Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-05T17:24:39.485Z Has data issue: false hasContentIssue false

16 - Early events in human cytomegalovirus infection

from Part II - Basic virology and viral gene effects on host cell functions: betaherpesviruses

Published online by Cambridge University Press:  24 December 2009

Teresa Compton
Affiliation:
McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
Adam Feire
Affiliation:
McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

All viruses must deliver their genomes to host cells to initiate infection. The plasma membrane together with cell surface constituents serve as initial barriers to entry as well as the mediators that facilitate the process. This chapter will summarize what is known about the entry pathway of human cytomegalovirus, noting certain parallels and commonalities between human cytomegalovirus (HCMV) and other betaherpesviruses (see Chapter 46 for specific pathways of HHV-6 and HHV-7 entry). The roles of HCMV envelope glycoproteins and cellular receptors that control virion attachment and membrane fusion will be summarized. This chapter will also discuss the emerging role of signaling pathways in the early events in infection and examine how virus entry and innate immune activation may be coordinated.

In the simplest context, entry requires that enveloped viruses, including HCMV, HHV-6A or B and HHV-7, use virion envelope proteins to facilitate adherence to the cell surface and fusion between the virus envelope and a cellular membrane that results in the deposition of virion components into the cytoplasm. Following delivery to the cytoplasm, capsid or tegument proteins facilitate transport through the cytoplasm to and delivery of the viral genome to the nucleus in a process known as uncoating. Tegument proteins also translocate independent of the capsid to cytoplasmic or nuclear sites. For structurally complex viruses whose envelopes contain as many as 20 proteins and glycoproteins, attachment is a multi-step process typically involving more than one envelope glycoprotein interacting with a series of cell surface receptors that serve as primary receptors and coreceptors.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 231 - 240
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akira, S. (2001). Toll-like receptors and innate immunity. Adv. Immunol., 78, 1–56.CrossRefGoogle ScholarPubMed
Albrecht, T. and Weller, T. H. (1980). Heterogeneous morphologic features of plaques induced by five strains of human cytomegalovirus. Am. J. Clin. Pathol., 73(5), 648–654.CrossRefGoogle ScholarPubMed
Albrecht, T., Speelman, D. J., and Steinsland, O. S. (1983). Similarities between cytomegalovirus-induced cell rounding and contraction of smooth muscle cells. Life Sci., 32(19), 2273–2278.CrossRefGoogle ScholarPubMed
Baldwin, B. R., Zhang, C., and Keay, S. (2000). Cloning and epitope mapping of a functional partial fusion receptor for human cytomegalovirus gH. J. Gen. Virol., 81, 27–35.CrossRefGoogle ScholarPubMed
Beersma, M. F., Wertheim,, D. P., and Feltkamp, T. E. (1990). The influence of HLA-B27 on the infectivity of cytomegalovirus for mouse fibroblasts. Scand. J. Rheumatol. Suppl., 87(102), 102–103.CrossRefGoogle ScholarPubMed
Beersma, M. F., Wertheim,, D. P., Geelen, J. L., and Feltkamp, T. E. (1991). Expression of HLA class I heavy chains and beta 2-microglobulin does not affect human cytomegalovirus infectivity. J. Gen. Virol., 72, 2757–2764.CrossRefGoogle Scholar
Berman, A. E. and Kozlova, N. I. (2000). Integrins: structure and functions. Membr. Cell Biol., 13(2), 207–244.Google ScholarPubMed
Berman, A. E., Kozlova, N. I., and Morozevich, G. E. (2003). Integrins: structure and signaling. Biochemistry (Mosc)., 68(12), 1284–1299.CrossRefGoogle ScholarPubMed
