409 (2012)
[361] G., Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons and Photons Oxford University Press 2005
[362] E.W., Hill, A.K., Geim, K., Novoselov, F., Schedin, P., Blake, Graphene spin valve devices, IEEE Trans. Magn. 42, 2694 (2006)
[363] S., Cho, Y.F., Chen, M.S., Fuhrer, Gate-tunable graphene spin valve, Appl. Phys. Lett. 91, 123105 (2007)
[364] M., Nishioka, A.M., Goldman, Spin transport through multilayer graphene, Appl. Phys. Lett. 90, 252505 (2007)
[365] M., Ohishi, M., Shiraishi, R., Nouchi, T., Nozaki, T., Shinjo, Yoshishige Suzuki Spin injection into a graphene thin film at room temperature, Jpn. J. Appl. Phys. 46, L605L607 (2007)
[366] W.H., Wang, K., Pi, Y., Li, Y.F., Chiang, P., Wei, J., Shi, R.K., Kawakami, Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 77, 020402 (2008)
[367] C., Józsa, T., Maassen, M., Popinciuc, P.J., Zomer, A., Veligura, H.T., Jonkman, B.J. van, Wees, Linear scaling between momentum and spin scattering in graphene. Phys. Rev. B 80, 241403(R) (2009)
[368] W., Han, K.M., McCreary, K., Pi, W.H., Wang, Y., Li, H., Wen, J.R., Chen, R.K., Kawakami, Spin transport and relaxation in graphene, J. Magn. Magn. Mater. 324, 369 (2012)
[369] W., Han, J.R., Chen, D., Wang, K.M., McCreary, H., Wen, A.G., Swartz, J., Shi, R.K., Kawakami, Spin relaxation in single-layer graphene with tunable mobility, Nano Lett. 12, 3443 (2012)
[370] N., Tombros, S., Tanabe, A., Veligura, C., Józsa, M., Popinciuc, H.T., Jonkman, B.J.van, Wees, Anisotropic spin relaxation in graphene. Phys. Rev. Lett. 101, 046601 (2008)
[371] L.F., Han, Y.G., Zhu, X.H., Zhang, P.H., Tan, H.Q., Ni, Z.C., Niu, Temperature and electron density dependence of spin relaxation in GaAs/AlGaAs quantum well, Nanoscale Res. Lett. 6, 84 (2011)
[372] T.Y., Yang, J., Balakrishnan, F., Volmer, A., Avsar, M., Jaiswal, J., Samm, S.R., Ali, A., Pachoud, M., Zeng, M., Popinciuc, G., Güntherodt, B., Beschoten, B., Özyilmaz, Observation of long spin-relaxation Times in bilayer graphene at room temperature, Phys. Rev. Lett. 107, 047206 (2011)
[373] M.J., Biercuck, S., Garaj, N., Mason, J.M., Chow, C.M., Marcus, Gate-defined quantum dots on carbon nanotubes, Nano Lett. 5, 1267 (2005)
[374] S., Sapmaz, C., Meyer, P., Beliczynski, P., Jarillo-Herrero, L.P., Kouwenhoven, Excited state spectroscopy in carbon nanotube double quantum dots. Nano Lett. 6, 1350, (2006)
[375] M.R., GrÅNaber, W.A., Coish, C., Hoffmann, M., Weiss, J., Furer, S., Oberholzer, D., Loss, C., Schönenberger, Molecular states in carbon nanotube double quantum dots, Phys. Rev. B 74, 075427, (2006)
[376] S., Pecker, F., Kuemmeth, A., Secchi, M., Rontani, D.C., Ralph, P.L., McEuen, S., Ilani, Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube, Nature Physics 9, 576 (2013)
[377] W.G.van der, Wiel, S. De, Franceschi, J.M., Elzerman, T., Fujisawa, S., Tarucha, L.P., Kouwenhoven, Electron transport through double quantum dots, Rev. Mod. Phys. 75, 1 (2003)
[378] K., Ono, D.G., Austing, Y., Tokura, S., Tarucha, Current rectification by Pauli exclusion in a weakly coupled double quantum dot system, Science 297, 1313 (2002)
[379] H.O.H., Churchill, A.J., Bestwick, J.W., Harlow, F., Kuemmeth, D., Marcos, C.H., Stwertka, S.K., Watson, C.M., Marcus, Electronnuclear interaction in 13C nanotube double quantum dots, Nature Physics 5, 321 (2009)
[380] A., P'alyi, G., Burkard, Hyperfine-induced valley mixing and the spin-valley blockade in carbon-based quantum dots, Phys. Rev. B 80, 201404 (2009)
[381] A., P'alyi, G., Burkard, Spin-valley blockade in carbon nanotube double quantum dots, Phys. Rev. B 80, 255424 (2010)
[382] P.W., Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958)
[383] N.F., Mott, Metal-insulator transition, Rev. Mod. Phys. 40, 677 (1977)
[384] B., Kramer, A., MacKinnon, Localization: theory and experiment, Rep. Prog. Phys. 56, 1469 (1993)
[385] P., Henseler, Interplay of Anderson Localization and Strong Interactions in Disordered Systems, Dissertation, Bonn 2009 (http://hss.ulb.uni-bonn.de/2010/2040/2040.pdf)
[386] D., Vollhardt, P., Wölfle, Self-consistent theory of Anderson localization, in: W., Hanke, Y.V., Kopaev, eds., Modern Problems in Condensed Matter Sciences, Vol.32, North Holland 1992
[387] B.L., Altshuler, A., Aronov, G., Arkady, B.Z., Spivak, Boris, Z., The Aharonov–Bohm effect in disordered conductors, JETP Letters 33, 94 (1981)
[388] A., Bachtold, C., Strunk, J.-P., Salvetat, J.-M., Bonard, L., Forró, C., Nussbaumer, L., Schöneberger, Aharonov–Bohm oscillations in carbon nanotubes, Nature 397, 673 (1999)
[389] L., Langer, L., Stockman, J.P., Heremans, V., Bayot, C.H., Olk, C. van, Haesendonck, Y., Bruynseraede, J.-P., Issi, Electrical resistance of a carbon nanotube bundle, J. Mater. Res. 9, 927 (1994)
[390] L., Langer, V., Bayot, E., Grivei, J.-P., Issi, J.P., Heremans, C.H., Olk, L., Stockman, C. Van, Haesendonck, Y., Bruynseraede, Quantum transport in a multiwalled carbon nanotube, Phys. Rev. Lett. 76, 479 (1996)
[391] H., Suzuura, T., Ando, Crossover from symplectic to orthogonal class in a twodimensional honeycomb lattice, Phys. Rev. Lett. 89, 266603 (2002)
[392] F.V., Tikhonenko, A.A., Kozikov, A.K., Savchenko, R.V., Gorbachev, Transition between electron localization and antilocalization in graphene, 103, 226801 (2009)
[393] T., Ando, T., Nakanishi, R., Saito, Berry's phase and absence of back scattering in carbon nanotubes, Jour. Phys. Soc. Jpn. 67, 2857 (1998)
[394] P.L., McEuen, M., Bockrath, D.H., Cobden, Y.-G., Yoon, S.G., Louie, Disorder, pseudospins, and backscattering in carbon nanotubes, Phys. Rev. Lett. 83, 5098 (1999)
[395] E., McCann, K., Kechedzhi, V.I., Falko, H., Suzuura, T., Ando, B.L., Altshuler, Weaklocalization magnetoresistance and valley symmetry in graphene, Phys. Rev. Lett. 97, 146805 (2006)
[396] M., Biercuck, S., Ilani, C.M., Marcus, M.L., McEuen, Electrical transport in singlewall carbon nanotubes, in: Carbon Nanotubes, A., Jorio, G., Dresselhaus, M.S., Dresselhaus, eds., Topics Appl. Physics 111, 455, Springer 2008
[397] J., Moser, H., Tao, S., Roche, F., Alzina, C.M. Sotomayor, Torres, A., Bachtold, Magnetotransport in disordered graphene exposed to ozone: from weak to strong localization, Phys. Rev. Lett. 81, 205445 (2010)
[398] H., Suzuura, T., Ando, Phonons and electron-phonon scattering in carbon nanotubes, Phys. Rev. B 65, 235412 (2002)
[399] K., Sasaki, Y., Kawazoe, R., Saito, Local energy gap in deformed carbon nanotubes, Prog. Theo. Phys., 113, 463 (2005)
[400] K.von, Klitzing, G., Dorda, M., Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45, 494 (1980)
[401] http://oer.physics.manchester.ac.uk/AQM2/Notes/Notes-4.4.html
[402] H., Aoki, Computer-simulation of 2-dimensional disordered electron-systems in strong magnetic-fields, Jour. Phys. C 10, 14, 2583 (1977)
[403] J., Oswald, M., Oswald, Circuit type simulations of magneto-transport in the quantum Hall effect regime, J. Phys.: Condens. Matter 18, R101 (2006)
[404] E., Fradkin, Field theories of condensed matter physics, 2nd ed., Cambridge University Press 2013
[405] www.nanowerk.com/news/newsid=20771.php
[406] www.sp.phy.cam.ac.uk/research/fundamentals-of-low-dimensional-semiconductorsystems/ lowD
[407] C.L., Kane, M.P.A., Fisher, Edge state transport, in: Perspectives in the Quantum Hall Effect, S. Das, Sarma and A., Pinczuk, eds., Wiley 1997
[408] P., Phillips, Advanced Solid State Physics, Westview Press 2003
[409] Y., Zhang, Y.-W., Tan, H.L., Stormer, P., Kim, Experimental observation of the quantum Hall effect and Berrys phase in graphene, Nature 438, 201 (2005)
[410] K.S., Novoselov, E., McCann, S.V., Morozov, V.I., Fal'ko, M.I., Katsnelson, U., Zeitler, D., Jiang. F., Schedin, A.K., Geim, Unconventional quantum Hall effect and Berrys phase of 2π in bilayer graphene, Nature Phys. 2, 177 (2006)
[411] L.W., Schubnikov, W.J.de, Haas, Proceedings of the Royal Netherlands Academy of Arts and Science 33, 130 (1930)
[412] D.C., Tsui, H.L., Störmer, A.C., Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 42, 1559 (1982)
[413] V.M., Apalkov, T., Chakraborty, Fractional quantum Hall states of Dirac electrons in graphene, Phys. Rev. Lett. 97, 126801 (2006)
