Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-20T15:07:46.810Z Has data issue: false hasContentIssue false

Part I - The science of icebergs

Published online by Cambridge University Press:  05 December 2015

Grant R. Bigg
Affiliation:
University of Sheffield
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Icebergs
Their Science and Links to Global Change
, pp. 21 - 124
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

McClintock, Captain F. L., In the Arctic Sea. Philadelphia: Porter and Coates (1857), pp. 31–2.Google Scholar
Hambrey, M. J. and Alean, J. C., Glaciers. Cambridge: Cambridge University Press (1994).Google Scholar
Paterson, W. S. B., The physics of glaciers, 3rd ed. Oxford: Elsevier, 2002.Google Scholar
Rignot, E., Velicogna, I., van den Broecke, M. R., et al., Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38 (2011), L05503, doi:10.1029/2011GL046583.CrossRefGoogle Scholar
Clapperton, C. M., Sugden, D. E. and Pelto, M., Relationship of land terminating and fjord glaciers to Holocene climatic-change, South Georgia, Antarctica. In: Glacial fluctuations and climatic change, ed. Oerlemans, J.. Utrecht: University of Utrecht (1989), pp. 5775.CrossRefGoogle Scholar
Davies, B. J., Carrick, J. L., Glasser, N. F., et al., Variable glacier response to atmospheric warming, northern Antarctic Peninsula, 1988–2009. Cryosphere, 6 (2012), 1031–48.CrossRefGoogle Scholar
König, M., Nuth, C., Kohler, J., et al., New digital database for Svalbard, http://public.data.npolar.no/cryoclim/CryoClimGAO.pdf [accessed 11 February 2014].Google Scholar
Irvine-Fynn, T. D. L., Hodson, A. J., Moorman, B. J., et al., Polythermal glacier hydrology: a review. Rev. Geophys. 49, RG4002, doi:10.1029/2010RG000350.Google Scholar
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., et al., A new bed elevation dataset for Greenland. Cryosphere, 7 (2013), 499510.CrossRefGoogle Scholar
Hanna, E., Huybrechts, P., Cappelen, J., et al., Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing. J. Geophys. Res. Atmos., 116 (2011), D24121, doi:10.1029/2011JD016387.CrossRefGoogle Scholar
Box, J. E. and Colgan, W., Greenland ice sheet mass balance reconstruction. Part III: marine ice loss and total mass balance (1840–2010). J. Climate, 26 (2013), 69907002.CrossRefGoogle Scholar
Alley, R. B., Andrews, J. T., Brigham-Grette, J., et al., History of the Greenland Ice Sheet: paleoclimatic evidence. Quaternary Sci. Rev., 29 (2010), 1728–56.CrossRefGoogle Scholar
Church, J. A., Gregory, J. M., Huybrechts, P., et al., Changes in sea level. In: Climate Change 2001: the scientific basis, ed. Houghton, J. T., Ding, Y., Griggs, D. J., et al. Cambridge: Cambridge University Press (2001), pp. 639–93.Google Scholar
Bigg, G. R., An estimate of the flux of iceberg calving from Greenland. Arct. Antarct. Alp. Res., 31 (1999), 174–8.CrossRefGoogle Scholar
Bigg, G. R., Wei, H., Wilton, D. J., et al., A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change. Proc. Roy. Soc Ser. A, 470 (2014), 20130662, doi:10.1098/rspa.2013.0662.CrossRefGoogle ScholarPubMed
Bigg, G. R. and Wilton, D. J., The iceberg risk in the Titanic year of 1912: was it exceptional? Weather, 69 (2014), 100–4.CrossRefGoogle Scholar
Hall, D. K., Comiso, J. C., Diggirolamo, N. E., et al., Variability in the surface temperature and melt extent of the Greenland ice sheet from MODIS. Geophys. Res. Lett., 40 (2013), 2114–20.CrossRefGoogle Scholar
Mayewski, P. A., Meredith, M. P., Summerhayes, C. P., et al., State of the Antarctic and Southern Ocean climate system. Rev. Geophys., 47 (2009), RG1003, doi:10.1029/2007RG000231.CrossRefGoogle Scholar
Hanna, E., Navarro, F. J., Pattyn, F., et al., Ice-sheet mass balance and climate change. Nature, 498 (2013), 51–9.CrossRefGoogle ScholarPubMed
Lee, H., Shum, C. K., Howat, I. M., et al., Continuously accelerating ice loss over Amundsen Sea catchment, West Antarctica, revealed by integrating altimetry and GRACE data. Earth Planet Sci. Lett., 321 (2012), 7480.CrossRefGoogle Scholar
Nye, J. F., The mechanics of glacier flow. J. Glaciol., 2 (1952), 8293.CrossRefGoogle Scholar
Nye, J. F., The flow of a glacier in a channel of rectangular, elliptical or parabolic cross-section. J. Glaciol., 5 (1965), 661–90.CrossRefGoogle Scholar
Schoof, C. and Hewitt, I., Ice-sheet dynamics. Ann. Rev. Fluid Mech., 45 (2013), 217–39.CrossRefGoogle Scholar
Gladstone, R., Bigg, G. R. and Nicholls, K.W., Icebergs and fresh water fluxes in the Southern Ocean. J. Geophys. Res. Oceans, 106 (2001), 19903–15.Google Scholar
Bigg, G. R. and Wadley, M. R., The origin and flux of icebergs into the Last Glacial Maximum Northern Hemisphere Oceans. J. Quaternary Sci., 16 (2001), 565–73.CrossRefGoogle Scholar
Silva, T. A. M., Bigg, G. R. and Nicholls, K. W., The contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans, 111 (2006), C03004, doi:10.1029/2004JC002843.CrossRefGoogle Scholar
Andresen, C. S., Straneo, F., Ribergaard, M. H., et al., Rapid response of Helheim Glacier in Greenland to climate variability over the past century. Nature Geosci., 5 (2012), 3741.CrossRefGoogle Scholar
Csatho, B., Schenk, T., Van der Veen, C. J. and Krabill, W.B., Intermittent thinning of Jakobshavn Isbrae, West Greenland, since the Little Ice Age. J. Glaciol., 54 (2008), 131–44.CrossRefGoogle Scholar
Howat, I. M. and Eddy, A., Multi-decadal retreat of Greenland’s marine-terminating glaciers. J. Glaciol., 57 (2011), 389–96.CrossRefGoogle Scholar
Long, D. G., Ballantyne, J. and Bertoia, C., Is the number of icebergs really increasing? EOS, 83 (2002), 469, 474.CrossRefGoogle Scholar