Boehme, K. and Compton, T. (2004). Innate sensing of viruses by toll-like receptors. J. Virol., 78, 7867–7873.CrossRefGoogle ScholarPubMed
Boehme, K. W., Singh, J., Perry, S. T., and Compton, T. (2004). Human cytomegalovirus elicits a coordinated cellular antiviral response via envelope glycoprotein B. J. Virol., 78(3), 1202–1211.CrossRefGoogle ScholarPubMed
Bold, S., Ohlin, M., Garten, W., and Radsak, K. (1996). Structural domains involved in human cytomegalovirus glycoprotein B-mediated cell–cell fusion. J. Gen. Virol., 77, 2297–2302.CrossRefGoogle ScholarPubMed
Boldogh, I., AbuBakar, S., and Albrecht, T. (1990). Activation of proto-oncogenes: an immediate early event in human cytomegalovirus infection. Science, 247, 561–564.CrossRefGoogle Scholar
Boldogh, I., AbuBakar, S., Deng, C. Z., and Albrecht, T. (1991a). Transcriptional activation of cellular oncogenes fos, jun, and myc by human cytomegalovirus. J. Virol., 65(3), 1568–1571.Google Scholar
Boldogh, I., AbuBakar, S., Millinoff, D., Deng, C. Z., and Albrecht, T. (1991b). Cellular oncogene activation by human cytomegalovirus. Lack of correlation with virus infectivity and immediate early gene expression. Arch. Virol., 118, 163–177.CrossRefGoogle Scholar
Borst, E. M., Hahn, G., Koszinowski, U. H., and Messerle, M. (1999). Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J. Virol., 73(10), 8320–8329.Google ScholarPubMed
Boyle, K. A. and Compton, T. (1998). Receptor-binding properties of a soluble form of human cytomegalovirus glycoprotein B. J. Virol., 72, 1826–1833.Google ScholarPubMed
Boyle, K. A., Pietropaolo, R. L., and Compton, T. (1999). Engagement of the cellular receptor for glycoprotein B of human cytomegalovirus activates the interferon-responsive pathway. Mol. Cell Biol., 19, 3607–3713.CrossRefGoogle ScholarPubMed
Britt, W. J. (1984). Neutralizing antibodies detect a disulfide-linked glycoprotein complex within the envelope of human cytomegalovirus. Virology, 135, 369–378.CrossRefGoogle ScholarPubMed
Britt, W. J. and Auger, D. (1986). Human cytomegalovirus virion-associated protein with kinase activity. J. Virol., 59(1), 185–188.Google ScholarPubMed
Britt, W. J., Jarvis, M., Seo, J. Y., Drummond, D., and Nelson, J. (2004). Rapid genetic engineering of human cytomegalovirus by using a lambda phage linear recombination system: demonstration that pp28 (UL99) is essential for production of infectious virus. J. Virol., 78(1), 539–543.CrossRefGoogle ScholarPubMed
Browne, E. P., Wing, B., Coleman, D., and Shenk, T. (2001). Altered cellular mRNA levels in human cytomegalovirus-infected fibroblasts: viral block to the accumulation of antiviral mRNAs. J. Virol., 75(24), 12319–12330.CrossRefGoogle ScholarPubMed
Browne, H., Smith, G., Beck, S., and Minson, T. (1990). A complex between the MHC class I homologue encoded by human cytomegalovirus and beta 2 microglobulin. Nature, 347(6295), 770–772.CrossRefGoogle ScholarPubMed
Carlson, C., Britt, W. J., and Compton, T. (1997). Expression, purification and characterization of a soluble form of human cytomegalovirus glycoprotein B. Virology, 239, 198–205.CrossRefGoogle ScholarPubMed
Cary, L. A., Han, D. C., and Guan, J. L. (1999). Integrin-mediated signal transduction pathways. Histol. Histopathol., 14(3), 1001–1009.Google ScholarPubMed
Compton, T., Nowlin, D. M., and Cooper, N. R. (1993). Initiation of human cytomegalovirus infection requires initial interaction with cell surface heparan sulfate. Virology, 193(2), 834–841.CrossRefGoogle ScholarPubMed
Compton, T., Kurt-Jones, E. A., Boehme, K. W.et al. (2003). Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol., 77(8), 4588–4596.CrossRefGoogle ScholarPubMed