[414] K.I., Bolotin, F., Ghahari, M.D., Shulman, H.L., Störmer, P., Kim, Observation of the fractional quantum Hall effect in graphene, Nature 462, 196 (2009)
[415] E., Hall, On a new action of the magnet on electric currents, American Jour. ofMath. 2, 287 (1879)
[416] J., Maciejko, T.L., Hughes, S.-C., Zhang, The quantum spin Hall effect, Ann. Rev. Cond. Mat. Phys. 2, 31 (2011)
[417] J., Inoue, H., Ohno, Taking the Hall effect for a spin, Science 309, 2004 (2005)
[418] F.D.M., Haldane, Model for a quantum Hall effect without Landau levels: condensed-matter realization of the parity anomaly, Phys. Rev. B 61, 2015 (1988)
[419] www.phys.ufl.edu/pjh/teaching/phz7427/7427notes/ch6.pdf
[420] A., Bohm, A., Mostafazadeh, H., Koizumi, Q., Niu, J., Zwanziger, The Geometric Phase in Quantum Systems, Springer 2003
[421] M.Z., Hasan, C.L., Kane, Colloquium: topological insulators, Rev. Mod. Phys. 82, 3046 (2010)
[422] C.L., Kane, E.J., Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95, 146802 (2005)
[423] H., Funasaka, K., Sugiyama, K., Yamamoto, T., Takahashi, Magnetic properties of rare-earth metallofullerenes, J. Phys. Chem. 99, 1826 (1995)
[424] H., Funasaka, K., Sugiyama, K., Yamamoto, T., Takahashi, Magnetic properties of Gd@C82 metallofullerene, Chem. Phys. Lett. 232, 273 (1995)
[425] H.J., Huang, S.H., Yang, X.X., Zhang, Magnetic Behavior of Pure Endohedral Metallofullerene Ho@C82: A Comparison with Gd@C82, J. Phys. Chem. B 103, 5928 (1999)
[426] H.J., Huang, S.H., Yang, X.X., Zhang, Magnetic Properties of Heavy Rare-Earth Metallofullerenes M@C82 (M = Gd, Tb, Dy, Ho, and Er), J. Phys. Chem. B 104, 1473 (2000)
[427] K., Furukawa, S., Okubo, H., Kato, H., Shinohara, T., Kato, J. Phys. Chem. A 107, 10933 (2003)
[428] R.J. Van, Zee, S., Li, W., Weltner, Jr., Gd2: the highest spin diatomic molecule?, J. Chem. Phys. 100, 4010 (1994)
[429] M.B., Knickelbein, Experimental observation of superparamagnetism in manganese clusters, Phys. Rev. Lett. 86, 5255 (2001)
[430] M., Wolf, K.H., Müller, D., Eckert, Y., Skourski, P., Georgi, R., Marczak, M., Krause, L., Dunsch, Magnetic moments in Ho3N@C80 and Tb3N@C80, J.Magn. Magn. Mater. 290, 290 (2005).
[431] T., Akasaka, S., Nagase, Endofullerenes: A New Family of Carbon Clusters, Kluwer Academic Publishers 2002
[432] J., Wu, F., Hagelberg, Computational study on C80 enclosing mixed trimetallic nitride clusters of the form GdxM3-xN (M = Sc, Sm, Lu), J. Phys. Chem. C 112, 5770 (2008)
[433] Dan, Liu, F., Hagelberg, S.S., Park, Charge transfer and electron backdonation in metallofullerenes encapsulating NSc3, Chem. Phys. 330, 380 (2006)
[434] A.A., Popov, L., Dunsch, Hindered cluster rotation and 45Sc hyperfine splitting constant in distonoid anion radical Sc-3 3 N@C- 80, and spatial spin-charge separation as a general principle for anions of endohedral fullerenes with metallocalized lowest unoccupied molecular orbitals, J. Am. Chem. Soc. 130, 17726 (2008)
[435] L., Chen, E.E., Carpenter, C.S., Hellberg, H.C., Dorn, M., Shultz, W., Wernsdorfer, I., Chiorescu, Spin transition in Gd3N@C80, detected by low-temperature on-chip SQUID technique, J. Appl. Phys. 109, 07B101 (2011)
[436] B., Náfrádi, A., Antal, A., Pásztor, L., Forró, L.F., Kiss, T., Fehéer, E., Kováts, S., Pekker, A., Jánossy, Molecular and spin dynamics in the paramagnetic endohedral fullerene Gd3N@C80, Jour. Phys. Chem. Lett. 3, 3291 (2012)
[437] M., Qian, S.V., Ong, S.N., Khanna, M.B., Knickelbein, Magnetic endohedral metallofullerenes with floppy interiors, Phys. Rev. B 75, 104424 (2007)
[438] S., Yang, A., Popov, M., Kalbac, L., Dunsch, The isomers of gadolinium scandium nitride cluster fullerenes GdxSc3-xN@C80 and their influence on cluster structure, Chemistry- A Europ. Jour. 14, 2084 (2008)
[439] J., Lu, R.F., Sabirianov, W. Ning, Mei, Y., Gao, C., Duan, X., Zeng, Structural and magnetic properties of Gd3N@C80, Jour. Phys. Chem. B, 110, 23637 (2006)
[440] R., Westerström, J., Dreiser, C., Piamonteze, M., Muntwiler, S., Weyeneth, H., Brune, S., Rusponi, F., Nolting, A., Popov, S., Yang, L., Dunsch, and T., Greber, An endohedral single-molecule magnet with long relaxation times: DySc2N@C80, J. Am. Chem. Soc. 134, 9840 (2012)
[441] R., Westerström, J., Dreiser, C., Piamonteze, M., Muntwiler, S., Weyeneth, K., Krämer, S.-X., Liu, S., Decurtins, A., Popov, S., Yang, L., Dunsch, T., Greber, Tunneling, remanence, and frustration in dysprosium-based endohedral single-molecule magnets, Phys. Rev. B 89, 060406(R) (2014)
[442] R., Westerström, A.-C., Uldry, R., Stania, J., Dreiser, C., Piamonteze, M., Muntwiler, F., Matsui, S., Rusponi, H., Brune, S., Yang, A., Popov, B., Büchner, B., Delley, T., Greber, Surface aligned magnetic moments and hysteresis of an endohedral single-molecule magnet on a metal, Phys. Rev. Lett. 114, 087201 (2015)
[443] K., Lips, M., Waiblinger, B., Pietzak, A., Weidinger, Atomic nitrogen encapsulated in fullerenes: realization of a chemical Faraday cage, Phys. Stat. Sol. 177, 81 (2000)
[444] W., Harneit, C., Meyer, A., Weidinger, D., Suter, J., Twamley, Architectures for a spin quantum computer based on endohedral fullerenes, Phys. Stat. Sol. 233, 453 (2002)
[445] C.J., Nuttall, Y., Inada, K., Nagai, Y., Iwasa, Low-temperature bistability in the magnetic properties of solvent-including lanthanide metallofullerene crystals, Phys. Rev. B 62, 8592 (2000)
[446] M., Inakuma, H., Kato, A., Taninaka, H., Shinohara, T., Enoki, Magnetic anisotropy of cerium endohedral metallofullerenes, Phys. Chem. B 107, 6965 (2003)
[447] B., Diggs, A., Zhou, C., Silva, S., Kirkpatrick, N.T., Nuhfer,M.E., McHenry, D., Petasis, S.A., Majetich, B., Brunett, J.O., Artman, S.W., Staley, Magnetic properties of carboncoated rare-earth carbide nanocrystallites produced by a carbon arc method, J. Appl. Phys. 75, 5879 (1994)
[448] A., Tiwari, G., Dantelle, K., Porfyrakis, A., Watt, A., Ardavan, G., Andrew, D., Briggs, Magnetic properties of ErSc2@C80, Er2Sc@C80, and Er3@C80 fullerenes, Chem. Phys. Lett. 466, 155 (2008)
[449] T.I., Smirnova, A.I., Smirnov, T.G., Chadwick, K.L., Walker, Characterization of magnetic and electronic properties of trimetallic nitride endohedral fullerenes by SQUID magnetometry and electron paramagnetic resonance, Chem. Phys. Lett. 453, 233 (2008)
[450] T., Zuo, M.M., Olmstead, C.M., Beavers, A.L., Balch, G., Wang, G.T., Yee, C., Shu, L., Xu, B., Elliott, L., Echegoyen, J.C., Duchamp, H.C., Dorn, Preparation and structural characterization of the Ih and the D5h isomers of the endohedral fullerenes Tm3N@C80: icosahedral C80 cage encapsulation of a trimetallic nitride magnetic cluster with three uncoupled Tm3+ ions, inorg. Chem. 47, 5234 (2008)
[451] J., Ishikawaa, T., Miyaharab, Y., Hiratoa, H., Ishiia, T., Kodamac, K., Kikuchic, T., Nakamurad, K., Kodamad, D., Asakurae, T., Koidee, MCD study on Ce@C82 and Ce2@C80 in the soft-x-ray region, Jour. Electron Spectrosc. Relat. Phenom. 184, 284 (2011)
[452] R., Kitaura, H., Okimoto, H., Shinohara, T., Nakamura, H., Osawa, Magnetism of the endohedral metallofullerenesM@C82 (M=Gd,Dy) and the corresponding nanoscale peapods: synchrotron soft x-ray magnetic circular dichroism and density-functional theory calculations, Phys. Rev. B 76, 172409 (2007)
[453] C. De, Nadai, A., Mirone, S.S., Dhesi, P., Bencok, N.B., Brookes, I., Marenne, P., Rudolf, N., Tagmatarchis, H., Shinohara, T.J.S., Dennis, Local magnetism in rare-earth metals encapsulated in fullerenes, Phys. Rev. B 69, 184421 (2004)
[454] F., Bondino, C., Cepek, N., Tagmatarchis, M., Prato, H., Shinohara, A., Goldoni, Element-specific probe of the magnetic and electronic properties of dy incarfullerenes, Jour. Phys. Chem. B 110, 7289 (2006)
[455] H., Okimoto, R., Kitaura, T., Nakamura, Y., Ito, Y., Kitamura, T., Akachi, D., Ogawa, N., Imazu, Y., Kato, Y., Asada, T., Sugai, H., Osawa, T., Matsushita, T., Muro, H., Shinohara, Element-specific magnetic properties of di-erbium Er2@C82 and Er2C2@C82 metallofullerenes: a synchrotron soft x-ray magnetic circular dichroism study, Jour. Phys. Chem. C 112, 6103 (2008).