Stuart, K. M. and Long, D. G., Iceberg size and orientation estimation using SeaWinds. Cold Reg. Sci. Technol., 69 (2011), 3951.CrossRefGoogle Scholar
Rignot, E., Box, J. E., Burgess, E. and Hanna, E., Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett., 35 (2008), L20502, doi:10.1029/2008GL035417.CrossRefGoogle Scholar
Hulbe, C. L. and Fahnestock, M., Century-scale discharge stagnation and reactivation of the Ross Ice Streams, West Antarctica. J. Geophys. Res. Earth Surf., 112 (2007), F03S27, doi:10.1029/2006JF000603.CrossRefGoogle Scholar
Hulbe, C. L., Scambos, T. A., Youngberg, T., et al., Patterns of glacier response to disintegration of the Larsen B ice shelf, Antarctic Peninsula. Glob. Planet. Change, 63 (2008), 18.CrossRefGoogle Scholar
Winsborrow, M. C. M., Clark, C. D. and Stokes, C. R., What controls the location of ice streams? Earth-Sci. Rev., 103 (2010), 4559.CrossRefGoogle Scholar
Bell, R. E., The role of subglacial water in ice-sheet mass balance. Nature Geosci., 1 (2008), 297304.CrossRefGoogle Scholar
Fahnestock, M., Abdalati, W., Joughin, I., et al., High geothermal heat flow, basal melt, and the origin of rapid ice flow in central Greenland. Science, 294 (2001), 2338–42.CrossRefGoogle ScholarPubMed
Oerter, H., Kipfstuhl, J., Determann, J., et al., Evidence for basal marine ice in the Filchner-Ronne Ice Shelf. Nature, 358 (1992), 399401.CrossRefGoogle Scholar
Hulbe, C. L., Scambos, T. A., Lee, C. K., et al., Recent changes in the flow of the Ross Ice Shelf, West Antarctica. Earth Planet. Sci. Lett., 376 (2013), 5462.CrossRefGoogle Scholar
Anderson, J. B. and Molnia, B. F., Glacial-marine sedimentation. Washington, DC: American Geophysical Union (1989).CrossRefGoogle Scholar
Dowdeswell, J. A. and Murray, O., Modelling rates of sedimentation from icebergs. In: Glacimarine environments: processes and sediments, ed. Dowdeswell, J. A. and Scourse, J. D.. Geol. Soc. Spec. Publ., 53 (1990), pp. 121337.Google Scholar
Benn, D. I. and Evans, D. J. A., Glaciers and glaciations. Oxford: Oxford University Press (2003).Google Scholar
Death, R., Siegert, M. J., Bigg, G. R. and Wadley, M. R., Modelling iceberg trajectories, sedimentation rates and meltwater input to the ocean from the Eurasian Ice Sheet at the Last Glacial Maximum. Palaeogeogr., Palaeoclim. Palaeoecol., 236 (2006), 135–50.CrossRefGoogle Scholar
Bigg, G. R., Levine, R. C., Clark, C. D., et al., Last Glacial ice-rafted debris off south-western Europe: the role of the British-Irish Ice Sheet. J. Quaternary Sci., 25 (2010), 689–99.CrossRefGoogle Scholar
Roberts, W. H. G., Valdes, P. J. and Payne, A. J., A new constraint on the size of Heinrich events from an iceberg/sediment model. Earth Planet. Sci. Lett., 386 (2014), 19.CrossRefGoogle Scholar
Bell, R. E., Ferraccioli, F., Creyts, T. T., et al., Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (2011), 1592–95.CrossRefGoogle ScholarPubMed
Nicholls, K. W., Corr, H. F. J., Makinson, K. and Pudsey, C. J., Rock debris in an Antarctic ice shelf. Ann. Glaciol., 53 (2012), 235–40.CrossRefGoogle Scholar
Hodson, A. J., Anesio, A. M., Tranter, M., et al., Glacial ecosystems. Ecol. Monographs, 78 (2008), 4167.CrossRefGoogle Scholar
Anesio, A. M., Hodson, A. J., Fritz, A., et al., High microbial activity on glaciers: importance to the global carbon cycle. Glob. Change Biol., 15 (2009), 955–60.CrossRefGoogle Scholar
Hodson, A. J., Paterson, H., Westwood, K., et al., A blue-ice ecosystem on the margins of the East Antarctic ice sheet. J. Glaciol., 59 (2013), 255–68.CrossRefGoogle Scholar
Wanninkhof, R., Park, G. H., Takahashi, T., et al., Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences, 10 (2013), 19832000.CrossRefGoogle Scholar
Rignot, E., Mouginot, J. and Scheuchl, B., Ice flow of the Antarctic ice sheet. Science, 333 (2011), 1427–30.CrossRefGoogle ScholarPubMed
Silva, T. A. M., Quantifying Antarctic icebergs and their melting in the ocean. Sheffield: University of Sheffield, Ph.D. thesis (2006).Google Scholar
Straneo, F., Heimbach, P., Sergienko, O., et al., Challenges to understanding the dynamic response of Greenland’s marine terminating glaciers to oceanic and atmospheric forcing. Bull. Amer. Meteorol. Soc., 94 (2013), 1131–44.CrossRefGoogle Scholar
Joughin, I., Alley, R. B. and Holland, D. M., Ice-sheet response to oceanic forcing. Science, 338 (2012), 1172–6.CrossRefGoogle ScholarPubMed
Warren, C. R., Iceberg calving and the glacioclimatic record. Prog. Phys. Geogr., 16 (1992), 253–82.CrossRefGoogle Scholar
van der Veen, C. J., Tidewater calving. J. Glaciol., 42 (1996), 375–85.CrossRefGoogle Scholar
Bassis, J. N. and Walker, C. C., Upper and lower limits on the stability of calving glaciers from the yield envelope of ice. Proc. Roy. Soc. Ser. A, 468 (2012), 913–31.Google Scholar
Bassis, J. N. and Jacobs, S., Diverse calving patterns linked to glacier geometry. Nature Geosci., 6 (2013), 833–36.CrossRefGoogle Scholar
Seale, A., Christoffersen, P., Mugford, R. I. and O’Leary, M., Ocean forcing of the Greenland ice sheet: calving fronts and patterns of retreat identified by automatic satellite monitoring of eastern outlet glaciers. J. Geophys. Res. Earth Surf., 116 (2011), F03013, doi:10.1029/2010JF001847.CrossRefGoogle Scholar
Sole, A. J., Mair, D. W. F., Neinow, P. W., et al., Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface-melt induced changes in subglacial hydrology. J. Geophys. Res. Earth Surf., 116 (2011), F03014, doi:10.1029/2010JF001948.CrossRefGoogle Scholar
Ekström, G., Nettles, M. and Tsai, V. C., Seasonality and increasing frequency of Greenland glacial earthquakes. Science, 311 (2006), 1756–8.CrossRefGoogle ScholarPubMed