Conti, C., Cirone, M., Sgro, R., Altieri, F., Zompetta, C., and Faggioni, A. (2000). Early interactions of human herpesvirus 6 with lymphoid cells: role of membrane protein components and glycosaminoglycans in virus binding. J. Med. Virol., 62(4), 487–497.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Dunn, W., Chou, C., Li, H., Hai, R., Patterson, D., Stolc, V., Zhu, H., and Liu, F. (2003). Functional profiling of a human cytomegalovirus genome. Proc. Natl Acad. Sci. USA, 100(24), 14223–14228.CrossRefGoogle ScholarPubMed
Eto, K., Huet, C., Tarui, T.et al. (2002). Functional classification of ADAMs based on a conserved motif for binding to integrin alpha 9beta 1: implications for sperm–egg binding and other cell interactions. J. Biol. Chem., 277(20), 17804–17810.CrossRefGoogle ScholarPubMed
Fairley, J. A., Baillie, J., Bain, M., and Sinclair, J. H. (2002). Human cytomegalovirus infection inhibits epidermal growth factor (EGF) signalling by targeting EGF receptors. J. Gen. Virol., 83(11), 2803–2810.CrossRefGoogle ScholarPubMed
Feire, A. L., Koss, H., and Compton, T. (2004). Cellular integrins function as entry receptors for human cytomegalovirus via a highly conserved disintegrin-like domain. Proc. Natl Acad. Sci. USA, 101(43), 15470–15475.CrossRefGoogle Scholar
Fortunato, E. A., McElroy, A. K., Sanchez, I., and Spector, D. H. (2000). Exploitation of cellular signaling and regulatory pathways by human cytomegalovirus. Trends Microbiol., 8(3), 111–119.CrossRefGoogle ScholarPubMed
Giugni, T. D., Soderberg, C., Ham, D. J.et al. (1996). Neutralization of human cytomegalovirus by human CD13-specific antibodies. J. Infect. Dis., 173(5), 1062–1071.CrossRefGoogle ScholarPubMed
Gredmark, S., Britt, W. B., Xie, X., Lindbom, L., and Soderberg-Naucler, C. (2004). Human cytomegalovirus induces inhibition of macrophage differentiation by binding to human aminopeptidase N/CD13. J. Immunol., 173(8), 4897–4907.CrossRefGoogle ScholarPubMed
Gretch, D. R., Kari, B., Rasmussen, L., Gehrz, R. C., and Stinski, M. F. (1988). Identification and characterization of three distinct families of glycoprotein complexes in the envelopes of human cytomegalovirus. J. Virol., 62(3), 875–881.Google ScholarPubMed
Grundy, J. E., McKeating, J. A., and Griffiths, P. D. (1987a). Cytomegalovirus strain AD169 binds beta 2 microglobulin in vitro after release from cells. J. Gen. Virol., 68, 777–784.CrossRefGoogle Scholar
Grundy, J. E., McKeating, J. A., Ward, P. J., Sanderson, A. R., and Griffiths, P. D. (1987b). Beta 2 microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables class I HLA molecules to be used as a virus receptor. J. Gen. Virol., 68, 793–803.CrossRefGoogle Scholar
Grundy, J. E., McKeating, J. A., Sanderson, A. R., and Griffiths, P. D. (1988). Cytomegalovirus and beta 2 microglobulin in urine specimens. Reciprocal interference in their detection is responsible for artifactually high levels of urinary beta 2 microglobulin in infected transplant recipients. Transplantation, 45(6), 1075–1079.CrossRefGoogle ScholarPubMed
Haynes, L. M., Moore, D. D., Kurt-Jones, E. A., Finberg, R. W., Anderson, L. J., and Tripp, R. A. (2001). Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol., 75(22), 10730–10737.CrossRefGoogle ScholarPubMed
Hobom, U., Brune, W., Messerle, M., Hahn., G., and Koszinowski, U. (2000). Fast screening procedures for random transposon libraries of cloned herpesvirus genomes: mutational analysis of human cytomegalovirus envelope glycoprotein genes. J. Virol., 74(17), 7720–7729.CrossRefGoogle ScholarPubMed
Huber, M. T. and Compton, T. (1997). Characterization of a novel third member of the human cytomegalovirus glycoprotein H-glycoprotein L complex. J. Virol., 71, 5391–5398.Google ScholarPubMed