[456] A., Weidinger, M., Waiblinger, B., Pietzak, T. Almeida, Murphy, Atomic nitrogen in C60:N@C60, J. Appl. Phys. A 66, 287 (1998)
[457] S.C., Benjamin, A., Ardavan, G.A.D., Briggs, D.A., Britz, D., Gunlycke, J., Jefferson, M.A.G., Jones, D.F., Leigh, B.W., Lovett, A.N., Khlobystov, S.A., Lyon, J.J.L., Morton, K., Porfyrakis, M.R., Sambrook, A.M., Tyryshkin, Towards a fullerene-based quantum computer, J. Phys.: Condens. Matter 18, S867 (2006)
[458] J.J.L., Morton, A.M., Tyryshkin, A., Ardavan, K., Porfyrakis, S.A., Lyon, G.A.D., Briggs, High fidelity single qubit operations using pulsed electron paramagnetic resonance, Phys. Rev. Lett. 95, 200501 (2005)
[459] T., Fujisawal, D.G., Austing, Y., Tokura, Y., Hirayama, S., Tarucha, Allowed and forbidden transitions in artificial hydrogen and helium atoms, Nature 419, 278 (2002)
[460] F., Jelezko, T., Gaebel, I., Popa, A., Gruber, J., Wrachtrup, Observation of coherent oscillations in a single electron spin, Phys. Rev. Lett. 92, 076401 (2004)
[461] Y., Nakamura, Yu.A., Pashkin, J.S., Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box, Nature 398, 786 (1999)
[462] D., Suter, K., Lim, Scalable architecture for spin-based quantum computers with a single type of gate, Phys. Rev. A 65, 052309 (2002)
[463] R.M., Brown, A.M., Tyryshkin, K., Porfyrakis, E.M., Gauger, B.W., Lovett, A., Ardavan, S.A., Lyon, G.A.D., Briggs, J.J.L., Morton, Coherent state transfer between an electron and nuclear spin in 15N@C60, Phys. Rev. Lett. 106, 110504 (2011)
[464] W., Harneit, Fullerene-based electron-spin quantum computer, Phys. Rev. A 65, 032322 (2002)
[465] S.C., Benjamin, Schemes for parallel quantum computation without local control of qubits, Phys. Rev. A (R) 61, 020301 (2000)
[466] J., Twamley, Quantum-cellular-automata quantum computing with endohedral fullerenes, Phys. Rev. A 67, 052318 (2003)
[467] T., Hovland, M. Sc.Thesis, Quantum Computation with Global Pulses, National University of Ireland, Maynooth 2001, http://planck.thphys.may.ie/jtwamley/jtwamley.htm
[468] S.W.D., Bailey, C.J., Lambert, The electronic transport properties of N@C60@(n,m) carbon nanotube peapods, Physica E 40, 99 (2007)
[469] B.W., Smith, M., Monthioux, D.E., Luzzi, Encapsulated C60 in carbon nanotubes, Nature 396, 323 (1998)
[470] F., Simon, H. Kuzmany, Náfrádi, T., Fehér, L., Forró, F.F, ülöp, A., Jánossy, L., Korecz, A., Rockenbauer, F., Hauke, A., Hirsch, Magnetic fullerenes inside single-wall carbon nanotubes, Phys. Rev. Lett. 97, 136801 (2006)
[471] R.C., Haddon, A.F., Hebard, M.J., Rosseinsky, D.W., Murphy, S.J., Duclos, K.B., Lyons, B., Miller, J.M., Rosamilia, R.M., Fleming, A.R., Kortan, S.H., Glarum, A.V., Makhija, A.J., Muller, R.H., Eick, S.M., Zahurak, R., Tycko, G., Dabbagh, F.A., Thiel, Conducting films of C60 and C70 by alkali-metal doping, Nature, 350, 320 (1991)
[472] K., Kamarás, G., Klupp, Metallicity in fullerides, Dalton Transactions 43, 7366 (2014)
[473] H., Jahn, E., Teller, Stability of degenerate electronic states in polyatomic molecules, Phys. Rev. 49, 874 (1936)
[474] I.B., Bersuker, The Jahn–Teller Effect, Cambridge University Press 2006
[475] M.C.M, O'Brian, C.C., Chancey, The Jahn–Teller effect: an introduction and current review, Am. J. Phys. 61, 688 (1993)
[476] M., Lannoo, G.A., Baraff, M., Schlüter, D., Tomanek, Jahn–Teller effect for the negatively charged C 60 molecule: analogy with the silicon vacancy, Phys. Rev. B 44, 12106 (1991)
[477] N., Koga, K., Morokuma, Ab initio MO study of the C 60 anion radical: the Jahn– Teller distortion and electronic structure, Chem. Phys. Lett. 191, 196 (1994)
[478] I.D., Hands, J.L., Dunn, C.A., Bates, Visualization of static Jahn–Teller effects in the fullerene anion C - 60, Phys. Rev. B 82, 155425 (2010)
[479] A., Ceulemans, L.F., Chibotaru, F., Cimpoesu, Intramolecular charge disproportionation and the band structure of A3C60 superconductors, Phys. Rev. Lett. 78, 3725 (1997)
[480] L., Forró, L., Mihály, Electronic properties of doped fullerenes, Rep. Prog. Phys. 64, 649 (2001)
[481] M., Knupfer,M., Merkel, M.S., Golden, J., Fink, O., Gunnarsson, V.P., Antropov, Satellites in the photoemission spectrum of A3C60 (A=K and Rb), Phys. Rev. B 47, 13944(R) (1993)
[482] R., Macovez, M.R.C., Hunt, J., Shan, A., Goldoni, T., Pichler, M., Pedio, P., Moras, C., Castellarin-Cudia, J., Schiessling, L., Venema, P., Rudolf, Metal-to-insulator transition in thin-film polymeric AC60, New Jour. Phys. 11, 023035 (2009)
[483] C., Coulon, A., Pnicaud, R., Clrac, R., Moret, P., Launois, Metal-insulator and structural phase transition observed by ESR spectroscopy and x-ray diffraction in K@C60, Phys. Rev. Lett. 86, 4346 (2001)
[484] H., Alloul, V., Brouet, E., Lafontaine, L., Malier, L., Forró, 13C magic-angle-spinning NMR study of the electronic properties of the AC60 polymers (A = K,Rb,Cs), Phys. Rev. Lett. 76, 2922 (1996)
[485] Y.J., Uemura, K., Kojima, G.M., Luke, W.D., Wu, G., Oszlányi, O., Chauvet, L., Forró, Static magnetic order in the one-dimensional conductor RbC60, Phys. Rev. B 52, R6991 (1995)
[486] A.F., Hebard, M.J., Rosseinsky, R.C., Haddon, D.W., Murphy, S.H., Glarum, T.T.M., Palstra, A.P., Ramirez, A.R., Kortan, Superconductivity at 18 K in potassium-doped C60, Nature, 350, 600 (1991)