Robertson, R., Tidally induced increases in melting of Amundsen Sea ice shelves. J. Geophys. Res. Oceans, 118 (2013), 3138–45.CrossRefGoogle Scholar
Doake, C. S. M. and Vaughan, D. G., Rapid disintegration of the Wordie ice shelf in response to atmospheric warming. Nature, 350 (1991), 328–30.CrossRefGoogle Scholar
Scambos, T. A., Hulbe, C., Fahnestock, M. and Bohlander, J., The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol., 46 (2000), 516–30.CrossRefGoogle Scholar
McGrath, D., Stekken, K., Rajaram, H., et al., Basal crevasses on the Larsen C ice shelf, Antarctica: implications for meltwater ponding and hydrofracture. Geophys. Res. Lett., 39 (2012), L16504, doi:10.1029/2012GL052413.CrossRefGoogle Scholar
Braun, M. and Humbert, A., Recent retreat of Wilkins ice shelf reveals new insights in ice shelf breakup mechanism. IEEE Geosci. Remote Sens. Lett., 6 (2009), 263–7.CrossRefGoogle Scholar
Hughes, T., Calving bays. Quaternary Sci. Rev., 21 (2002), 267–82.CrossRefGoogle Scholar
Mugford, R. I. and Dowdeswell, J. A., Modeling iceberg-rafted sedimentation in high-latitude fjord environments. J. Geophys. Res. Earth Surf., 115 (2010), F03024, doi:10.1029/2009JF001564.CrossRefGoogle Scholar

References

Coleridge, S. T., The Rime of the Ancient Mariner (1789), Part 1, verse 13.Google Scholar
Bigg, G. R., Wadley, M. R., Stevens, D. P. and Johnson, J. A., Modelling the dynamics and thermodynamics of icebergs. Cold Reg. Sci. Technol., 26 (1997), 113–35.CrossRefGoogle Scholar
Smith, S. D., Hindcasting iceberg drift using current profiles and winds. Cold Reg. Sci. Technol., 22 (1993), 3345.CrossRefGoogle Scholar
Lighey, C. and Hellmer, H. H., Modeling giant-iceberg drift under the influence of sea ice in the Weddell Sea, Antarctica. J. Glaciol., 47 (2001), 452–60.Google Scholar
Bigg, G. R., Wadley, M. R., Stevens, D. P. and Johnson, J. A., Prediction of iceberg trajectories in the North Atlantic and Arctic Oceans. Geophys. Res. Lett., 23 (1996), 3587–90.CrossRefGoogle Scholar
Jansen, D., Sandhäger, H. and Rack, W., Model experiments on large tabular iceberg evolution: ablation and strain thinning. J. Glaciol., 51 (2005), 363–72.CrossRefGoogle Scholar
Crépon, M., Houssais, M. N. and Guily, B. Saint, The drift of icebergs under wind action. J. Geophys. Res. Oceans, 93 (1988), 3608–12.CrossRefGoogle Scholar
Fahrbach, E., Rohardt, G. and Krause, G., The Antarctic Coastal Current in the southeastern Weddell Sea. Polar Biol., 12 (1992), 171–82.CrossRefGoogle Scholar
Weeks, W. F. and Mellor, M., Some elements of iceberg technology. In: Proceedings of the First Conference on iceberg utilization for freshwater production, ed. Husseiny, A. A.. Ames: Iowa State University (1978), pp. 4598.Google Scholar
Burton, J. C., MacCathles, L. and Wilder, W. G., The role of cooperative iceberg capsize in ice-shelf disintegration. Ann. Glaciol., 54 (2013), 8490.CrossRefGoogle Scholar
Scambos, T., Ross, R., Bauer, R., et al., Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift. J. Glaciol., 54 (2008), 579–91.CrossRefGoogle Scholar
MacAyeal, D. R., Okal, M. H., Thom, J. E., et al., Tabular iceberg collisions within the coastal regime. J. Glaciol., 54 (2008), 371–86.CrossRefGoogle Scholar
Martin, S., Drucker, R., Aster, R., et al., Kinematic and seismic analysis of giant tabular iceberg breakup at Cape Adare, Antarctica. J. Geophys. Res. Solid Earth, 115 (2010), B06311, doi:10.1029/2009JB006700.CrossRefGoogle Scholar
El-Tahan, M. S., Venkatesh, S. and El-Tahan, H., Validation and quantitative assessment of the deterioration mechanisms of Arctic icebergs. J. Offshore Mech. Arctic Eng., 109 (1987), 102–8.CrossRefGoogle Scholar
Silva, T. A. M., Bigg, G. R. and Nicholls, K. W., The contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans, 111 (2006), C03004, doi:10.1029/2004JC002843.CrossRefGoogle Scholar
de Boyer Montégut, C., Madec, G., Fischer, A. S., et al., Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J. Geophys. Res. Oceans, 109 (2004), C12003, doi:10.1029/2004JC002378.CrossRefGoogle Scholar
Gladstone, R., Bigg, G. R. and Nicholls, K.W., Icebergs and fresh water fluxes in the Southern Ocean. J. Geophys. Res. Oceans, 106 (2001), 19903–15.Google Scholar
Jansen, D., Luckman, A., Kulessa, B., et al., Marine ice formation in a suture zone of the Larsen C Ice Shelf and its influence on ice shelf dynamics. J. Geophys. Res. Oceans, 118 (2013), 1628–40.CrossRefGoogle Scholar
Rignot, E., Velicogna, I., van den Broecke, M. R., et al., Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38 (2011), L05503, doi:10.1029/2011GL046583.CrossRefGoogle Scholar
Huppert, H. H. and Turner, J. S., On melting icebergs. Nature, 271 (1978), 46–8.CrossRefGoogle Scholar
Stephenson, G. R. Jr., Sprintall, J., Gille, S. T., et al., Subsurface melting of a free-floating Antarctic iceberg. Deep Sea Res. II, 58 (2011), 1336–45.CrossRefGoogle Scholar
Morison, J. and Goldberg, D., A brief study of the force balance between a small iceberg, the ocean, sea ice, and the atmosphere in the Weddell Sea. Cold Reg. Sci. Technol., 76–77 (2012), 6976.CrossRefGoogle Scholar
Helly, J. J., Kaufmann, R. S., Stephenson, G. R. Jr. and Vernet, M., Cooling, dilution and mixing of ocean water by free-drifting icebergs in the Weddell Sea. Deep Sea Res. II, 58 (2011), 1346–63.CrossRefGoogle Scholar
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., et al., Geographic variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28 (1998), 433–60.2.0.CO;2>CrossRefGoogle Scholar
