Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T08:35:11.870Z Has data issue: false hasContentIssue false

11 - Stimuli-responsive polymeric substrates for cell-matrix mechanobiology

from Part I - Micro-nano techniques in cell mechanobiology

Published online by Cambridge University Press:  05 November 2015

Yu Sun
Affiliation:
University of Toronto
Deok-Ho Kim
Affiliation:
University of Washington
Craig A. Simmons
Affiliation:
University of Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Integrative Mechanobiology
Micro- and Nano- Techniques in Cell Mechanobiology
, pp. 186 - 202
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoyagi, T., Ebara, M., Sakai, K., Sakurai, Y. and Okano, T. (2000). “Novel bifunctional polymer with reactivity and temperature sensitivityJournal of Biomaterials Science, Polymer Edition 11: 101110.CrossRefGoogle ScholarPubMed
Auernheimer, J., Dahmen, C., Hersel, U., Bausch, A. and Kessler, H. (2005). “Photoswitched cell adhesion on surfaces with RGD peptides.” Journal of the American Chemical Society 127: 1610716110.CrossRefGoogle ScholarPubMed
Davis, K. A., Burke, K. A., Mather, P. T. and Henderson, J. H. (2011). “Dynamic cell behavior on shape memory polymer substrates.” Biomaterials 32: 22852293.CrossRefGoogle ScholarPubMed
Deforest, C. A. and Anseth, K. S. (2011). “Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions.” Nature Chemistry 3: 925931.CrossRefGoogle ScholarPubMed
Ebara, M., Akimoto, M., Uto, K., et al. (2014a). “Focus on the interlude between topographic transition and cell response on shape-memory surfaces.” Polymer 55: 59615968.CrossRefGoogle Scholar
Ebara, M., Uto, K., Idota, N., Hoffman, J. M. and Aoyagi, T. (2012). “Shape-memory surface with dynamically tunable nano-geometry activated by body heat.” Advanced Materials 24: 273278.CrossRefGoogle ScholarPubMed
Ebara, M., Uto, K., Idota, N., Hoffman, J. M. and Aoyagi, T. (2014b). “The taming of the cell: shape-memory nanopatterns direct cell orientation.” International Journal of Nanomedicine 9(Supplement 1): 117126.CrossRefGoogle ScholarPubMed
Ebara, M., Yamato, M., Aoyagi, T., et al. (2004a). “Immobilization of cell-adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest.” Tissue Engineering 10: 11251135.CrossRefGoogle ScholarPubMed
Ebara, M., Yamato, M., Aoyagi, T., et al. (2004b). “Temperature-responsive cell culture surfaces enable ‘on−off’ affinity control between cell integrins and RGDS ligands.” Biomacromolecules 5: 505510.CrossRefGoogle ScholarPubMed
Ebara, M., Yamato, M., Aoyagi, T., et al. (2008). “The effect of extensible PEG tethers on shielding between grafted thermo-responsive polymer chains and integrin–RGD binding.” Biomaterials 29: 36503655.CrossRefGoogle ScholarPubMed
Ebara, M., Yamato, M., Hirose, M., et al. (2003). “Copolymerization of 2-carboxyisopropylacrylamide with N-isopropylacrylamide accelerates cell detachment from grafted surfaces by reducing temperature.” Biomacromolecules 4: 344349.CrossRefGoogle ScholarPubMed
Edahiro, J.-I., Sumaru, K., Tada, Y., et al. (2005). “In situ control of cell adhesion using photoresponsive culture surface.” Biomacromolecules 6: 970974.CrossRefGoogle ScholarPubMed
Egami, M., Haraguchi, Y., Shimizu, T., Yamato, M. and Okano, T. (2014). “Latest status of the clinical and industrial applications of cell sheet engineering and regenerative medicine.” Archives of Pharmacal Research 37: 96106.CrossRefGoogle ScholarPubMed
Frey, M. T. and Wang, Y.-L. (2009). “A photo-modulatable material for probing cellular responses to substrate rigidity.” Soft Matter 5: 19181924.CrossRefGoogle ScholarPubMed
Georges, P. C., Hui, J.-J., Gombos, Z., et al. (2007). “Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis.” American Journal of Physiology-Gastrointestinal and Liver Physiology 296(6): G1147G1156.CrossRefGoogle Scholar
Guvendiren, M. and Burdick, J. A. (2012). “Stiffening hydrogels to probe short- and long-term cellular responses to dynamic mechanics.” Nat Commun 3: 792.CrossRefGoogle Scholar
Idota, N., Ebara, M., Kotsuchibashi, Y., Narain, R. and Aoyagi, T. (2012). “Novel temperature-responsive polymer brushes with carbohydrate residues facilitate selective adhesion and collection of hepatocytes.” Science and Technology of Advanced Materials 13: 064206.CrossRefGoogle ScholarPubMed
Jiang, F. X., Yurke, B., Schloss, R. S., Firestein, B. L. and Langrana, N. A. (2010a). “Effect of dynamic stiffness of the substrates on neurite outgrowth by using a DNA-crosslinked hydrogel.” Tissue Eng Part A 16: 18731889.CrossRefGoogle ScholarPubMed