[487] O., Gunnarson, Superconductivity in fullerides, Rev. Mod. Phys. 69, 575 (1997)
[488] A.Y., Ganin, Y., Takabayashi, Y.Z., Khimyak, S., Margadonna, A., Tamai, M.J., Rosseinsky, K., Prassides, Bulk superconductivity at 38 K in a molecular system, Nature Mater. 7, 367 (2008)
[489] Y., Iwasa, T., Takenobu, Superconductivity, Mott-Hubbard states, and molecular orbital order in intercalated fullerides, J. Phys.: Condens. Matter 15, R495 (2003)
[490] A.Y., Ganin, Y., Takabayashi, P., Jeglic, D., Arĉon, Anton, Potoĉnik, P.J., Baker, Y., Ohishi, M.T., McDonald, M.D., Tzirakis, A., McLennan, G.R., Darling, M., Takata, M.J., Rosseinsky, K., Prassides, Polymorphism control of superconductivity and magnetism in Cs3C60 close to the Mott transition, Nature 466, 221 (2010)
[491] O., Gunnarsson, E., Koch, R.M., Martin, Mott transition in degenerate Hubbard models: application to doped fullerenes, Phys. Rev. B 54, R11026 (1996)
[492] J.P., Lu, Metal-insulator transitions in degenerate Hubbard models and AxC60, Phys. Rev. B 49, 5687 (1994)
[493] K., Ishii, T., Watanuki, Akihiko, Fujiwara, H., Suematsu, Y., Iwasa, H., Shimoda, T., Mitani, H., Nakao, Y., Fujii, Y., Murakami, H., Kawada, Structural phase transition in the ammoniated alkali C60 compound NH3K3C60, Phys. Rev. B 59, 3956 (1999)
[494] H., Tou, Y., Maniwa, Y., Iwasa, H., Shimoda, T., Mitani, NMR evidence for Mott- Hubbard localization in (NH3)K3C60, Phys. Rev. B 62, R775 (2000)
[495] S., Margadonna, K., Prassides, H., Shimoda, T., Takenobu, Y., Iwasa, Orientational ordering of C60 in the antiferromagnetic NH3K3C60 phase, Phys. Rev. B 64, 132414 (2001)
[496] J., Arvanitidis, K., Papagelisa, T., Takenobub, I., Margiolakia, K., Brigattia, K., Prassidesa, Y., Iwasab, A., Lappas, Antiferromagnetic ordering in the expanded NH3Rb3C60 fulleride, Physica B 326, 572 (2003)
[497] M., Tinkham, Introduction to superconductivity, 2nd ed., Dover Publications 2004
[498] M.J., Rosseinsky, D.W., Murphy, R.M., Fleming, O., Zhou, Intercalation of ammonia into K3C60, Nature 364, 425 (1993)
[499] K., Prassides, S., Margadonna, D., Arcon, A., Lappas, H., Shimoda, Y., Iwasa, Magnetic ordering in the ammoniated fulleride ND3K3C60, J. Am. Chem. Soc. 121, 11227 (1999)
[500] P.M., Allemand, K.C., Khemani, A., Koch, F., Wudl, K., Holczer, S., Donovan, G., Grüner, J.D., Thompson, Organic molecular soft ferromagnetism in a fullerene C60, Science 253, 301 (1991)
[501] M., Fujiwara, T., Kambe, K., Oshima, Structural differences in two polymorphs of tetra-kis-(dimethylamino)-ethylene-C60: an x-ray diffraction study, Phys. Rev. B 71, 174424 (2005)
[502] T., Kambe, K., Oshima, Dynamically fluctuating electric dipole moments in fullerene-based magnets, Sci. Rep. 4, 6419 (2014)
[503] T., Kambe, K., Kajiyoshi, M., Fujiwara, K., Oshima, Antiferromagnetic ordering driven by the molecular orbital order of C60 in αˊ-tetra-kis-(Dimethylamino)- ethylene-C60, Phys. Rev. Lett. 99, 177205 (2007)
[504] T., Kambe, Y., Nogami, K., Oshima, Annealing effects on the magnetic and structural properties of single-crystal TDAE-C60, Phys. Rev. B 61, R862 (2000)
[505] H., Yamaoka, T., Kambe, T., Sato, Y., Ishida, M., Matsunami, R., Eguchi, Y., Senba, H., Ohashi, Electronic state of an organic molecular magnet: soft x-ray spectroscopy study of α-TDAE-C60 single crystal, Phys. Rev. B 84, 161404 (R) (2011)
[506] T., Kambe, Y., Nogami, K., Oshima, Annealing effects on the magnetic and structural properties of single-crystal TDAE-C60, Phys. Rev. B 61, R862 (2000)
[507] D., Arcon, J., Dolinsek, R., Blinc, 13C NMR of the organic ferromagnet TDAE-C60, Phys. Rev. B 53, 9137 (1996)
[508] T., Kawamoto, A theoretical model for ferromagnetism of TDAE-C60, Solid State Commun. 101, 231 (1997).
[509] K., Mizoguchi, M., Machino, H., Sakamoto,1 T., Kawamoto, M., Tokumoto, A., Omerzu, D., Mihailovic, Pressure effect in TDAE-C60 ferromagnet: mechanism and polymerization, Phys. Rev. B 63, 140417 (2001)
[510] K., Mizoguchi, M., Takei, M., Machino, H., Sakamoto, M., Tokumoto, T., Kawamoto, A., Omerzu, D., Mihailovic, Magnetism of α- and β-TDAE-C60, Jour. Magn. Magn. Mater., 272–276, E215 (2004)
[511] W., śliva, Cycloaddition reactions of fullerenes, Fullerene Sci. Technol. 3, 243 (1995)
[512] S., Garaj, T., Kambe, L., Forró, A., Sienkiewicz, M., Fujiwara, K., Oshima, Polymer phase of the tetrakis(dimethylamino)ethylene-C60 organic ferromagnet, Phys. Rev. B 68, 144430 (2003)
[513] A., Omerzu, D., Mijatovic, D., Mihailovic, Revealing of the re-entrant spin-glass phase in TDAE-C 60 with linear and non-linear AC susceptibility measurements, Synth. Metals 121, 1155 (2001)
[514] A., Omerzu, M., Tokumoto, B., Tadić, D., Mihailovic, Critical exponents at the ferromagnetic transition in Tetrakis(dimethylamino)ethylene-C60 (TDAE-C60), Phys. Rev. Lett. 87, 177205 (2001)
[515] D.C., Elias, R.R., Nair, T.M., Mohiuddin, S.V., Morozov, P., Blake, M.P., Halsall, A.C., Ferrari, D.W., Boukhvalov, M.I., Katsnelson, A.K., Geim, K.S., Novoselov, Control of graphene's properties by reversible hydrogenation: evidence for graphane, Science 323, 5914 (2009)
[516] Y., Wang, X., Xu, J., Lu, M., Lin, Q., Bao, B., Özyilmaz, K.P., Loh, Toward high throughput interconvertible graphane-to-graphene growth and patterning, ACS Nano 4, 6146 (2010).