Bigg, G. R., Marsh, R. A., Wilton, D. J. and Ivchenko, V., B31 – a giant iceberg in the Southern Ocean. Ocean Challenge, 20 (2014), 32–4.Google Scholar
Meredith, M. P., Woodworth, P. L., Chereskin, T. K., et al., Sustained monitoring of the Southern Ocean at Drake Passage: past achievements and future priorities. Rev. Geophys., 49 (2011), RG4005, doi:10.1029/2010RG000348.CrossRefGoogle Scholar
Smith, K. L. Jr., Robison, B. H., Helly, J. J., et al., Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science, 317 (2007), 478–82.CrossRefGoogle ScholarPubMed
Lin, H., Rauschenberg, S., Hexel, C. R., et al., Free-drifting icebergs as sources of iron to the Weddell Sea. Deep Sea Res. II, 58 (2011), 1392–406.CrossRefGoogle Scholar
Smith, K. L. Jr., Sherman, A. D., Shaw, T. J., et al., Icebergs as unique Lagrangian ecosystems in polar seas. Ann. Rev. Mar. Sci., 5 (2013), 269–87.CrossRefGoogle ScholarPubMed
Cefarelli, A. O., Vernet, M. and Ferrario, M. E., Phytoplankton composition and abundance in relation to free-floating Antarctic icebergs. Deep Sea Res. II, 58 (2011), 1436–50.CrossRefGoogle Scholar
Ruhl, H. A., Ellena, J. A., Wilson, R. C. and Helly, J., Seabird aggregation around free-drifting icebergs in the northwest Weddell and Scotia Seas. Deep Sea Res. II, 58 (2011), 1497–504.CrossRefGoogle Scholar
Lord, W., Fellowes, J. and Lavery, B., A Night to Remember: The Classic Best selling Account of the Sinking of the Titantic. London: Penguin (2012).Google Scholar
Durran, D. R., Lee waves and mountain waves. In: Encyclopedia of Atmospheric Sciences, ed. Holton, J. R., Pyle, J. and Curry, J. A.. Amsterdam: Elsevier (2003), pp. 1161–9.Google Scholar
Parrish, T. R. and Walker, R., A re-examination of the winds of Adelie Land, Antarctica. Austral. Meteor. Mag., 55 (2006), 105–17.Google Scholar
Pinty, J. O. and Curry, J. A., Atmospheric convective plumes emanating from leads 2. microphysical and radiative processes. J. Geophys. Res. Oceans, 100 (1995), 4633–42.Google Scholar
Gaull, B. A., Adamson, D. A. and Pickard, J., Seismicity associated with icebergs calving from glaciers near Mawson, East Antarctica. Austr. J. Earth Sci., 39 (1992), 473–80.Google Scholar
Amundsen, J. M., Truffer, M., Luethi, M. P., et al., Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbrae, Greenland. Geophys. Res. Lett., 35 (2008), L22501, doi:10.1029/2008GL035281.Google Scholar
Walter, F., Olivieri, M. and Clinton, J. F., Calving event detection by observation of seiche effects on the Greenland fjords. J. Glaciol., 59 (2013), 162–78.CrossRefGoogle Scholar
MacAyeal, D. R., Okal, E. A., Aster, R. C. and Bassis, J. N., Seismic and hydroacoustic tremor generated by colliding icebergs. J. Geophys. Res. Earth Surf., 113 (2008), F03011, doi:10.1029/2008JF001005.CrossRefGoogle Scholar
MacAyeal, D. R., Okal, M. H., Thom, J. E., et al., Tabular iceberg collisions within the coastal regime. J. Glaciol., 54 (2008), 371–86.CrossRefGoogle Scholar
Harris, L. M. and Jollymor, P. G., Iceberg furrow marks on continental-shelf northeast of Belle-Isle, Newfoundland. Can. J. Earth Sci., 11 (1974), 4352.CrossRefGoogle Scholar
Delage, M. and Gangloff, P., Relict iceberg marks near Montreal, Quebec. Geogr. Phys. Quater., 47 (1993), 6980.Google Scholar
Kristoffersen, Y., Coakley, B., Jokat, W., et al., Seabed erosion on the Lomonsov Ridge, central Arctic: a tale of deep draft icebergs in the Eurasia Basin and the influence of Atlantic water inflow on iceberg motion? Paleoceanogr., 19 (2004), PA3006, doi:10.1029/2003PA000985.CrossRefGoogle Scholar
Eyles, N., Eyles, C. H. and Goston, V. A., Iceberg rafting and scouring in the Early Permian Shoalhaven Group of New South Wales, Australia: evidence of Heinrich-like events? Palaeogeogr. Palaeoclimatol. Palaeoecol., 136 (1997), 117.CrossRefGoogle Scholar
Woodworth-Lynas, C. M. T., Josenhans, H. W., Barrie, J. V., et al., The physical processes of seabed disturbance during iceberg grounding and scouring. Continental Shelf Res., 11 (1991), 939–61.CrossRefGoogle Scholar
Peck, L. S., Brockington, S., Vanhove, S. and Beghyn, M., Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar. Ecol. Prog. Ser., 186 (1999), 18.CrossRefGoogle Scholar
Gutt, J., On the direct impact of ice on marine benthic communities. Polar Biol., 24 (2001), 553–64.CrossRefGoogle Scholar
Dowdeswell, J. A., Whittington, R. J. and Hodgkins, R., The sizes, frequencies and freeboards of East Greenland icebergs observed using ship radar and sextant. J. Geophys. Res. Oceans, 97 (1992), 3515–28.CrossRefGoogle Scholar
Murphy, D. L. and Cass, J. L., The International Ice Patrol – safeguarding life and property at sea. Coast Guard Proc. Mar. Safety Security Council, 69 (2012), 1316.Google Scholar
Hill, B. T., Ruffman, A. and Ivany, K., Historical data added to the Grand Banks iceberg database. Ottawa: NRC Publications Archive (2008), ICETECH08-109-RF, 1–7. http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=8895044&lang=en.Google Scholar
International Ice Patrol (IIP), Iceberg sightings database, http://nsidc.org/data/g00807 [accessed 7 May 2014].Google Scholar
Abramov, V. A., Russian iceberg observations in the Barents Sea, 1933–1990. Polar Res., 11 (1992), 93–7.Google Scholar
Zhao, Y., Bigg, G. R., Billings, S. A., et al., Inferring the variation of climatic and glaciological contributions to West Greenland iceberg discharge in the Twentieth Century. Cold Reg. Sci. Technol., (2015), doi:10.1016/j.coldregions.2015.08.006.CrossRefGoogle Scholar
Wilton, D. J., Bigg, G. R. and Hanna, E., Modelling twentieth century global ocean circulation and iceberg flux at 48°N: implications for west Greenland iceberg discharge. Prog. Oceanogr., (2015), doi:10.1016/j.pocean.2015.07.003.CrossRefGoogle Scholar
