Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-25T14:55:11.321Z Has data issue: false hasContentIssue false

14 - Interactions between habitat use, behavior, and the trophic niche of lacertid lizards

Published online by Cambridge University Press:  04 August 2010

Bieke Vanhooydonck
Affiliation:
Department of Biology University of Antwerp
Anthony Herrel
Affiliation:
Department of Biology University of Antwerp
Raoul Van Damme
Affiliation:
Department of Biology University of Antwerp
Stephen M. Reilly
Affiliation:
Ohio University
Lance B. McBrayer
Affiliation:
Georgia Southern University
Donald B. Miles
Affiliation:
Ohio University
Get access

Summary

Introduction

The existence of evolutionary trade-offs prevents simultaneous optimization of different functions that require opposing biomechanical or physiological adaptations (Stearns, 1992). Consequently, trade-offs likely play an important role in niche partitioning, in that species specialized in exploiting one type of niche (e.g. microhabitat) are expected to be less proficient at exploiting others. For instance, in Anolis lizards, a trade-off exists between sprint speed and sure-footedness because long limbs are required to move fast, whereas short limbs aid sure-footedness (Losos and Sinervo, 1989; Losos and Irschick, 1996). Accordingly, species that predominantly move on broad surfaces (i.e. trunk–ground ecomorph) specialize for speed and have long limbs, whereas species living on narrow substrates (i.e. twig ecomorph) are specialized in slower but secure movements.

In a similar fashion, species specializing in different dietary niches may have diverged morphologically because the biomechanical demands on the feeding and/or locomotor apparatus are often not reconcilable within one phenotype. Clearly, the ability of a predator to exploit a certain prey type will depend on the functional characteristics of the prey (e.g. prey distribution, hardness, and escape response) and the performance of the feeding and locomotor system of the predator. For instance, in labrid fishes the amount of force potentially generated by the jaws trades off with the speed of jaw movement because of differences in the four-bar linkage system of the jaws and hyoid (long links aid high force outputs, but rapid movements are realized by short links) (Westneat, 1994, 1995).