Jiang, F. X., Yurke, B., Schloss, R. S., Firestein, B. L. and Langrana, N. A. (2010b). “The relationship between fibroblast growth and the dynamic stiffnesses of a DNA crosslinked hydrogel.” Biomaterials 31: 11991212.CrossRefGoogle ScholarPubMed
Kakegawa, T., Mochizuki, N., Sadr, N., Suzuki, H. and Fukuda, J. (2014). “Cell-adhesive and cell-repulsive zwitterionic oligopeptides for micropatterning and rapid electrochemical detachment of cells.” Tissue Eng Part A 19: 290298.CrossRefGoogle Scholar
Khetan, S., Guvendiren, M., Legant, W. R., et al. (2013). “Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels.” Nat Mater 12: 458465.CrossRefGoogle ScholarPubMed
Kiang, J. D., Wen, J. H., Del Álamo, J. C. and Engler, A. J. (2013). “Dynamic and reversible surface topography influences cell morphology.” Journal of Biomedical Materials Research Part A 101A: 23132321.CrossRefGoogle Scholar
Kirschner, C. M. and Anseth, K. S. (2013). “In situ control of cell substrate microtopographies using photolabile hydrogels.” Small 9: 578584.Google ScholarPubMed
Kloxin, A. M., Kasko, A. M., Salinas, C. N. and Anseth, K. S. (2009). “Photodegradable hydrogels for dynamic tuning of physical and chemical properties.” Science 324: 5963.CrossRefGoogle ScholarPubMed
Kushida, A., Yamato, M., Konno, C., et al. (1999). “Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces.” Journal of Biomedical Materials Research 45: 355362.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Lam, M. T., Clem, W. C. and Takayama, S. (2008). “Reversible on-demand cell alignment using reconfigurable microtopography.” Biomaterials 29: 17051712.CrossRefGoogle ScholarPubMed
Lamb, B. M. and Yousaf, M. N. (2011). “Redox-switchable surface for controlling peptide structure.” Journal of the American Chemical Society 133 88708873.CrossRefGoogle ScholarPubMed
Le, D. M., Kulangara, K., Adler, A. F., Leong, K. W. and Ashby, V. S. (2011). “Dynamic topographical control of mesenchymal stem cells by culture on responsive poly(ε-caprolactone) surfaces.” Advanced Materials 23: 32783283.CrossRefGoogle ScholarPubMed
Luo, W. and Yousaf, M. N. (2011). “Tissue morphing control on dynamic gradient surfaces.” Journal of the American Chemical Society 133: 1078010783.CrossRefGoogle ScholarPubMed
Mosqueira, D., Pagliari, S., Uto, K., et al. (2014). “Hippo pathway effectors control cardiac progenitor cell fate by acting as dynamic sensors of substrate mechanics and nanostructure.” Acs Nano 8: 20332047.CrossRefGoogle ScholarPubMed
Nakanishi, J., Kikuchi, Y., Inoue, S., et al. (2007). “Spatiotemporal control of migration of single cells on a photoactivatable cell microarray.” Journal of the American Chemical Society 129: 66946695.CrossRefGoogle ScholarPubMed
Nakanishi, J., Kikuchi, Y., Takarada, T., et al. (2006). “Spatiotemporal control of cell adhesion on a self-assembled monolayer having a photocleavable protecting group.” Analytica Chimica Acta 578: 100104.CrossRefGoogle ScholarPubMed
Rolli, C. G., Nakayama, H., Yamaguchi, K., et al. (2012). “Switchable adhesive substrates: Revealing geometry dependence in collective cell behavior.” Biomaterials 33: 24092418.CrossRefGoogle ScholarPubMed
Uto, K., Ebara, M. and Aoyagi, T. (2014). “Temperature-responsive poly(ε-caprolactone) cell culture platform with dynamically tunable nano-roughness and elasticity for control of myoblast morphology.” International Journal of Molecular Sciences 15: 15111524.CrossRefGoogle ScholarPubMed
Yamada, N., Okano, T., Sakai, H., et al. (1990). “Thermo-responsive polymeric surfaces; control of attachment and detachment of cultured cells.” Makromolekulare Chemie, Rapid Communications 11: 571576.CrossRefGoogle Scholar
Yang, C., Tibbitt, M. W., Basta, L. and Anseth, K. S. (2014). “Mechanical memory and dosing influence stem cell fate.” Nat Mater 13: 645652.CrossRefGoogle ScholarPubMed
Yeo, W.-S., Yousaf, M. N. and Mrksich, M. (2003). “Dynamic interfaces between cells and surfaces: electroactive substrates that sequentially release and attach cells.” Journal of the American Chemical Society 125: 1499414995.CrossRefGoogle ScholarPubMed
Young, J. L. and Engler, A. J. (2011). “Hydrogels with time-dependent material properties enhance cardiomyocyte differentiation in vitro.” Biomaterials 32: 10021009.CrossRefGoogle ScholarPubMed
Yuan, H., Kononov, S., Cavalcante, F. S. A., et al. 2000. “Effects of collagenase and elastase on the mechanical properties of lung tissue strips.” Journal of Applied Physiology 89: 314.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×