Keghouche, I., Counillon, F. and Bertino, L., Modeling dynamics and thermodynamics in the Barents Sea from 1987 to 2005. J. Geophys. Res. Oceans, 115 (2010), C12062, doi:10.1029/2010JC006165.CrossRefGoogle Scholar
Bigg, G. R., Wei, H., Wilton, D. J., et al., A century of variation in the dependence of Greenland iceberg calving on ice sheet surface mass balance and regional climate change. Proc. Roy. Soc Ser. A, 470 (2014), 20130662, doi:10.1098/rspa.2013.0662.CrossRefGoogle ScholarPubMed
Christensen, E. and Luzader, J., From sea to air to space: a century of iceberg tracking technology. Coast Guard Proc. Mar. Safety Security Council, 69 (2012), 1722.Google Scholar
Romanov, Y. A., Romanova, N. A. and Romanov, P., Shape and size of Antarctic icebergs derived from ship observation data. Antarct. Sci., 24 (2012), 7787.CrossRefGoogle Scholar
Australian iceberg observations, http://staff.acecrc.org.au/~jacka/IceData/html/icedata.html [accessed 8 May, 2014].Google Scholar
Romanov, Y. A., Romanova, N. A. and Romanov, P., Distribution of icebergs in the Atlantic and Indian ocean sectors of the Antarctic region and its possible links with ENSO. Geophys. Res. Lett., 35 (2008), L02506, doi:10.1029/2007GL031685.CrossRefGoogle Scholar
Jacka, T. H. and Giles, A. B., Antarctic iceberg distribution and dissolution from ship-based observations. J. Glaciol., 53 (2007), 341–56.CrossRefGoogle Scholar
Stuart, K. M. and Long, D. G., Tracking large tabular icebergs using the SeaWinds Ku-band microwave scatterometer. Deep Sea Res. II, 58 (2011), 1285–300.CrossRefGoogle Scholar
Madsen, N., Reeves, S., Stuart, K., et al., The Antarctic Iceberg tracking database, www.scp.byu.edu/data/iceberg/database1.html [accessed 8 May, 2014].Google Scholar
Stuart, K. M. and Long, D. G., Iceberg size and orientation estimation using SeaWinds. Cold Reg. Sci. Technol., 69 (2011), 3951.CrossRefGoogle Scholar
Tournadre, J., Giaud-Ardhuin, F. and Legrésy, B., Antarctic icebergs distributions, 2002–2010. J. Geophys. Res. Oceans, 117 (2012), C05004, doi:10.1029/2011JC007441.CrossRefGoogle Scholar
Silva, T. A. M., Quantifying Antarctic icebergs and their melting in the ocean. Sheffield: University of Sheffield, Ph. D. thesis (2006).Google Scholar

References

Roberts, C. G. D., The Iceberg. In: The Iceberg and other poems, Toronto: Ryerson (1934), lines 233–9, then extract from lines 5873.Google Scholar
Stephenson, G. R., Sprintall, J., Gille, S. T., et al., Subsurface melting of a free-floating Antarctic iceberg. Deep Sea Res. II, 58 (2011), 1336–45.CrossRefGoogle Scholar
Helly, J. J., Kaufmann, R. S., Stephenson, G. R. Jr. and Vernet, M., Cooling, dilution and mixing of ocean water by free-drifting icebergs in the Weddell Sea. Deep Sea Res. II, 58 (2011), 1346–63.CrossRefGoogle Scholar
Smith, K. L. Jr., Sherman, A. D., Shaw, T. J., et al., Icebergs as unique Lagrangian ecosystems in polar seas. Ann. Rev. Mar. Sci., 5 (2013), 269–87.CrossRefGoogle ScholarPubMed
Gladstone, R., Bigg, G. R. and Nicholls, K.W., Icebergs and fresh water fluxes in the Southern Ocean. J. Geophys. Res. Oceans, 106 (2001), 19903–15.Google Scholar
Levine, R. C. and Bigg, G. R., The sensitivity of the glacial ocean to Heinrich events from different sources, as modelled by a coupled atmosphere-iceberg-ocean model. Paleoceanography, 23 (2008), PA4213, doi:10.1029/2008PA001613.CrossRefGoogle Scholar
Jongma, J. I., Driesschaert, E., Fichefet, T., et al., The effect of dynamic-thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Model., 26 (2009), 104–13.CrossRefGoogle Scholar
Martin, T. and Adcroft, A., Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model. Ocean Model., 34 (2010), 111–24.CrossRefGoogle Scholar
Marsh, R., Ivchenko, V. O., Skliris, N., et al., NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at coarse and eddy-permitting resolution. Geoscientific Mod. Dev., 8 (2015), 1547–62.Google Scholar
Wilton, D. J., Bigg, G. R. and Hanna, E., Modelling twentieth century global ocean circulation and iceberg flux at 48°N: implications for west Greenland iceberg discharge. Prog. Oceanogr., (2015), doi:10.1016/j.pocean.2015.07.003.CrossRefGoogle Scholar
Silva, T. A. M., Bigg, G. R. and Nicholls, K. W., The contribution of giant icebergs to the Southern Ocean freshwater flux. J. Geophys. Res. Oceans, 111 (2006), C03004, doi:10.1029/2004JC002843.CrossRefGoogle Scholar
Millero, F. J., Freezing point of seawater. UNESCO Tech. Papers Mar. Sci., 28 (1978), 2935.Google Scholar
Raiswell, R., Benning, L. G., Tranter, M. and Tulaczyk, S., Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt. Geochem. Trans., 9 (2008), doi:10.1186/1467-4866-9-7.CrossRefGoogle ScholarPubMed
Shaw, T. J., Raiswell, R., Hexel, C. R., et al., Input, composition and potential impact of terrigenous material from free-drifting icebergs. Deep Sea Res. II, 58 (2011), 1376–83.CrossRefGoogle Scholar
Smith, K. L. Jr., Robison, B. H., Helly, J. J., et al., Free-drifting icebergs: hot spots of chemical and biological enrichment in the Weddell Sea. Science, 317 (2007), 478–82.CrossRefGoogle ScholarPubMed
Schwarz, J. N. and Schodlok, M. P., Impact of drifting icebergs on surface phytoplankton biomass in the Southern Ocean: ocean colour remote sensing and in situ iceberg tracking. Deep Sea Res. I, 56 (2009), 1727–41.CrossRefGoogle Scholar
Cefarelli, A. O., Vernet, M. and Ferrario, M. E., Phytoplankton composition and abundance in relation to free-floating Antarctic icebergs. Deep Sea Res. II, 58 (2011), 1436–50.CrossRefGoogle Scholar