Type
Chapter
Information
Lizard Ecology , pp. 427 - 449
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguirre, L. F., Herrel, A., Damme, R. and Matthysen, E. (2002). Ecomorphological analysis of trophic niche partitioning in a tropical savannah bat community. Proc. R. Soc. Lond. B269, 1271–8.CrossRefGoogle Scholar
Aguirre, L. F., Herrel, A., Damme, R. and Matthysen, E. (2003). The implications of food hardness for diet in bats. Funct. Ecol. 17, 201–12.CrossRefGoogle Scholar
Angelici, F. M., Luiselli, L. and Rugiero, L. (1997). Food habits of the green lizard, Lacerta bilineata, in central Italy and a reliability test of faecal pellet analysis. Ital. J. Zool. 64, 267–72.CrossRefGoogle Scholar
Arnold, E. N. (1989). Towards a phylogeny and biogeography of the Lacertidae: relationships within an old-world family of lizards derived from morphology. Bull. Brit. Mus. Nat. Hist. (Zool.) 55, 209–57.Google Scholar
Arnold, E. N. (1998). Structural niche, limb morphology and locomotion in lacertid lizards (Squamata, Lacertidae); a preliminary survey. Bull. Brit. Mus. Nat. Hist. (Zool.) 64, 63–89.Google Scholar
Arnold, S. J. (1993). Foraging theory and prey size – predator size relations in snakes. In Snakes: Ecology and Behaviour, ed. Seigel, R. A. and Collins, J. J., pp. 87–112. New York: McGraw-Hill.Google Scholar
Bauwens, D., Garland, T. Jr., Castilla, A. M. and Damme, R. (1995). Evolution of sprint speed in lacertid lizards: morphological, physiological, and behavioural covariation. Evolution 49, 848–63.Google ScholarPubMed
Bickel, R. and Losos, J. B. (2002). Patterns of morphological variation and correlates of habitat use in Chameleons. Biol. J. Linn. Soc. 76, 91–103.CrossRefGoogle Scholar
Cartmill, M. (1985). Climbing. In Functional Vertebrate Morphology, ed. Hildebrand, M., Bramble, D. M., Liem, K. F. and Wake, D. B., pp. 73–88. Cambridge, MA: The Belknap Press.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Whiting, M. J. (1999). Foraging modes in lacertid lizards from southern Africa. Amph.-Rept. 20, 299–311.CrossRefGoogle Scholar
Diaz, J. A. (1995). Prey selection by lacertid lizards: a short review. Herpetol. J. 5, 245–51.Google Scholar
Emerson, S. B., Greene, H. W. and Charnov, E. L. (1994). Allometric aspects of predator-prey interactions. In Ecological Morphology, ed. Wainwright, P. C. and Reilly, S. M., pp. 123–39. Chicago, IL: University of Chicago Press.Google Scholar
Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat. 125, 1–15.CrossRefGoogle Scholar
Felsenstein, J. (1988). Phylogenies and quantitative characters. Ann. Rev. Ecol. Syst. 19, 445–71.CrossRefGoogle Scholar
Fu, J. (2000). Toward the phylogeny of the family Lacertidae – Why 4708 base pairs of mtDNA sequences cannot draw the picture. Biol. J. Linn. Soc. 71, 203–17.Google Scholar
Garland, T. Jr. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18–32.CrossRefGoogle Scholar
Garland, T. Jr. (1999). Laboratory endurance capacity predicts variation in field locomotor behaviour among lizard species. Anim. Behav. 58, 77–83.CrossRefGoogle ScholarPubMed
Garland, T. Jr., Midford, P. E. and Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral states. Am. Zool. 39, 374–88.CrossRefGoogle Scholar
Gvozdik, L. and Damme, R. (2003). Evolutionary maintenance of sexual dimorphism in head size in the lizard Zootoca vivipara: a test of two hypotheses. J. Zool. Lond. 259, 7–13.CrossRefGoogle Scholar
Harris, D. J. and Arnold, E. N. (1999). Relationships of wall lizards, Podarcis (Reptilia: Lacertidae) based on mitochondrial DNA sequences. Copeia 1999, 749–54.CrossRefGoogle Scholar
Herrel, A., Spithoven, L., Damme, R. and Vree, R. (1999). Sexual dimorphism of head size in Gallotia galloti; testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–97.CrossRefGoogle Scholar
Herrel, A., Grauw, E. and Lemos-Espinal, J. A. (2001a). Head shape and bite performance in xenosaurid lizards. J. Exp. Zool. 290, 101–7.CrossRefGoogle Scholar
Herrel, A., Meyers, J. J. and Vanhooydonck, B. (2001b). Correlation between habitat use and body shape in a phrynosomatid lizard (Urosaurus ornatus): a population-level analysis. Biol. J. Linn. Soc. 74, 305–14.CrossRefGoogle Scholar
Herrel, A., Damme, R., Vanhooydonck, B. and Vree, F. (2001c). The implications of bite performance for diet in two species of lacertid lizards. Can. J. Zool. 79, 662–70.CrossRefGoogle Scholar
Herrel, A., Meyers, J. J. and Vanhooydonck, B. (2002a). Relations between microhabitat use and limb shape in phrynosomatid lizards. Biol. J. Linn. Soc. 77, 149–63.CrossRefGoogle Scholar
Herrel, A., O'Reilly, J. C. and Richmond, A. M. (2002b). Evolution of bite performance in turtles. J. Evol. Biol. 15, 1083–94.CrossRefGoogle Scholar
Herrel, A., Vanhooydonck, B. and Damme, R. (2004). Omnivory in lacertid lizards: adaptive evolution or constraint? J. Evol. Biol. 17, 974–84.CrossRefGoogle ScholarPubMed
Herrel, A., Podos, J., Huber, S. K. and Hendry, A. P. (2005). Bite performance and morphology in a population of Darwin's finches: implications for the evolution of beak shape. Funct. Ecol. 19, 43–8.CrossRefGoogle Scholar
Huey, R. B. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.CrossRefGoogle Scholar
Huey, R. B., Bennett, A. F., John-Alder, H. and Nagy, K. A. (1984). Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. Anim. Behav. 32, 41–50.CrossRefGoogle Scholar
Losos, J. B. and Irschick, D. J. (1996). The effects of perch diameter on the escape behaviour of Anolis lizards: laboratory based predictions and field tests. Anim. Behav. 51, 593–602.CrossRefGoogle Scholar
Losos, J. B. and Sinervo, B. (1989). The effects of morphology and perch diameter on sprint performance of Anolis lizards. J. Exp. Biol. 245, 23–30.Google Scholar
