Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-29T09:16:12.137Z Has data issue: false hasContentIssue false

13 - Foraging mode in the African cordylids and plasticity of foraging behavior in Platysaurus broadleyi

Published online by Cambridge University Press:  04 August 2010

Martin J. Whiting
Affiliation:
School of Animal Plant and Environmental Sciences University of the Witwatersrand
Stephen M. Reilly
Affiliation:
Ohio University
Lance B. McBrayer
Affiliation:
Georgia Southern University
Donald B. Miles
Affiliation:
Ohio University
Get access

Summary

Introduction

Understanding the evolution of key life history traits frequently involves searching for broad-scale patterns among diverse organisms (see, for example, Vitt et al., 2003). When consistent patterns emerge, particularly among members of multiple clades, our understanding of how suites of traits co-evolve is improved. In the process, new hypotheses are generated, allowing further testing of patterns and the mechanisms that generate them. The simplified goal of this book is to disentangle the evolution of foraging mode within a major vertebrate lineage: lizards. In particular, we wish to understand the relationship between foraging mode and a suite of co-evolved characters. Fundamental to lizard foraging theory is the tenet that foraging mode has greatly constrained (or shaped) the evolution of certain traits, including aspects of morphology and physiology. For example, ambush foragers are often tank-like and have a high relative clutch mass, relatively slow sprint speed and lower metabolic rate than active foragers, which are slender, relatively fast, and with lower relative clutch mass (Huey and Pianka, 1981; see references in Greeff and Whiting, 2000). More recently, there is accumulating evidence that although foraging mode has had a profound influence on aspects of lizard biology, foraging mode is deeply rooted in history (phylogeny) and only one of many traits explaining current lizard diversity (Perry, 1999; Vitt et al., 2003). Lizard foraging mode is also remarkably stable within entire clades (e.g. families) of lizards (Cooper, 1994, 1995).