Bigg, G. R., The oceans and their interaction with the atmosphere. Weather, 56 (2001), 296304.CrossRefGoogle Scholar
Blain, S., Sarthou, G. and Laan, P., Distribution of dissolved iron during the natural iron-fertilization experiment KEOPS (Kerguelen Plateau, Southern Ocean). Deep Sea Res. II, 55 (2008), 594605.CrossRefGoogle Scholar
Nielsdottir, M. C., Bibby, T. S., Moore, C. M., et al., Seasonal and spatial dynamics of iron availability in the Scotia Sea. Mar. Chem., 130 (2012), 6272.CrossRefGoogle Scholar
Thomas, D. N. and Dieckmann, G. S., Antarctic sea ice – a habitat for extremophiles. Science, 295 (2002), 641–4.CrossRefGoogle ScholarPubMed
Vernet, M., Sines, K., Chakos, D., et al., Impacts on phytoplankton dynamics by free-drifting icebergs in the NW Weddell Sea. Deep Sea Res. II, 58 (2011), 1422–35.CrossRefGoogle Scholar
Kaufmann, R. S., Robison, B. H., Sherlock, R. E., et al., Composition and structure of macrozooplankton and micronekton communities in the vicinity of free-drifting Antarctic icebergs. Deep Sea Res. II, 58 (2011), 1469–84.CrossRefGoogle Scholar
Smith, K. L. Jr., Sherman, A. D., Shaw, T. J., et al., Carbon export associated with free-drifting icebergs in the Southern Ocean. Deep Sea Res. II, 58 (2011), 1485–96.Google Scholar
Shaw, T. J., Smith, K. L. Jr., Hexel, C. R., et al., 234Th-based carbon export around free-drifting icebergs in the Southern Ocean. Deep Sea Res. II, 58 (2011), 1384–91.CrossRefGoogle Scholar
Ruhl, H. A., Ellena, J. A., Wilson, R. C. and Helly, J., Seabird aggregation around free-drifting icebergs in the northwest Weddell Sea. Deep Sea Res. II, 58 (2011), 1497–504.CrossRefGoogle Scholar
Burnham, K. K. and Newton, I., Seasonal movements of Gyrfalcons Falco rusticolus include extensive periods at sea. Ibis, 153 (2011), 468–84.CrossRefGoogle Scholar
Mathews, E. A. and Pendleton, G. W., Declines in harbour seal (Phoca vitulina) numbers in Glacier Bay National Park, Alaska, 1992–2002. Mar. Mammal Sci., 22 (2006), 167–89.CrossRefGoogle Scholar
Gonzalez-Solis, J., Croxall, J. P. and Briggs, D. R., Activity patterns of giant petrels, Macronectes spp., using different foraging strategies. Mar. Biol., 140 (2002), 197204.Google Scholar
Ribic, C. A., Ainley, D. G. and Fraser, W. R., Habitat selection by marine mammals in the Marginal Ice-Zone. Ant. Sci., 3 (1991), 181–6.CrossRefGoogle Scholar
Sherlock, R. E., Reisenbichler, K. R., Bush, S. L., et al., Near-field zooplankton, ice-face biota and proximal hydrography of free-drifting Antarctic icebergs. Deep Sea Res. II, 58 (2011), 1457–68.CrossRefGoogle Scholar
Warren, S. G., Roesler, C. S., Morgan, V. I., et al., Green icebergs formed by freezing of organic-rich water to the base of Antarctic ice shelves. J. Geophys. Res. Oceans, 98 (1993), 6921–8.Google Scholar
Shepherd, L. D., Millar, C. D, Ballard, G., et al., Microevolution and mega-icebergs in the Antarctic. Proc. Nat. Acad. Sci. USA, 102 (2005), 16717–22.CrossRefGoogle ScholarPubMed
Kooyman, G. L., Ainley, D. G., Ballard, G. and Ponganis, P. J., Effects of giant icebergs on two emperor penguin colonies in the Ross Sea, Antarctica. Ant. Sci., 19 (2007), 31–8.Google Scholar
Wadham, J. L., De’ath, R., Monteiro, F. M., et al., The potential role of the Antarctic Ice Sheet in global biogeochemical cycles. Earth Env. Sci. Trans. Roy. Soc. Edinburgh, 104 (2013), 5567.CrossRefGoogle Scholar
Wolff, E. W., Ice sheets and nitrogen. Phil. Trans. Roy. Soc. B, 368 (2013), 20130127, doi:10.1098/rstb.2013.0127.CrossRefGoogle ScholarPubMed
Lawson, E. C., Wadhams, J. L., Tranter, M., et al., Greenland Ice Sheet exports labile organic carbon to the Arctic oceans. Biogeosci. Discuss., 10 (2013), 19311–45.Google Scholar
Rignot, E., Velicogna, I., van den Broecke, M. R., et al., Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett., 38 (2011), L05503, doi:10.1029/2011GL046583.CrossRefGoogle Scholar
Tranvik, L. J., Downing, J. A., Cotner, J. B., et al., Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr., 54 (2009), 2298–314.CrossRefGoogle Scholar
Ciais, P., Sabine, C., Bala, G., et al., Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Stocker, T. F., Qin, D., Plattner, G.-K., et al. Cambridge: Cambridge University Press (2013), pp. 465570.Google Scholar
Gruber, N. and Galloway, J. N., An Earth-system perspective of the global nitrogen cycle. Nature, 451 (2008), 293–6.CrossRefGoogle ScholarPubMed
Wadley, M. R., Jickells, T. D. and Heywood, K. J., The role of iron sources and transport for Southern Ocean productivity. Deep Sea Res. I, 87 (2014), 8294.CrossRefGoogle Scholar
Arrigo, K. R. and van Dijken, G. L., Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic. Geophys. Res. Lett., 31 (2004), L08304, doi:10.1029/2003GL018978.CrossRefGoogle Scholar
Bigg, G. R., Wadley, M. R., Stevens, D. P. and Johnson, J. A., Modelling the dynamics and thermodynamics of icebergs. Cold Regions Sci. Technol., 26 (1997), 113–35.CrossRefGoogle Scholar

References

Darwin, C., Note on a rock seen on an iceberg in 61° South latitude. J. Roy. Geog. Soc. Lond., 9 (1839), 528–9.Google Scholar
Benn, D. I. and Evans, D. J. A., Glaciers and glaciations. Oxford: Oxford University Press (2003).Google Scholar
Azetsu-Scott, K. and Syvitski, J. M. P., Influence of melting icebergs on distribution, characteristics and transport of marine particles in an East Greenland fjord. J. Geophys. Res. Oceans, 104(1999), 5321–8.CrossRefGoogle Scholar
Open University, Ocean chemistry and deep-sea sediments. Oxford: Butterworth-Heinemann (1989).Google Scholar