[517] C., Zhou, S., Chen, J., Lou, J., Wang, Q., Yang, C., Liu, D., Huang, T., Zhou, Graphenes cousin: the present and future of graphane, Nanoscale Res. Lett. 9, 26 (2014)
[518] M.H.F., Sluiter, Y., Kawazoe, Cluster expansion method for adsorption: Application to hydrogen chemisorption on graphene, Phys. Rev. B 68, 085410 (2003)
[519] J.O., Sofo, A.S., Chaudhari, G.D., Barber, Graphane: a two-dimensional hydrocarbon, Phys. Rev. B 75, 153401 (2003)
[520] Metal-insulator transition from graphene to graphane, Nanomater. Nanotechnol. 3, Art. 10 (2013)
[521] S., Lebégue, M., Klintenberg, O., Eriksson, M.I., Katsnelson, Accurate electronic band gap of pure and functionalized graphane from GW calculations, Phys. Rev. B 79, 245117 (2009)
[522] M.S., Hybertsen, S.G., Louie, First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators, Phys. Rev. Lett. 55, 1418 (1985)
[523] C., Lin, Y., Feng, Y., Xiao, M., Dürr, X., Huang, X., Xu, R., Zhao, E., Wang, X.-Z., Li, Z., Hu, Direct observation of ordered configurations of hydrogen adatoms on graphene, Nanolett. 15, 903 (2015)
[524] Ž., Šljivančanin, M., Andersen, L., Hornekr, B., Hammer, Structure and stability of small H clusters on graphene, Phys. Rev. B 83, 205426 (2011)
[525] J., Zhou, Q., Wang, Q., Sun, X.S., Chen, Y., Kawazoe, P., Jena, Ferromagnetism in semihydrogenated graphene sheet, Nanolett. 9, 3867 (2009)
[526] J., Berashevich, T., Chakraborty, Sustained ferromagnetism induced by H-vacancies in graphane, Nanotech. 21, 355201 (2010)
[527] Ž., Šljivančanin, R., Balog, L., Hornekr,Magnetism in graphene induced by hydrogen adsorbates, Chem. Phys. Lett. 541, 70 (2012)
[528] D., Haberer, C.E., Giusca, Y., Wang, H., Sachdev, A.V., Fedorov, M., Farjam, S.A., Jafari, D.V., Vyalikh, D., Usachov, X., Liu, U., Treske, M., Grobosch, O., Vilkov, V.K., Adamchuk, S., Irle, S.R.P., Silva, M., Knupfer, B., Büchner, A., Grüneis, Evidence for a new two-dimensional C4H-type polymer based on hydrogenated graphene, Adv. Mater. 23, 4497 (2011)
[529] M.L., Ng, R., Balog, L., Hornekr, A.B., Preobrajenski, N.A., Vinogradov, N.M, årtensson, K., Schulte, Controlling hydrogenation of graphene on transition metals, J. Phys. Chem. C 131, 18559 (2010)
[530] W., Zhao, J., Gebhardt, Florian, Späth, K., Gotterbarm, C., Gleichweit, H.-P., Steinrück, A., Görling, C., Papp, Reversible hydrogenation of graphene on Ni(111)-Synthesis of graphone, Chemistry- Europ. Jour. 21, 3347 (2015)
[531] K.M., McCreary, A.G., Swartz, W., Han, J., Fabian, R.K., Kawakami, Magnetic moment formation in graphene detected by scattering of pure spin currents, Phys. Rev. Lett. 109, 186604 (2012)
[532] K.A., Worsley, P., Ramesh, S.K., Mandal, S., Niyogi, M.E., Itkis, R.C., Haddon, Soluble graphene derived from graphite fluoride, Chem. Phys. Lett. 445, 51 (2007)
[533] K., Shoda, H., Kohno, Y., Kobayashi, D., Takagi, S., Takeda, Feasibility study for sidewall fluorination of SWCNTs in CF4 plasma, J. Appl. Phys. 104, 113529 (2008)
[534] X., Hong, S.H., Cheng, C., Herding, J., Zhu, Colossal negative magnetoresistance in dilute fluorinated graphene, Phys. Rev. B 83, 085410 (2011)
[535] R.R., Nair, W., Ren, R., Jali, I., Riaz, V.G., Kravets, L., Britnell, P., Blake, F., Schedin, A.S., Mayorov, S., Yuan, M.I., Katsnelson, H.-M., Cheng, W., Strupinski, L.G., Bulusheva, A.V., Okotrub, I.V., Grigorieva, A.N., Grigorenko, K.S., Novoselov, A.K., Geim, Fluorographene: a two-dimensional counterpart of Teflon, Small 6, 2877 (2010)
[536] H., Şahin, M., Topsakal, S., Ciraci, Structures of fluorinated graphene and their signatures, Phys. Rev. B 83, 115432 (2011)
[537] S., Osuna, M., Torrent-Sucarrat, M., Solá, P., Geerlings, C.P., Ewels, G. Van, Lier, Reaction mechanisms for graphene and carbon nanotube fluorination, Jour. Phys. Chem. C 114,3340 (2010)
[538] T.G., Rappoport, B., Uchoa, A.H. Castro, Neto, Magnetism and magnetotransport in disordered graphene, Phys. Rev. B 80, 245408 (2009)
[539] D.W., Boukhvalov,M.I., Katsnelson, Enhancement of chemical activity in corrugated graphene, Jour. Phys. Chem. C 113, 14176 (2009)
[540] J.O., Sofo, A.M., Suarez, G., Usaj, P.S., Cornaglia, A.D., Hernandez-Nieves, C.A., Balseiro, Electrical control of the chemical bonding of fluorine on graphene, Phys. Rev. B 83, 081411 (2011)
[541] H.J., Kim, J.H., Cho, Fluorine-induced local magnetic moment in graphene: a hybrid DFT study, Phys. Rev. B 87, 174435 (2013)
[542] A.V., Krukau, O.A., Vydrov, A.F., Izmaylov, G.E., Scuseria, Influence of the exchange screening parameter on the performance of screened hybrid functionals, Jour. Chem. Phys. 125, 224106 (2006)
[543] X., Hong, K., Zou, B., Wang, S.-H., Cheng, J., Zhu, Evidence for spin-flip scattering and local moments in dilute fluorinated graphene, Phys. Rev. Lett. 108, 226602 (2012)
[544] F.V., Tikhonenko, D.W., Horsell, R.V., Gorbachev, A.K., Savchenko, Weak localization in graphene flakes, Phys. Rev. Lett. 100, 056802 (2008)
[545] D.-K., Ki, D., Jeong, J.-H., Choi, H.-J., Lee, K.-S., Park, Inelastic scattering in a monolayer graphene sheet: a weak-localization study, Phys. Rev. B 78, 125409 (2008).
[546] M., Gmitra, D., Kochan, J., Fabian, Spin-orbit coupling in hydrogenated graphene, Phys. Rev. Lett. 110, 246602 (2013)
[547] S., Irmer, T., Frank, S., Putz, M., Gmitra, D., Kochan, J., Fabian, Spin-orbit coupling in fluorinated graphene, Phys. Rev. B 91, 115141 (2015)
[548] A., Ferreira, T.G., Rappoport, M.A., Cazalilla, A.H. Castro, Neto, Extrinsic spin Hall effect induced by resonant skew scattering in graphene, Phys. Rev. Lett. 112, 066601 (2014)
[549] J., Balakrishnan, G.K., Koon, M., Jaiswal, A.H. Castro, Neto, B., Özyilmas, Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene, Nature Physics 9, 284 (2013)
[550] D.A., Abanin, A.V., Shytov, L.S., Levitov, B.I., Halperin, Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime, Phys. Rev. B 79, 035304 (2009)
[551] Y.-J., Yu, Y., Zhao, S., Ryu, L.E., Brus, K.S., Kim, P., Kim, Tuning the graphene work function by electric field effect, Nano Lett. 9, 3430 (2009)
[552] S. Das, Sarma, S., Adam, E.H., Hwang, E., Rossi, Electronic transport in twodimensional graphene, Rev. Mod. Phys. 83, 407 (2011)
[553] J.D., Bergeson, S.J., Etzkorn, M.B., Murphey, L., Qu, J., Yang, L., Dai, A.J., Epstein, Iron nanoparticle driven spin-valve behavior in aligned carbon nanotube arrays, Appl. Phys. Lett. 93, 172505 (2008)
[554] O.V., Khavryuchenko, G.H., Peslherbe, F., Hagelberg, Spin filter circuit design based on a finite single-walled carbon nanotube of the zigzag type, J. Phys. Chem. C 119, 3740 (2015)
[555] A.T., Costa, D.F., Kirwan, M.S., Ferreira, Indirect exchange coupling between magnetic adatoms in carbon nanotubes, Phys. Rev. B 72, 085402 (2005)
[556] D.F., Kirwan, V.M. de, Menezes, C.G., Rocha, A.T., Costa, R.B., Muniz, S.B., Fagand, M.S., Ferreira, Enhanced spin-valve effect in magnetically doped carbon nanotubes, Carbon 47, 2528 (2009)
[557] S., Saremi, RKKY in half-filled bipartite lattices: graphene as an example, Phys. Rev. B 76, 184430 (2007)
[558] S., Power, M.S., Ferreira, Indirect exchange and Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions in magnetically-doped graphene, Crystal 3, 49 (2013)
[559] Z., Zanolli, J.C., Charlier, Single nanotube sensing using carbon nanotubes decorated with magnetic clusters, ACS Nano, 6, 10786 (2012)
[560] Y.K., Chen, A., Chu, J., Cook, M.L.H., Green, P.J.F., Harris, R., Heesom, M., Humphries, J., Sloan, S.C., Tsang, J.F.C., Turner, Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies, Jour. Mater. Chem. 7, 545 (1997)
