Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-08T21:41:08.446Z Has data issue: false hasContentIssue false

6 - Electron transport in semiconductors and nanostructures

Published online by Cambridge University Press:  05 June 2012

Vladimir V. Mitin
Affiliation:
State University of New York, Buffalo
Viatcheslav A. Kochelap
Affiliation:
National Academy of Sciences, Ukraine
Michael A. Stroscio
Affiliation:
University of Illinois, Chicago
Get access

Summary

Introduction

In previous chapters we studied advances in materials growth and nanostructure fabrication. In the case of electrons, we paid primary attention to the quantization of their energy in nanostructures. In fact, electronics relies upon electric signals, i.e., it deals with measurements of the electric current and voltage. Controlling and processing electric signals are the major functions of electronic devices. Correspondingly, our next task will be the study of transport of charge carriers, which are responsible for electric currents through nanostructures.

The possible transport regimes of the electrons are dependent on many parameters and factors. Some important aspects of these regimes can be elucidated by comparing the time and length scales of the carriers with device dimensions and device temporal phenomena related to operating frequencies. Such an analysis is carried out in Section 6.2. In Sections 6.3 and 6.4 we discuss the role of electron statistics in transport effects. Then, we consider the behavior of the electrons in high electric field, including so-called hot-electron effects. Analyzing very short devices, we describe dissipative transport and the velocity-overshoot effect. Finally, we consider semiclassical ballistic motion of the electrons and present ideas on quantum transport in nanoscale devices in Section 6.5.

Time and length scales of the electrons in solids

We start with an analysis of possible transport regimes of the electrons in nanostructures. Since there is a large number of transport regimes, we introduce their classification in terms of characteristic times and lengths fundamentally inherent to electron motion.

Type
Chapter
Information
Introduction to Nanoelectronics
Science, Nanotechnology, Engineering, and Applications
, pp. 165 - 217
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×