Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-21T23:48:16.742Z Has data issue: false hasContentIssue false

12 - Impurities

from Part V - Composite Materials

Published online by Cambridge University Press:  21 July 2017

Frank Hagelberg
Affiliation:
East Tennessee State University
Get access

Summary

This chapter deals with magnetic composites consisting of carbon nanostructures and impurity species. The host systems included here are the prototypes fullerene, graphene and carbon nanotubes. In each case discussed, emphasis will be placed on the mechanisms by which the electronic ground state of the aggregate adopts magnetic properties. In many cases, the considered carbon allotrope provides a framework that preserves the magnetism of the guest species, as paradigmatically realized by some metallofullerenes with enclosed lanthanide atoms or clusters. In some systems, however, magnetism is not imported by the guest species but evolves as the carbon allotrope interacts with the externally added moieties. This situation is well exemplified by the much-studied compound tetrakis-dimethylamino-ethylene-C60 (TDAE-C60).

In sections 12.1 and 12.2, we refer first to magnetic metallofullerenes, arguably the most traditional among the structures included here. After all, research interest in fullerenes with enclosed metal components emerged soon after the discovery of C60 [139]. From metal atoms or metal atom clusters as guest species inside fullerene cages, we turn to single group V atoms as encapsulated components. Systems of the form A@C60, with A = N, P, have proven to be efficient in preserving the spin of the enclosed atom, which makes them interesting as physical realizations of qubits in quantum computing. The following Section (12.3) discusses a variety of magnetic phases that originate from electron transfer to fullerenes. This mechanism is operative in very diverse composites, ranging from fullerides to hybrids of fullerenes and organic molecules.

The remainder of this chapter deals with compounds involving graphene and nanotubes. Specifically, graphene is considered as substrate of two adatom types, hydrogen and fluorine, and computational as well as experimental findings on the magnetic phases of hydrogenated and fluorinated graphene are surveyed. The final section of this chapter summarizes various results on carbon nanotubes in combination with magnetic metal components, ranging from atoms to nanoparticles.

Magnetic Metallofullerenes

The magnetism of endohedral metallofullerenes with enclosed paramagnetic guest species arises from the interplay of various effects. Thus, the intrinsic magnetic moment of the enclosed metal component may affect the magnetic moment of the unit as a whole. Further, this component may be in a cationic state, as a consequence of electron transfer from the encapsulated atom or cluster to the fullerene enclosure.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Impurities
  • Frank Hagelberg, East Tennessee State University
  • Book: Magnetism in Carbon Nanostructures
  • Online publication: 21 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781107707047.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Impurities
  • Frank Hagelberg, East Tennessee State University
  • Book: Magnetism in Carbon Nanostructures
  • Online publication: 21 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781107707047.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Impurities
  • Frank Hagelberg, East Tennessee State University
  • Book: Magnetism in Carbon Nanostructures
  • Online publication: 21 July 2017
  • Chapter DOI: https://doi.org/10.1017/9781107707047.013
Available formats
×