Type
Chapter
Information
Lizard Ecology , pp. 405 - 426
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berg, C. C., and Wiebes, J. T. (1992). African Fig Trees and Fig Wasps. Amsterdam, The Netherlands: Koninklijke Nederlandse Akademie van Wetensschappen North-Holland.Google Scholar
Branch, B. (1998). Field Guide to the Snakes and Other Reptiles of Southern Africa, 2nd edn. Cape Town: Struik Publishers.Google Scholar
Branch, W. R. and Whiting, M. J. (1997). A new Platysaurus (Squamata: Cordylidae) from the Northern Cape Province, South Africa. Afr. J. Herpetol. 46, 124–36.CrossRefGoogle Scholar
Broadley, D. G. (1978). A revision of the genus Platysaurus A. Smith (Sauria: Cordylidae). Occ. Pap. Natl. Mus. Rhod., B6, 129–85.Google Scholar
Brodie, E. D. III. (1992). Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution 46, 1284–98.CrossRefGoogle ScholarPubMed
Cooper, W. E. Jr. (1994). Prey chemical discrimination, foraging mode, and phylogeny. In Lizard Ecology: Historical and Experimental Perspectives, ed. Vitt, L. J. and Pianka, E. R, pp. 95–116. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Cooper, W. E. Jr. (1995). Foraging mode, prey chemical discrimination, and phylogeny in lizards. Anim. Behav. 50, 973–85.CrossRefGoogle Scholar
Cooper, W. E. Jr. (2005). The foraging mode controversy: both continuous variation and clustering of foraging movements occur. J. Zool. Lond. 267, 179–90.CrossRefGoogle Scholar
Cooper, W. E. Jr. and Whiting, M. J. (2000). Ambush and active foraging modes both occur in the scincid genus Mabuya. Copeia 2000, 112–118.CrossRefGoogle Scholar
Cooper, W. E. Jr., Perez-Mellado, V. and Vitt, L. J. (2002). Responses to major categories of food chemicals by the lizard Podarcis lilfordi. J. Chem. Ecol. 28, 689–700.CrossRefGoogle ScholarPubMed
Cooper, W. E. Jr., Whiting, M. J. and Wyk, J. H. (1997). Foraging modes of cordyliform lizards. S. Afr. J. Zool. 32, 9–13.CrossRefGoogle Scholar
Day, L. B., Crews, D. and Wilczynski, W. (1999). Spatial and reversal learning in congeneric lizards with different foraging strategies. Anim. Behav. 57, 393–407.CrossRefGoogle ScholarPubMed
Dukas, R., ed. (1998). Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision Making. Chicago, IL: The University of Chicago Press.Google Scholar
Durtsche, R. D. 2004. Ontogenetic variation in digestion by the herbivorous lizard Ctenosaura pectinata. Physiol. Biochem. Zool. 77, 459–70.CrossRefGoogle ScholarPubMed
du Toit, A., Mouton, P. le F. N. M., Geertsema, H. and Flemming, A. (2002). Foraging mode of serpentiform, grass-living cordylid lizards: a case study of Cordylus anguina. African Zool. 37, 141–9.CrossRefGoogle Scholar
Eifler, D. A. (1995). Patterns of plant visitation by nectar-feeding lizards. Oecologia 101, 228–33.CrossRefGoogle ScholarPubMed
Eifler, D. A. (1996). Experimental manipulation of spacing patterns in the widely foraging lizard Cnemidophorus uniparens. Herpetologica 52, 477–86.Google Scholar
Eifler, D. A., and Eifler, M. A. (1999). The influence of prey distribution on the foraging strategy of the lizard Oligosoma grande (Reptilia: Scincidae). Behav. Ecol. Sociobiol. 45, 397–402.CrossRefGoogle Scholar
Frost, D., Janies, D., Mouton, P. le F. N. and Titus, T. (2001). A molecular perspective on the phylogeny of the girdled lizards (Cordylidae, Squamata). Am. Mus. Nov. 3310, 1–10.2.0.CO;2>CrossRefGoogle Scholar
Funston, P. J., Mills, M. G. L., Biggs, H. and Richardson, P. R. K. (1998). Hunting by male lions: ecological influences and socioecological implications. Anim. Behav. 56, 1333–45.CrossRefGoogle ScholarPubMed
Greeff, J. M. and Whiting, M. J. (1999). Dispersal of Namaqua fig seeds by the lizard Platysaurus broadleyi (Sauria: Cordylidae). J. Herpetol. 33, 328–30.CrossRefGoogle Scholar
Greeff, J. M. and Whiting, M. J. (2000). Foraging-mode plasticity in the lizard Platysaurus broadleyi. Herpetologica 56, 402–7.Google Scholar
Huey, R. B. and Pianka, E. R. (1981). Ecological consequences of foraging mode. Ecology 62, 991–9.CrossRefGoogle Scholar
Lamb, T., Meeker, A. M., Bauer, A. M. and Branch, W. R. (2003). On the systematic status of the desert plated lizard (Angolosaurus skoogi): phylogenetic inference from DNA sequence analysis of the African Gerrhosauridae. Biol. J. Linn. Soc. 78, 253–61.CrossRefGoogle Scholar
Lang, M. (1991). Generic relationships within Cordyliformes (Reptilia: Squamata). Bull. Inst. R. Sci. Nat. Belg. 61, 121–88.Google Scholar
Losos, J. B. (1990). Concordant evolution of locomotor behaviour, display rate and morphology in Anolis lizards. Anim. Behav. 39, 879–90.CrossRefGoogle Scholar