[561] F.C., Dillon, A., Bajpai, A., Koós, S., Downes, Z., Aslam, N., Grobert, Tuning the magnetic properties of iron-filled carbon nanotubes, Carbon 50, 3674 (2012)
[562] A., Winkler, T., Mühl, S., Menzel, R., Kozhuharova-Koseva, S., Hampel, A., Leonhardt, B., Büchner, Magnetic force microscopy sensors using iron-filled carbon nanotubes, J. Appl. Phys. 99, 104905 (2006)
[563] I., Mönch, A., Leonhardt, A., Meye, S., Hampel, R., Kozhuharova-Koseva, D., Elefant, M.P., Wirth, B., Büchner, Synthesis and characteristics of Fe-filled multi-walled carbon nanotubes for biomedical application, Jour. Phys.: Conf. Ser. 61, 820 (2007)
[564] S.L., Prischepa, A.L., Danilyuk, A.L., Prudnikava, I.V., Komissarov, V.A., Labunov, K.I., Yanushkevich, F. Le, Normand, Magnetic properties of nanocomposites based on magnetically functionalized carbon nanotubes, in: Nano Magnetism, J.M. Gonzalez, Estevez, eds., One Central Press (OCP) 2014
[565] D., Qian, E.C., Dickey, R., Andrews, D., Jacques, Growth mechanisms and kinetics of CVD-derived carbon nanotubes, Center for Applied Energy Research, Univ. of Kentucky, www.caer.uky.edu /carbon/posters/qian.pdf
[566] U., Ritter, P., Scharff, G.E., Grechnev, V.A., Desnenko, A.V., Fedorchenko, A.S., Panfilov, Y.I., Prylutskyy, Y.A., Kolesnichenko, Structure and magnetic properties of multi-walled carbon nanotubes modified with cobalt, Carbon 49, 4443 (2011)
[567] L., Grover, Quantum computers can search arbitrarily large databases by a single query, Phys. Rev. Lett. 79, 4709 (1997)
[568] O., Boykin, T., Mor, V., Roychowdhury, F., Vatan, Algorithms on ensemble quantum computers, Nat. Computing 9, 329 (2010)
[569] A.V., Rode, S.T., Hyde, E.G., Gamaly, R.G., Elliman, D.R., McKenzie, S., Bulcock, Structural analysis of a carbon foam formed by high pulse-rate laser ablation, Appl. Phys. A: Mater. Sci. Process. A 69, S755 (1999)
[570] A.V., Rode, E.G., Gamaly, B., Luther-Davies, Formation of cluster-assembled carbon nano-foam by high repetition-rate laser ablation, Appl. Phys. A: Mater. Sci. Process. A 70, 135 (2000)
[571] P.J.F., Harris, Fullerene-related structure of commercial glassy carbons, Phil. Mag. 84, 3159 (2004)
[572] D., Arčon, Z., Jagličič, A., Zorko, A.V., Rode, A.G., Christy, N.R., Madsen, E.G., Gamaly, B., Luther-Davis, Origin of magnetic moments in carbon nanofoam, Phys. Rev. B 74, 014438 (2006)
[573] A.V., Rode, E.G., Gamaly, A.G., Christy, J.G. Fitz, Gerald, S.T., Hyde, R.G., Elliman, B., Luther-Davies, A.I., Veinger, J., Androulakis, J., Giapintzakis, Unconventional magnetism in all-carbon nanofoam, Phys. Rev. B 70, 054407 (2004)
[574] A.V., Rode, R.G., Elliman, E.G., Gamaly, A.I., Veinger, A.G., Christy, S.T., Hyde, B., Luther-Davies, Electronic and magnetic properties of carbon nanofoam produced by high-repetition-rate laser ablation, Appl. Surf. Sci. 197, 644 (2002)
[575] H.A., Schwarz, Gesammelte Mathemtische Abhandlungen, Vols. 1 and 2, Springer, Berlin 1890
[576] L., Colombo, A., Fasolino. Computer-Based Modeling of Novel Carbon Systems and Their Properties: Beyond Nanotubes, Springer Science & Business Media 2010
[577] T., Lenosky, X., Gonze, M., Teter, V., Elser, Energetics of negatively curved graphitic carbon, Nature 355, 333 (1992)
[578] D., Vanderbilt, J., Tersoff, Negative-curvature fullerene analog of C60, Phys. Rev. Lett. 68, 511 (1992)
[579] P.K., Chu, L., Li, Characterization of amorphous and nanocrystalline carbon films, Mat. Chem. Phys. 96, 253 (2006)
[580] W., Assman, H., Huber, C., Steinhausen, M., Dobler, H., Glückler, A., Weidinger, Elastic recoil detection analysis with heavy atoms, Nucl. Inst. Meth. B 89, 131 (1994), 131 (1994)
[581] A.V., Rode, A.G., Christy, N.R., Madsen, E.G., Gamaly, S.T., Hyde, B., Luther-Davies, Positive magnetisation in carbon nanostructures, Curr. Appl. Phys. 6, 549 (2006)
[582] C., Mathioudakis, P.C., Kelires, Atomistic simulations of low-density nanoporous materials: carbon nanofoams, Phys. Rev. B 87, 195408 (2013)
[583] J., Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett. 61, 2879 (1988)
[584] A.A., Deshmukh, S.D., Mhlanga, N.J., Coville, Carbon spheres, Mat. Sci. Eng. R 70, 1 (2010)
[585] S., Iijima, Direct observation of the tetrahedral bonding in graphitized carbon black by high-resolution electron microscopy, J. Cryst. Growth 50, 675 (1980)
[586] D., Ugarte, Curling and closure of graphitic networks under electron-beam irradiation, Nature 359, 707 (1992)
[587] V.L., Kuznetsov, A.L., Chuvilin, Y.V., Butenko, I., VMalkov, V.M., Titov, Onion-like carbon from ultra-disperse diamond. Chem. Phys. Lett. 222, 343 (1994)
[588] L, Hawelek, A., Brodka, S., Tomita, J.C., Dore, V., Honkimaki, A., Burian, Transformation of nano-diamonds to carbon nano-onions studied by x-ray diffraction and molecular dynamics, Diamond Rel. Mat. 20, 1333 (2011)
[589] J.K., McDonough, Y., Gogotsi, Carbon onions: synthesis and electrochemical applications, The Electrochemic. Soc. Interface, Fall 2013, 61 (2013)
[590] C.P., Chen, T.H., Chang, T.F., Wang, Synthesis of magnetic nano-composite particles, J. Ceram. Int. 28, 925 (2002)
[591] G.H., Lee, S.H., Huh, J.W., Jeong, H.C., Ri, Excellent magnetic properties of fullerene encapsulated ferromagnetic nanoclusters, J. Mag. Mag. Mat. 246, 404 (2002)
[592] A.-Y., Ge, B.-S., Xu, X.-M., Wang, T.B., Lee, P.D., Han, X.G., Liu, Study on electromagnetic property of nano onion-like fullerenes, J. Acta Physico-Chimica Sinica, 22, 203 (2006)
[593] R.S., Ruoff, D.C., Lorents, B., Chan, R., Malhotra, S., Subramoney, Single crystal metals encapsulated in carbon nanoparticles, Science 259, 346 (1993)
[594] S.A., Majetich, J.O., Artman, M.E., McHenry, N.T., Nuhfer, S.W., Staley, Preparation and properties of carbon-coated magnetic nanocrystallites, Phys. Rev. B 48, 16845 (1993)
[595] M.E., McHenry, S.A., Majetich, J.O., Artman, M., DeGraef, S.W., Staley, Superparamagnetism in carbon-coated Co particles produced by the Kratschmer carbon arc process, Phys. Rev. B 49, 11358 (1994)
[596] J., Goldstein, Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed., Springer 2003
[597] V.P., Dravid, J.J., Host, M.H., Teng, B., Elliott, J., Hwang, D.L., Johnson, T.O., Mason, J.R., Weertman, Controlled-size nanocapsules, Nature 374, 602 (1995)
[598] Y., Lu, Z., Zhu, Z., Liu, Carbon-encapsulated Fe nanoparticles from detonationinduced pyrolysis of ferrocene, Carbon 43, 369 (2005)
[599] T., Hayashi, S., Hirono, M., Tomita, S., Ummemura, Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon, Nature 381, 772 (1996)
[600] Z.H., Wang, C.J., Choi, B.K., Kim, J.C., Kim, Z.D., Zhang, Characterization and magnetic properties of carbon-coated cobalt nanocapsules synthesized by the chemical vapor condensation process, Carbon 41, 1751 (2003)
[601] R.P., Chaudhary, S.K., Mohanty, A.R., Koymen, New method for synthesis of Pt nanoparticles embedded in a carbon matrix. J. Nanosci. Nanotechnol. 11 10396 (2011)
[602] R.P., Chaudhary, S.K., Mohanty, A.R., Koymen, Novel method for synthesis of Fe core and C shell magnetic nanoparticles, Carbon 79, 67 (2014)
[603] V.N., Mochalin, O., Shenderova, D., Ho, Y., Gogotsi, The properties and applications of nanodiamonds, Nature Nanotech. 7, 11 (2012)
[604] G.W., Yang, J.B., Wang, Q.X., Liu, Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching, J. Phys. Condens. Mat. 10, 79237927 (1998)
[605] M., Frenklach, W., Howard, D., Huang, J., Yuan, K.E., Spear, R., Koba. Induced nucleation of diamond powder. Appl. Phys. Lett. 59, 546 (1991)
[606] T.L., Daulton, M.A., Kirk, R.S., Lewis, L.E., Rehn, Production of nanodiamonds by high-energy ion irradiation of graphite at room temperature, Nucl. Instrum. Meth. B 175, 12 (2001)