MacAyeal, D. R., Okal, E. A., Aster, R. C. and Bassis, J. N., Seismic and hydroacoustic tremor generated by colliding icebergs. J. Geophys. Res. Earth Surf., 113 (2008), F03011, doi:10.1029/2008JF001005.CrossRefGoogle Scholar
Woodworth-Lynas, C. M. T., Josenhans, H. W., Barrie, J. V., et al., The physical processes of seabed disturbance during iceberg grounding and scouring. Cont. Shelf Res., 11 (1991), 939–61.CrossRefGoogle Scholar
Marsh, R., Ivchenko, V. O., Skliris, N., et al., NEMO-ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at coarse and eddy-permitting resolution. Geoscientific Mod. Dev., 8 (2015), 1547–62.Google Scholar
King, E. L. and Gillespie, R. T., Regional iceberg scour distribution and variability on the eastern Canadian continental shelf. In: Ice scour and seabed engineering, ed. Lewis, C. F. M., Parrott, D. R., Simpkin, P. G. and Buckley, J. T.. Ottawa: Environmental Studies Revolving Funds Report No. 049 (1986), pp. 172–81.Google Scholar
Wilton, D. J., Bigg, G. R. and Hanna, E., Modelling twentieth century global ocean circulation and iceberg flux at 48°N: implications for west Greenland iceberg discharge. Prog. Oceanogr. (2015), doi : 10.1016/j.pocean.2015.07.003.Google Scholar
Lever, J., Iceberg dynamics of the DIGS Experiment. In: Ice scour and seabed engineering, ed. Lewis, C. F. M., Parrott, D. R., Simpkin, P. G. and Buckley, J. T.. Ottawa: Environmental Studies Revolving Funds Report No. 049 (1986), pp. 138–42.Google Scholar
Kuijpers, A., Dalhoff, F., Brandt, M. P., et al., Giant iceberg plow marks at more than 1 km water depth offshore West Greenland. Mar. Geol., 246 (2007), 60–4.CrossRefGoogle Scholar
Todd, B. J., Iceberg scouring on Saglek Bank, northern Labrador shelf. In: Ice scour and seabed engineering, ed. Lewis, C. F. M., Parrott, D. R., Simpkin, P. G. and Buckley, J. T.. Ottawa: Environmental Studies Revolving Funds Report No. 049 (1986), pp. 182–93.Google Scholar
Woodworth-Lynas, C. M. T. and Guigné, J. Y., Iceberg scours in the geological record: examples from glacial Lake Agassiz. In: Glacimarine environments: processes and sediments, ed. Dowdeswell, J. A. and Scourse, J. D.. London: Special Publications of the Geologists’ Association 53 (1990), pp. 217–23.Google Scholar
MacAyeal, D. R., Okal, M. H., Thom, J. E., et al., Tabular iceberg collisions within the coastal regime. J. Glaciol., 54 (2008), 371–86.CrossRefGoogle Scholar
Barrie, J. V., Collins, W. T. and Parrott, D. R., Grand Banks pits: description and postulated origin. In: Ice scour and seabed engineering, ed. Lewis, C. F. M., Parrott, D. R., Simpkin, P. G. and Buckley, J. T.. Ottawa: Environmental Studies Revolving Funds Report No. 049 (1986), pp. 73–7.Google Scholar
Barrie, J. V., Lewis, C. F. M., Parrott, D. R., et al., Submersible observations of an iceberg pit and scour on the Grand Banks of Newfoundland. Geo-mar. Lett., 12 (1992), 16.CrossRefGoogle Scholar
Bass, D. and Woodworth-Lynas, C., Iceberg crater chains and scour up- and downslope. In: Ice scour and seabed engineering, ed. Lewis, C. F. M., Parrott, D. R., Simpkin, P. G. and Buckley, J. T.. Ottawa: Environmental Studies Revolving Funds Report No. 049 (1986), pp. 122–8.Google Scholar
Dziak, R. P., Park, M., Lee, W. S., et al., Tectonomagmatic activity and ice dynamics in the Bransfield Strait back-arc basin, Antarctica. J. Geophys. Res. Solid Earth, 115 (2010), B01102, doi:10.1029/2009JB006295.CrossRefGoogle Scholar
Dupont, L. M. and Wefer, G., Sedimentation rate of Site 175–1077 (2001), doi:10.1594/PANGAEA.60351.CrossRefGoogle Scholar
Gebhardt, A. C., Jokat, W., Niessen, F., et al., Ice sheet grounding and iceberg plow marks on the northern and central Yermak Plateau revealed by geophysical data. Quaternary Sci. Rev., 30 (2011), 1726–38.CrossRefGoogle Scholar
Sacchetti, F., Benetti, S., O’Cofaigh, C. and Georgiopoulou, A., Geophysical evidence of deep-keeled icebergs on the Rockall Bank, Northeast Atlantic Ocean. Geomorphology, 159 (2011), 6372.Google Scholar
Metz, J. M., Dowdeswell, J. A. and Woodworth-Lynas, C. M. T., Sea-floor scour at the mouth of Hudson Strait by deep-keeled icebergs from the Laurentide Ice Sheet. Mar. Geol., 253 (2008), 149–59.CrossRefGoogle Scholar
Gutt, J., Starmans, A. and Dieckmann, G., Impact of iceberg scouring on polar benthic habitats. Mar. Ecol. Prog. Ser., 137 (1996), 311–6.CrossRefGoogle Scholar
Peck, L. S., Brockington, S., Vanhove, S. and Beghyn, M., Community recovery following catastrophic iceberg impacts in a soft-sediment shallow-water site at Signy Island, Antarctica. Mar. Ecol. Prog. Ser., 186 (1999), 18.CrossRefGoogle Scholar
Thrush, S. F. and Cummings, V. J., Massive icebergs, alteration in primary food resources and change in benthic communities at Cape Evans, Antarctica. Mar. Ecol. – Evol. Perspective, 32 (2011), 289–99.Google Scholar
Gutt, J., Barratt, I., Domack, E., et al., Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep Sea Res. II, 58 (2011), 7483.CrossRefGoogle Scholar
Gutt, J., On the direct impact of ice on marine benthos. Polar Biol., 24 (2001), 553–64.CrossRefGoogle Scholar
Barnes, D. K. A. and Souster, T., Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nature Clim. Change, 1 (2011), 365–8.CrossRefGoogle Scholar
Gutt, J. and Starmans, A., Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biol., 24 (2001), 615–9.CrossRefGoogle Scholar
Smale, D. A., Barnes, D. K. A. and Fraser, K. P. P., The influence of depth, site exposure and season on the intensity of iceberg scouring in nearshore Antarctic waters. Polar Biol., 30 (2007), 769–79.CrossRefGoogle Scholar
Gutt, J. and Piepenburg, D., Scale-dependent impact of diversity of Antarctic benthos caused by grounding of icebergs. Mar. Ecol. Prog. Ser., 253 (2003), 7783.CrossRefGoogle Scholar
