Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-16T18:33:35.140Z Has data issue: false hasContentIssue false

4 - Materials for nanoelectronics

Published online by Cambridge University Press:  05 June 2012

Vladimir V. Mitin
Affiliation:
State University of New York, Buffalo
Viatcheslav A. Kochelap
Affiliation:
National Academy of Sciences, Ukraine
Michael A. Stroscio
Affiliation:
University of Illinois, Chicago
Get access

Summary

Introduction

After the previous introduction to the general properties of particles and waves on the nanoscale, we shall now overview the basic materials which are exploited in nanoelectronics. As discussed in Chapter 1, electronics and optoelectronics primarily exploit the electrical and optical properties of solid-state materials. The simplest and most intuitive classification of solids distinguishes between dielectrics, i.e., non-conducting materials, and metals, i.e., good conducting materials. Semiconductors occupy a place in between these two classes: semiconductor materials are conducting and optically active materials with electrical and optical properties varying over a wide range. Semiconductors are the principal candidates for use in nanoelectronic structures because they allow great flexibility in the control of the electrical and optical properties and functions of nanoelectronic devices.

The semiconductors exploited in microelectronics are, in general, crystalline materials. Through proper regimes of growth, subsequent modifications and processing, doping by impurities, etc., one can fabricate nanostructures and nanodevices starting from these “bulk-like” materials.

Other physical objects that demonstrate promising properties for nanoelectronicswere discovered recently, for example carbon nanotubes. These wire-like and extended objects are of a few nanometers in cross-section. They can be produced with good control of their basic properties; in particular, they can be fabricated as either semiconductors or metals. Various types of processing techniques have been shown to be viable for the fabrication of electronic nanodevices from carbon nanotubes.

Type
Chapter
Information
Introduction to Nanoelectronics
Science, Nanotechnology, Engineering, and Applications
, pp. 65 - 108
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×