[607] F., Banhart, P.M., Ajayan, Carbon onions as nanoscopic pressure cells for diamond formation, Nature 382, 433 (1996)
[608] É.M., Galimov, A.M., Kudin, V.N., Skorobogatskii, V.G., Plotnichenko, O.L., Bondarev, B.G., Zarubin, V.V., Strazdovskii, A.S., Aronin, A.V., Fisenko, I.V., Bykov, A.Y., Barinov, Experimental corroboration of the synthesis of diamond in the cavitation process, Dokl. Phys. 49, 150 (2004)
[609] J.E., Dahl, S.G., Liu, R.M.K., Carlson, Isolation and structure of higher diamondoids, nanometer-sized diamond molecules, Science 299, 96 (2003)
[610] J.Y., Raty, G., Galli, Ultradispersity of diamond at the nanoscale, Nature Mater. 2, 792795 (2003)
[611] O.E., Andersson, B.L.V., Prasad, H., Sato, T., Enoki, Y., Hishiyama, Y., Kaburagi, M., Yoshikawa, S., Bandow, Structure and electronic properties of graphite nanoparticles, Phys. Rev. B 58, 16387 (1998)
[612] B.L.V., Prasad, H., Sato, T., Enoki, Y., Hishiyama, Y., Kaburagi, A.M., Rao, P.C., Eklund, K., Oshida, M., Endo, Heat-treatment effect on the nanosized graphite pelectron system during diamond to graphite conversion, Phys. Rev. B 62, 11209 (2000)
[613] M., Mezard, G., Raris, M.R., Virasoro, Spin Glass Theory and Beyond, World Scientific, New Jersey 1987
[614] T., Enoki, M., Suzuki, M., Endo, Graphite Intercalation Compounds and Applications, Oxford University Press, New York 2003
[615] K., Takai, S., Eto, M., Inaguma, T., Enoki, H., Ogata, M., Tokita, J., Watanabe, Magnetic potassium clusters in a nanographite host system, Phys. Rev. Lett. 98, 017203 (2007)
[616] T., Kyotani, T., Nagai, S., Inoue, A., Tomita, Formation of new type of porous carbon by carbonization in zeolite nanochannels, Chem. Mater. 9, 609 (1997)
[617] K., Takai, T., Suzuki, T., Enoki, H., Nishihara, T., Kyotani, Structure and magnetic properties of curved graphene networks and the effects of bromine and potassium adsorption, Phys. Rev. B 81, 205420 (2010)
[618] K., Takai, T., Suzuki, H., Nishihara, T., Kyotani, T., Enoki, Magnetic properties of host-guest material using network of curved nanocarbon sheet, Jour. Phys. Chem. Sol. 73, 1436 (2012)
[619] Y., Nozue, T., Kodaira, T., Goto, Ferromagnetism of potassium clusters incorporated into zeolite LTA, Phys. Rev. Lett. 68, 3789 (1992)
[620] Y., Nozue, T., Kodaira, S., Ohwashi, T., Goto, O., Terasaki, Ferromagnetic properties of potassium clusters incorporated into zeolite LTA, Phys. Rev. B 48, 12253 (1993)
[621] G.M., Canfield, M., Bizimis, S.E., Latturner, Sodalite ion exchange in polyethylene oxide oligomer solvents, Jour. Mat. Chem. 17, 4530 (2007)
[622] K., Takai, H., Kumagai, H., Sato, T., Enoki, Bromine-adsorption-induced change in the electronic and magnetic properties of nanographite network systems, Phys. Rev. B 73, 035435 (2006)
[623] K., Nakamura, T., Koretsune, R., Arita, Ab initio derivation of the low-energy model for alkali-cluster-loaded sodalites, Phys. Rev. B 80, 174420 (2009)
[624] K., Murata, H., Ushijima, Effect of pyrolysis temperature on the magnetic properties of the carbon materials prepared from trialkylboranes, J. Appl. Phys. 79, 978 (1996)
[625] T., Saito, D., Nishio-Hamane, S., Yoshii, T., Nojima, Ferromagnetic carbon materials obtained from polyacrylonitrile, J. Appl. Phys. 98, 052506 (2011)
[626] A.A., Ovchinnikov, V.N., Spector, Organic ferromagnets. New results, Synth. Met. 27, B615 (1988)
[627] H., Araki, R., Matsuoka, K., Yoshino, Ferromagnetic behavior of pyrolyzed o,m,p-phenylenediamine and triazine derivatives, Solid State Comm. 79, 443 (1991)
[628] K., Tanaka, M., Kobashi, H., Sanekafa, A., Takata, T., Yamabe, S., Mizogami, K., Kawabata, Y., Yamauchi, Peculiar magnetic property of pyrolytic carbon prepared from adamantane, J. Appl. Phys. 71, 836 (1992)
[629] T., Saito, Magnetic properties of carbon materials prepared from polyvinyl chloride, J. Appl. Phys. 105, 013902 (2009)
[630] T., Makarova, Ferromagnetic carbonaceous compounds, in Carbon-Based Magnetism, Elsevier Science 2006
[631] K., Kostarelos, The long and short of carbon nanotube toxicity, Nature Biotech 26, 774 (2008)
[632] Y., Liu, Y., Zhao, B., Sun, C., Chen, Understanding the toxicity of carbon nanotubes, Accts Chem. Res. 46, 702 (2013)
[633] D., Yang, F., Yang, J., Hu, J., Long, C., Wang, D., Fu, Q., Ni, Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles, Chem. Commun. 29, 4447 (2009)
[634] V., Georgakilas, M., Otyepka, A.B., Bourlinos, V., Chandra, N., Kim, K.C., Kemp, P., Hobza, R., Zboril, K.S., Kim, Functionalization of graphene: covalent and noncovalent approaches, derivatives and applications, Chem. Rev. 112, 6156 (2012)
[635] I.R., Vlahov, C.P., Leamon, Engineering folate-drug conjugates to target cancer: from chemistry to clinic, Bioconj. Chem. 23, 1357 (2012)
[636] R., Li, R., Wu, L., Zhao, Z., Hu, S., Guo, X., Pan, H., Zou, Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells, Carbon 49, 1797 (2011)
[637] S., Boncel, A.P., Herman, K.Z., Walczak, Magnetic carbon nanostructures in medicine, J. Mater. Chem. 22, 31 (2012)
[638] X., Yang, X., Zhang, Y., Ma, Y., Huang, Y., Wang, Y., Chen, Superparamagnetic graphene oxide Fe3O4 nanoparticles hybrid for controlled targeted drug carriers, Jour. Mater. Chem. 19, 2710 (2009)
[639] R., Weissleder, P.F., Hahn, D.D., Stark, E., Rummeny, S., Saini, J., Wittenberg, J.T., Ferrucci, MR imaging of splenic metastases: ferrite-enhanced detection in rats, AJR Am. J. Roentgenol. 149, 723 (1987)
[640] M.T., Vlaardingerbroek, J.A. den, Boer, Magnetic Resonance Imaging, 2nd ed., Springer, Berlin 1999
[641] H., Günther, NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry, 3rd ed., VCH Wiley 2013
[642] T.N., Narayanan, A.P. Reena, Mary, M.M., Shaijumon, L., Ci, P.M., Ajayan, M.R., Anantharaman, On the synthesis and magnetic properties of multiwall carbon nanotube superparamagnetic iron oxide nanoparticle nanocomposites, Nanotechnology 20, 055607 (2009)
[643] E., Amstad, M., Textor, E., Reimhult, Stabilization and functionalization of iron oxide nanoparticles for biomedical applications, Nanoscale 3, 2819 (2011)
[644] K.J., Murphy, J.A., Brunberg, R.H., Cohan, Adverse reactions to gadolinium contrast media: a review of 36 cases, Am. Jour. Roentgenology 167, 847 (1996)
[645] H.S., Thomsen, S.K., Morcos and P., Dawson, Is there a causal relation between the administration of gadolinium-based contrast media and the development of nephrogenic systemic fibrosis?, Clin. Radiology 61, 905 (2006)
[646] L., Wilson, Medical applications of fullerenes and metallofullerenes, Elec. Chem. Soc. Interface, Winter 1999, 24 (1999)
[647] M., Mikawa, H., Kato, M., Okumura, M., Narazaki, Y., Kanazawa, N., Miwa, H., Shinohara, Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents, Bioconjugate Chem. 12, 510 (2001)
[648] B., Sitharaman, K.R., Kissell, K.B., Hartman, L.A., Tran, A., Baikalov, I., Rusakova, Y., Sun, H.A., Khant, S.J., Ludtke, W., Chiu, S., Laus, E., Toth, L., Helm, A.E., Merbach, L.J., Wilson, Superparamagnetic gadonanotubes are high-performance MRI contrast agents, Chem. Commun. 3915 (2005)
[649] K.H., Mueller, L., Dunsch, D., Eckert, M., Wolf, A., Bartl, Magnetic properties of endohedral fullerene complexes, Synthetic Materials 103, 2417 (1999)
[650] E., Toth, R.D., Bolskar, A., Borel, G., Gonzalez, L., Helm, A.E., Merbach, B., Sitharaman, L.J., Wilson, Water soluble gadofullerenes toward high-relaxivity, pH responsive MRI contrast agents, J. Am. Chem. Soc. 127, 799 (2005)
[651] S., Stevenson, R.R., Stephen, T.M., Amos, V.R., Cadorette, J.E., Reid, J.P., Phillips, Synthesis and purification of a metallic nitride fullerene bisadduct: exploring the reactivity of Gd3@C80, J. Am. Chem. Soc. 127, 76 (2005)