Losos, J. B., Mouton, P. le F. N., Bickel, R., Cornelius, I. and Ruddock, L. (2002). The effect of body armature on escape behaviour in cordylid lizards. Anim. Behav. 64, 313–21.CrossRefGoogle Scholar
McLaughlin, R. L., Ferguson, M. M. and Noakes, D. L. G. (1999). Adaptive peaks and alternative foraging tactics in brook charr: evidence of short-term divergent selection for sitting-and-waiting and actively searching. Behav. Ecol. Sociobiol. 45, 386–95.CrossRefGoogle Scholar
Mouton, P. le F. N. and Wyk, J. H. (1997). Adaptive radiation in cordyliform lizards: an overview. Afr. J. Herpetol. 46, 78–88.CrossRefGoogle Scholar
Mouton, P. le F. N., Geertsema, H. and Visagie, L. (2000). Foraging mode of a group-living lizard, Cordylus cataphractus. Afr. Zool. 35, 1–7.Google Scholar
Odierna, G., Canapa, A., Andreone, F.et al. (2002). A phylogenetic analysis of cordyliformes (Reptilia: Squamata): comparison of molecular and karyological data. Mol. Phylogenet. Evol. 23, 37–42.CrossRefGoogle ScholarPubMed
Paszkowski, C. A. (1982). Vegetation, ground, and frugivorous foraging of the American robin. Auk 99, 701–9.Google Scholar
Perry, G. (1999). Evolution of search modes: ecological versus phylogenetic perspectives. Am. Nat. 153, 98–109.CrossRefGoogle ScholarPubMed
Pianka, E. R. (1966). Convexity, desert lizards, and spatial heterogeneity. Ecology 47, 1055–9.CrossRefGoogle Scholar
Pietruszka, R. D. (1986). Search tactics of desert lizards: how polarized are they?Anim. Behav. 34, 1742–58.CrossRefGoogle Scholar
Pietruszka, R. D., Hanrahan, S. A., Mitchell, D. and Seely, M. K. (1986). Lizard herbivory in a sand dune environment: the diet of Angolosaurus skoogi. Oecologia 70, 587–91.CrossRefGoogle Scholar
Regal, P. J. (1978). Behavioral differences between reptiles and mammals: an analysis of activity and mental capabilities. In Behavior and Neurobiology of Lizards, ed. Greenberg, N. and Maclean, P. D., pp. 183–202. Washington, D.C.: Department of Health, Education and Welfare.Google Scholar
Scott, I. A. W., Keogh, J. S. and Whiting, M. J. (2004). Shifting sands and shifty lizards: Molecular phylogeny and biogeography of African flat lizards (Platysaurus). Mol. Phylogenet. Evol. 31, 618–29.CrossRefGoogle Scholar
Shafir, S. and Roughgarden, J. (1998). Testing predictions of foraging theory for a sit-and-wait forager, Anolis gingivinus. Behav. Ecol. 9, 74–84.CrossRefGoogle Scholar
Stephens, D. W. and Krebs, J. R. (1986). Foraging Theory. Princeton, NJ: Princeton University Press.Google Scholar
Wyk, J. H. (2000). Seasonal variation in stomach contents and diet composition in the large girdled lizard, Cordylus giganteus (Reptilia: Cordylidae) in the Highveld grasslands of the northeastern Free State, South Africa. Afr. Zool. 35, 9–27.Google Scholar
Vitt, L. J. and Congdon, J. D. (1978). Body shape, reproductive effort, and relative clutch mass in lizards: resolution of a paradox. Am. Nat. 112, 595–607.CrossRefGoogle Scholar
Vitt, L. J., Pianka, E. R., Cooper, W. E. Jr. and Schwenk, K. (2003). History and the global ecology of squamate reptiles. Am. Nat. 162, 44–60.CrossRefGoogle ScholarPubMed
Whiting, M. J. (1999). When to be neighbourly: differential agonistic responses in the lizard Platysaurus broadleyi. Behav. Ecol. Sociobiol. 46, 210–14.CrossRefGoogle Scholar
Whiting, M. J. (2002). Field experiments on intersexual differences in predation risk and escape behaviour in the lizard Platysaurus broadleyi. Amph.-Rept. 23, 119–24.Google Scholar
Whiting, M. J. and Cooper, W. E. Jr. (2003). Tasty figs and tasteless flies: plant chemical discrimination but no prey chemical discrimination in the cordylid lizard Platysaurus broadleyi. Acta Ethologica 6, 13–17.CrossRefGoogle Scholar
Whiting, M. J. and Greeff, J. M. (1997). Facultative frugivory in the Cape flat lizard, Platysaurus capensis (Sauria: Cordylidae). Copeia 1997, 811–18.CrossRefGoogle Scholar
Whiting, M. J. and Greeff, J. M. (1999). Use of heterospecific cues by the lizard Platysaurus broadleyi for food location. Behav. Ecol. Sociobiol. 45, 420–3.CrossRefGoogle Scholar
Whiting, M. J., Nagy, K. A. and Bateman, P. W. (2003). Evolution and maintenance of social status signalling badges: experimental manipulations in lizards. In Lizard Social Behavior, ed. Fox, S. F., McCoy, J. K. and Baird, T. A, pp. 47–82. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Whiting, M. J., Stuart-Fox, D. M., O'Connor, D.et al. (2006). Ultraviolet signals ultra-aggression in a lizard. Anim. Behav. 72, 353–63.CrossRefGoogle Scholar
Zug, G., Vitt, L. J. and Caldwell, J. P. (2001). Herpetology: An Introductory Biology of Amphibians and Reptiles, 2nd edn. San Diego, CA: Academic Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×