Clarke, A., Aronson, R. B., Crame, J. A., et al., Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Ant. Sci., 16 (2004), 559–68.CrossRefGoogle Scholar
Viana, M., Sediment characterization in the Garvellachs area (Firth of Lorn Special Area for conservation). Fisheries Research Services Internal Report No. 05/08 (2008), Aberdeen: Scottish Fisheries Research Services.Google Scholar
Hemming, S. R., Heinrich Events: massive Late Pleistocene detritus layers of the North Atlantic and their global imprint. Rev. Geophys., 42 (2004), RG1005, doi:10.1029/2003RG000128.CrossRefGoogle Scholar
Gorbarenko, S. A., Nürnberg, D., Derkachev, A. N., et al., Magnetostratigraphy and tephrochronology of the Upper Quaternary sediments in the Okhotsk Sea: implication of terrigeneous, volcanogenic and biogenic matter supply. Mar. Geol., 183 (2002), 107–29.CrossRefGoogle Scholar
Andrews, J. T., Unraveling sediment transport along glaciated margins (the northwestern Nordic Seas) using quantitative x-ray diffraction of bulk (< 2 mm sediment). In: Sediment transport: flow and morphological processes, ed. Bhuiyan, F.. Rijeka, Croatia: InTech (2011), pp. 225–48.Google Scholar
Bond, G., Showers, W., Cheseby, M., et al., A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates. Science, 278 (1997), 1257–66.CrossRefGoogle Scholar
Andrews, J. T. and Principato, S. M., Grain-size characteristics and provenance of ice-proximal glacial marine sediments. In: Glacier-influenced sedimentation on high-latitude continental margins, ed. Dowdeswell, J. A. and O’Cofaigh, C.. London: Geological Society, Special Publication, 203 (2002), pp. 305–24.Google Scholar
Bigg, G. R. and Wilton, D. J., The iceberg risk in the Titanic year of 1912: was it exceptional? Weather, 69 (2014), 100–4.CrossRefGoogle Scholar
Bigg, G. R., Wadley, M. R., Stevens, D. P. and Johnson, J. A., Simulations of two last glacial maximum ocean states. Paleoceanography, 13 (1998), 340–51.CrossRefGoogle Scholar
Grousset, F. E., Labeyrie, L., Sinko, J. A., et al., Patterns of ice-rafted detritus in the glacial North Atlantic (40–55°N). Paleoceanography, 8 (1993), 175–92.CrossRefGoogle Scholar
Dasch, E. J., Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks. Geochim. Cosmochim. Acta, 33 (1969), 1521–52.CrossRefGoogle Scholar
Grousset, F. E., Biscaye, P. E., Zindler, A., et al., Neodymium isotopes as tracers in marine sediments and aerosols: North Atlantic. Earth Planet. Sci. Lett., 87 (1988), 367–78.CrossRefGoogle Scholar
Goldstein, S. L. and Hemming, S. R., Long-lived isotopic tracers in oceanography, Paleoceanography and Ice-sheet dynamics. In: Treatise on Geochemistry Volume 6, ed. Elderfield, H.. Oxford: Elsevier (2003), pp. 453–89.Google Scholar
Farmer, G. L., Barber, D. and Andrews, J., Provenance of Late Quaternary ice-proximal sediments in the North Atlantic: Nd, Sr and Pb isotopic evidence. Earth Planet. Sci. Lett., 209 (2003), 227–43.CrossRefGoogle Scholar
Small, D., Parrish, R. R., Austin, W. E. N., et al., Provenance of North Atlantic ice-rafted debris during the last deglaciation – a new application of U-Pb rutile and zircon geochronology. Geology, 41 (2013), 155–8.CrossRefGoogle Scholar
Roy, M., van de Flierdt, T., Hemming, S. R. and Goldstein, S. L., 40Ar/39Ar ages of hornblende grains and bulk Sm/Nd isotopes of circum-Antarctic glacio-marine sediments: implications for sediment provenance in the Southern Ocean. Chem. Geol., 244 (2007), 507–19.CrossRefGoogle Scholar
Hemming, S. R., Voren, T. O. and Kleman, J., Provinciality of ice rafting in the North Atlantic: application of 40Ar/39Ar dating of individual ice rafted hornblende grains. Quaternary Int., 95–6 (2002), 7585.CrossRefGoogle Scholar
Watkins, S. J. and Maher, B. A., Magnetic characterisation of present-day deep-sea sediments in the North Atlantic. Earth Planet. Sci. Lett., 214 (2003), 379–94.CrossRefGoogle Scholar
Hatfield, R. G., Stoner, J. S., Carlson, A. E., et al., Source as a controlling factor on the quality and interpretation of sediment magnetic records from the northern North Atlantic. Earth Planet. Sci. Lett., 368 (2013), 6977.CrossRefGoogle Scholar
Bezdek, C. J., Ehrlich, R. and Full, W., FCM: the fuzzy c-means clustering algorithm. Comput. Geosci., 10 (1984), 191203.CrossRefGoogle Scholar
Moros, M., McManus, J. F., Rasmussen, T., et al., Quartz content and the quartz-to-plagioclase ratio determined by X-ray diffraction: a proxy for ice rafting in the northern North Atlantic? Earth Planet. Sci. Lett., 218 (2004), 389401.CrossRefGoogle Scholar
Andrews, J. T., Darby, D., Eberle, D., et al., A robust multisite Holocene history of drift ice off northern Iceland: implications for North Atlantic climate. Holocene, 19 (2009), 71–7.CrossRefGoogle Scholar
St. John, K. E. K. and Krissek, L. A., Regional patterns of Pleistocene ice-rafted debris flux in the North Pacific. Paleoceanography, 14 (1999), 653–62.Google Scholar
Krissek, L. A., Late Cenozoic ice rafting records from ODP Leg 145 sites in the North Pacific: Late Miocene onset, late Pliocene intensification and Plio-Pleistocene events. Proc. Ocean Drilling Prog. Sci. Results, 145 (1995), 179–94.CrossRefGoogle Scholar
Rea, D. K., Basov, I. A., Janacek, T. R., et al., Proceedings of the ODP Initial Reports, Leg 145. College Station, Texas: Ocean Drilling Program (1993).Google Scholar
Bigg, G. R., Clark, C. D. and Hughes, A. L. C., A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction. Earth Planet. Sci. Lett., 265 (2008), 559–70.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×