McArthur, R. H. and Pianka, E. R. (1966). On the optimal use of a patchy environment. Am. Nat. 100, 603–9.CrossRefGoogle Scholar
McBrayer, L. (2004). The relationship between skull morphology, biting performance and foraging mode in Kalahari lacertid lizards. Zool. J. Linn. Soc. 140, 403–16.CrossRefGoogle Scholar
Meyers, J. J. and Herrel, A. (2005). Prey capture kinematics of ant-eating lizards. J. Exp. Biol. 208, 113–27.CrossRefGoogle ScholarPubMed
Miles, D. B. (1994). Covariation between morphology and locomotory performance in Sceloporine lizards. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R., pp. 207–35. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Molina-Borja, M. (1991). Notes on alimentary habits and spatial-temporal distribution of eating behaviour patterns in a natural population of lizards (Gallotia galloti). Vieraea 20, 1–9.Google Scholar
Molina-Borja, M.Padron-Fumero, M., and Alfonso-Martin, M. T. (1997). Intrapopulation variability in morphology, coloration, and body size in two races of the lacertid lizard, Gallotia galloti. J. Herpetol. 31, 499–507.CrossRefGoogle Scholar
Mou, Y.-P. and Barbault, R. (1986). Régime alimentaire d' une population de lézard des murailles, Podarcis muralis (Laurent, 1768) dans le Sud-Ouest de la France. Amph.-Rept. 7, 171–80.CrossRefGoogle Scholar
Nagy, K. A., Huey, R. B. and Bennett, A. F. (1984). Field energetics and foraging mode of Kalahari lacertid lizards. Ecology 65, 588–96.CrossRefGoogle Scholar
Nouira, S. (1983). Partage des resources alimentaires entre deux Lacertidae sympatriques des iles Kerkennah (Tunisie): Acanthodactylus pardalis et Eremias olivieri. Soc. Zool. Fr. 1983, 477–83.Google Scholar
Olsson, M. and Madsen, T. (1998). Sexual selection and sperm competition in reptiles. In Sperm Competition and Sexual Selection, ed. Birkhead, T. R. and Moller, A. P., pp. 503–610. London: Academic Press.Google Scholar
Pérez-Mellado, V. and Corti, C. (1993). Dietary adaptations and herbivory in lacertid lizards of the genus Podarcis from western Mediterranean islands (Reptilia-Sauria). Bonn. Zool. Beitr. 44, 193–220.Google Scholar
Perry, G. (1999). The evolution of search modes: ecological versus phylogenetic perspectives. Am. Nat. 153, 98–109.CrossRefGoogle ScholarPubMed
Pollo, C. J. and Pérez-Mellado, V. (1988). Trophic ecology of a taxocenosis of Mediterranean Lacertidae. Ecolog. Mediterranea 14, 131–46.Google Scholar
Pounds, J. A. (1988). Ecomorphology, locomotion, and microhabitat structure: patterns in a tropical mainland Anolis community. Ecol. Monogr. 58, 299–320.CrossRefGoogle Scholar
Reidy, S. P., Kerr, R. and Nelson, J. A. (2000). Aerobic and anaerobic swimming performance of individual Atlantic cod. J. Exp. Biol. 203, 347–57.Google ScholarPubMed
Roig-Fernandez, J. M. (1998). Ecologia trófica de una población pirenaica de lagartija de turbera Zootoca vivipara (Jacquin, 1787). Tesis de licenciatura, University of Barcelona, Spain.
Roughgarden, J. (1995). Anolis Lizards of the Caribbean. New York: Oxford University Press.Google Scholar
Schoener, T. W. (1971). Theory of feeding strategies. Ann. Rev. Ecol. Syst. 2, 369–404.CrossRefGoogle Scholar
Sokal, R. R. and Rohlf, F. J. (1995). Biometry. The Principles and Practice of Statistics in Biological Research, 3rd edn. New York: W. H. Freeman and Company.Google Scholar
Spezzano, L. C. and Jayne, B. C. (2004). The effects of surface diameter and incline of the hindlimb kinematics of an arboreal lizard (Anolis sagrei). J. Exp. Biol. 207, 2115–31.CrossRefGoogle Scholar
Stearns, S. C. (1992). The Evolution of Life Histories. New York: Oxford University Press.Google Scholar
Valido, A. and Nogales, M. (1994). Frugivory and seed dispersal by the lizard Gallotia galloti (Lacertidae) in a xeric habitat of the Canary Islands. Oikos 70, 403–11.CrossRefGoogle Scholar
Valido, A. and Nogales, M. (2003). Digestive ecology of two omnivorous Canarian lizard species (Gallotia, Lacertidae). Amph.-Rept. 24, 331–44.CrossRefGoogle Scholar
Damme, R., Wilson, R. S., Vanhooydonck, B. and Aerts, P. (2002). Performance constraints in decathletes. Nature 415, 755–6.CrossRefGoogle ScholarPubMed
Vanhooydonck, B. and Damme, R. (1999). Evolutionary relationships between body shape and habitat use in lacertid lizards. Evol. Ecol. Res. 1, 785–805.Google Scholar
Vanhooydonck, B. and Damme, R. (2001). Evolutionary trade-offs in locomotor capacities in lacertid lizards: are splendid sprinters clumsy climbers? J. Evol. Biol. 14, 48–54.CrossRefGoogle ScholarPubMed
Vanhooydonck, B. and Damme, R. (2003). Relationships between locomotor performance, microhabitat use and antipredator behaviour in lacertid lizards. Funct. Ecol. 17, 160–9.CrossRefGoogle Scholar
Vanhooydonck, B.Damme, R. and Aerts, P. (2001). Speed and stamina trade-off in lacertid lizards. Evolution 55, 1040–8.CrossRefGoogle ScholarPubMed
Verwaijen, D., Damme, R. and Herrel, A. (2002). Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Funct. Ecol. 16, 842–50.CrossRefGoogle Scholar
Westneat, M. W. (1994). Transmission forces and velocity in the feeding mechanisms of labrid fishes (Teleostei, Perciformes). Zoomorphology 114, 103–18.CrossRefGoogle Scholar
Westneat, M. W. (1995). Feeding, function, and phylogeny: analysis of historical biomechanics in labrid fishes using comparative methods. Syst. Biol. 44, 361–83.CrossRefGoogle Scholar
Zaaf, A., Damme, R., Herrel, A. and Aerts, P. (2001). Spatio-temporal gait characteristics of level and vertical locomotion in a ground-dwelling and a climbing gecko. J. Exp. Biol. 204, 1233–46.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×