Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T12:18:35.639Z Has data issue: false hasContentIssue false

13 - Iterative relaxation: Early and recent examples

Published online by Cambridge University Press:  05 June 2012

Lap Chi Lau
Affiliation:
The Chinese University of Hong Kong
R. Ravi
Affiliation:
Carnegie Mellon University, Pennsylvania
Mohit Singh
Affiliation:
McGill University, Montréal
Get access

Summary

Even though we mentioned the paper by Jain [75] as the first explicit application of the iterative method to approximation algorithms, several earlier results can be reinterpreted in this light, which is what we set out to do in this chapter. We will first present a result by Beck and Fiala [12] on hypergraph discrepancy, whose proof is closest to other proofs in this book. Then we will present a result by Steinitz [127] on rearrangements of sums in a geometric setting, which is the earliest application that we know of. Then we will present an approximation algorithm by Skutella [123] for the single source unsplittable flow problem. Then we present the additive approximation algorithm for the bin packing problem by Karmarkar and Karp [77], which is still one of the most sophisticated uses of the iterative relaxation method. Finally, we sketch a recent application of the iterative method augmented with randomized rounding to the undirected Steiner tree problem [20] following the simplification due to Chakrabarty et al. [24].

A discrepancy theorem

In this section, we present the Beck–Fiala theorem from discrepancy theory using an iterative method. Given a hypergraph G = (V, E), a 2-coloring of the hypergraph is defined as an assignment ψ: V → {-1, +1} on the vertices. The discrepancy of a hyperedge e is defined as discχ(e) = ∑ve ψ(v), and the discrepancy of the hypergraph G is defined as discψ(G) = maxeE(G) |{discψ(e)}|.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×