[652] P.P., Fatouros, F.D., Corwin, Z.J., Chen, W.C., Broaddus, J.L., Tatum, B., Kettenmann, Z., Ge, H.W., Gibson, J.L., Russ, A.P., Leonard, J.C., Duchamp, H.C., Dorn, In vitro and in vivo imaging studies of a new metallofullerene nanoparticle, radiology 240, 756 (2006)
[653] J., Zhang, P.P., Fatouros, C., Shu, J., Reid, L.S., Owens, T., Cai, H.W., Gibson, G.L., Long, F.D., Corwin, Z.J., Chen, H.C., Dorn, High relaxivity trimetallic nitride (Gd3N) metallofullerene MRI contrast agents with optimized functionality, Bioconjug Chem. 21, 610 (2010)
[654] E.-Y., Zhang, C.-Y., Shu, L., Feng, C.-R., Wang, Preparation and characterization of two new water-soluble endohedral metallofullerenes as magnetic resonance imaging contrast agents, J. Phys. Chem. B 111, 14223 (2007)
[655] K., Braun, L., Dunsch, R., Pipkorn, M., Bock, T., Baeuerle, S., Yang, W., Waldeck, M., Wiessler, Gain of a 500-fold sensitivity on an intravital MR contrast agent based on an endohedral gadolinium-cluster-fullerene-conjugate: a new chance in cancer diagnostics, Int. Jour. Med. Sci. 7, 136 (2010)
[656] A., Svitova, K., Braun, A.A., Popov, L., Dunsch, A platform for specific delivery of lanthanide scandium mixed-metal cluster fullerenes into target cells, Chem. Open 1, 207 (2012)
[657] H.L., Fillmore, M.D., Shultz, S.C., Henderson, P., Cooper, W.C., Broaddus, Z.J., Chen, C.Y., Shu, J., Zhang, J., Ge, H.C., Dorn, F., Corwin, J.I., Hirsch, J., Wilson, P.P., Fatouros, Conjugation of functionalized gadolinium metallofullerenes with IL-13 peptides for targeting and imaging glial tumors, Nanomedicine 6, 449 (2011)
[658] K.B., Hartman, S., Laus, R.D., Bolskar, R., Muthupillai, L., Helm, E., Toth, A.E., Merbach, L.J., Wilson, Gadonanotubes as Ultrasensitive pH-smart probes for magnetic resonance imaging, Nanolett. 8, 415 (2008)
[659] A., Bianco, K., Kostarelos, C.D., Partidos, M., Prato, Biomedical applications of functionalised carbon nanotubes, Chem. Commun. 571 (2005)
[660] D., Pantarotto, J., Briand, M., Prato, A., Bianco, Translocation of bioactive peptides across cell membranes by carbon nanotubes, Chem. Commun. 16 (2004)
[661] C.M., Sayes, F., Liang, J.L., Hudson, J., Mendez, W., Guo, J.M., Beach, V.C., Moore, C.D., Doyle, J.L., West, W.E., Billups, K.D., Ausman, V.L., Colvin, Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro, Toxicol. Lett. 161, 135 (2006)
[662] R., Singh, D., Pantarotto, L., Lacerda, G., Pastorin, C., Klumpp, M., Prato, A., Bianco, K., Kostarelos, Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers, Proc. Natl. Acad. Sci. USA 103, 3357 (2006)
[663] J.M., Ashcroft, K.B., Hartman, Y., Mackeyev, C., Hofmann, S., Pheasant, L.B., Alemany, L.J., Wilson, Functionalization of individual ultra-short single-walled carbon nanotubes, Nanotechnology 17, 5033 (2006)
[664] A., Hashimoto, H., Yorimitsu, K., Ajima, K., Suenaga, H., Isobe, J., Miyawaki, M., Yudasaka, S., Iijima, E., Nakamura, Selective deposition of a gadoliunium (III) cluster in a hole opening of single-wall carbon nanohorn, Proc. Natl. Acad. Sci. USA 101, 8527 (2004)
[665] V.V., Mody, A., Cox, S., Shah, A., Singh,W., Bevins, H., Parihar, Magnetic nanoparticle drug delivery systems for targeting tumor, Appl. Nanosci. 4, 385 (2014)
[666] J.H., Park, G., Saravanakumar, K., Kim, I.C., Kwon, Targeted delivery of low molecular drugs using chitosan and its derivatives, Adv. Drug Deliv. Rev. 62, 28 (2010)
[667] Y., Hirota, Y., Akiyama, Y., Izumi, S., Nishijima, Fundamental study for development magnetic drug delivery system, Physica C 469, 1853 (2009)
[668] A. Al, Faraj, A.P., Shaik, A.S., Shaik1, Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker, Int. Jour. Nanomed. 10, 157 (2015)
[669] C., Tripisciano, K., Kraemer, A., Taylor, E., Borowiak-Palen, Single-wall carbon nanotubes based anticancer drug delivery system, Chem. Phys. Lett. 478, 200 (2009)
[670] S.P., Sherlock, S.M., Tabakman, L., Xie, H., Dai, Photothermally enhanced drug delivery by ultrasmall multifunctional FeCo/graphitic shell nanocrystals, ACS Nano 5, 1505 (2011)
[671] W.S., Seo, J.H., Lee, X.M., Sun, Y., Suzuki, D., Mann, Z., Liu, M., Terashima, P.C., Yang, M.V., McConnell, D.G., Nishimura, et al., FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents, Nature Mater. 5, 971 (2006)
[672] K., Kataoka, T., Matsumoto, M., Yokoyama, T., Okano, Y., Sakurai, S., Fukushima, K., Okamoto, G.S., Kwon, Doxorubicin-loaded poly(ethylene glycol)-poly(betabenzyl- Laspartate)copolymer micelles: their pharmaceutical characteristics and biological significance. Jour. Controlled Release 64, 143 (2000)
[673] K., Yang, S., Zhang, G., Zhang, X., Sun, S.-T., Lee, Z., Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy, Nano. Lett. 10, 3318 (2010)
[674] J.T., Robinson, K., Welsher, S.M., Tabakman, S.P., Sherlock, H., Wang, R., Luong, H., Dai, High performance in vivo near-IR (> 1μm) imaging and photothermal cancer therapy with carbon nanotubes, Nano Res. 3, 779 (2010)
[675] F.H., Chen, L.M., Zhang, Q.T., Chen, Y., Zhang, Z.J., Zhang, Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell, Chem. Commun. 46, 8633 (2010)
[676] R., Li, R., Wu, L., Zhao, M., Wu, L., Yang, H., Zou, P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells, ACS Nano 4, 1399 (2010)
[677] X., Huang, C.S., Brazel, On the importance and mechanisms of burst release in matrix-controlled drug delivery systems, Jour. Controlled Release 73, 121 (2001)
[678] A., Jordan, R., Scholz, P., Wust, H., Fähling, R., Felix, Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles, Jour. Magn. Magn. Mater. 201, 413 (1999)
[679] R.K., Gilchrist, R., Medal, W.D., Shorey, R.C., Hanselman, J.C., Parrott, C.B., Taylor, Selective inductive heating of lymph nodes. Ann. Surgery 146, 596 (1957)
[680] A., Jordan, P., Wust, H., Fähling, W., John, A., Hinz, R., Felix, Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia, Int. Jour. Hyperthermia 9, 51 (1993)
[681] M., Johannsen, U., Gneveckow, L., Eckelt, A., Feissner, N., Waldörfner, R., Scholz, S., Deger, P., Wust, S.A., Loening, A., Jordan, Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique, Int. J. Hyperthermia 21, 637 (2005)
[682] E., Rosensweig, Heating magnetic fluid with alternating magnetic field, Jour. Magn. Magn. Mater. 252, 370 (2002)
[683] Y., Krupskaya, C., Mahn, A., Parameswaran, A., Taylor, K., Krämer, S., Hampel, A., Leonhardt,M., Ritschel, B., Büchner, R., Klingeler,Magnetic study of iron-containing carbon nanotubes: feasibility for magnetic hyperthermia, Jour. Magn. Magn. Mater. 321, 4067 (2009)
[684] A., Rycerz, J., Tworzydlo, C.W.J., Beenakker, Valley filter and valley valve in graphene, Nature Physics 3,172 (2007)
[685] J., Isberg, M., Gabrysch, J., Hammersberg, S., Majdi, K.K., Kovi, D.J., Twitchen, Generation, transport and detection of valley-polarized electrons in diamond, Nature Mat. 12, 760 (2013)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Frank Hagelberg, East Tennessee State University
  • Book: Magnetism in Carbon Nanostructures
  • Online publication: 21 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781107707047.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Frank Hagelberg, East Tennessee State University
  • Book: Magnetism in Carbon Nanostructures
  • Online publication: 21 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781107707047.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Frank Hagelberg, East Tennessee State University
  • Book: Magnetism in Carbon Nanostructures
  • Online publication: 21 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781107707047.017
Available formats
×