Huber, M. T. and Compton, T. (1998). The human cytomegalovirus UL74 gene encodes the third component of the glycoprotein H-glycoprotein L-containing envelope complex. J. Virol., 72(10), 8191–8197.Google ScholarPubMed
Ibanez, C. E., Schrier, R., Ghazal, P., Wiley, C., and Nelson, J. A. (1991). Human cytomegalovirus productively infects primary differentiated macrophages. J. Virol., 65(12), 6581–6588.Google ScholarPubMed
Ihara, S., Saito, S., and Watanabe, Y. (1982). Suppression of fibronectin synthesis by an early function(s) of human cytomegalovirus. J. Gen. Virol., 59(2), 409–413.CrossRefGoogle ScholarPubMed
Johnson, R. A., Wang, X., Ma, X. L., Huong, S. M., and Huang, E. S. (2001) Human cytomegalovirus upregulates the phosphatidylinositol 3-kinase (PI3-K) pathway: inhibition of PI3-K activity inhibits replication and virus-induced signalling. J. Virol., 75, 6022–6032.CrossRefGoogle Scholar
Jones, P. L., Crack, J., and Rabinovitch, M. (1997). Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. J. Cell Biol., 139(1), 279–293.CrossRefGoogle Scholar
Kari, B. and Gehrz, R. (1993). Structure, composition and heparin binding properties of a human cytomegalovirus glycoprotein complex designated gC-II. J. Gen. Virol., 74(2), 255–264.CrossRefGoogle ScholarPubMed
Keay, S. and Baldwin, B. (1991). Anti-idiotype antibodies that mimic gp86 of human cytomegalovirus inhibit viral fusion but not attachment. J. Virol., 65(9), 5124–5128.Google Scholar
Keay, S. and Baldwin, B. (1992). The human fibroblast receptor for gp86 of human cytomegalovirus is a phosphorylated glycoprotein. J. Virol., 66(8), 4834–4838.Google ScholarPubMed
Keay, S. and Baldwin, B. R. (1996). Evidence for the role of cell protein phosphorylation in human cytomegalovirus/host cell fusion. J. Gen. Virol., 77(10), 2597–2604.CrossRefGoogle ScholarPubMed
Keay, S., Rasmussen, L., and Merigan, T. C. (1988). Syngeneic monoclonal anti-idiotype antibodies that bear the internal Image of a human cytomegalovirus neutralization epitope. J. Immunol., 140(3), 944–948.Google ScholarPubMed
Keay, S., Merigan, T. C., and Rasmussen, L. (1989). Identification of cell surface receptors for the 86-kilodalton glycoprotein of human cytomegalovirus. Proc. Natl Acad. Sci. USA, 86(24), 10100–10103.CrossRefGoogle ScholarPubMed
Keay, S., Baldwin, B. R., Smith, M. W., Wasserman, S. S., and Goldman, W. F. (1995). Increases in [Ca2+]i mediated by the 92.5-kDa putative cell membrane receptor for HCMV gp86. Am. J. Physiol., 269(1 Pt 1), C11–21.CrossRefGoogle Scholar
Kowalik, T. F., Wing, B., Haskill, J. S., Azizkhan, J. C., Baldwin, A. S. Jr., and Huang, E. S. (1993). Multiple mechanisms are implicated in the regulation of NF-kappa B activity during human cytomegalovirus infection. Proc. Natl Acad. Sci. USA, 90(3), 1107–1111.CrossRefGoogle ScholarPubMed
Kurt-Jones, E. A., Popova, L., Kwinn, L.et al. (2000). Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol., 1(5), 398–401.CrossRefGoogle ScholarPubMed
Larsson, S., Soderberg-Naucler, C., Wang, F. Z., and Moller, E. (1998). Cytomegalovirus DNA can be detected in peripheral blood mononuclear cells from all seropositive and most seronegative healthy blood donors over time. Transfusion, 38(3), 271–278.CrossRefGoogle ScholarPubMed
Li, L., Nelson, J. A., and Britt, W. J. (1997). Glycoprotein H-related complexes of human cytomegalovirus: identification of a third protein in the gCIII complex. J. Virol., 71, 3090–3097.Google ScholarPubMed
Lopper, M. and Compton, T. (2004). Coiled-coli domains in glycoproteins B and H are involved in human cytomegalovirus membrane fusion. J. Virol., 78(15), 8333–8341.CrossRefGoogle Scholar
Lusso, P., Secchiero, P., Crowley, R. W., Garzino-Demo, A., Berneman, Z. N., and Gallo, R. C. (1994). CD4 is a critical component of the receptor for human herpesvirus 7: interference with human immunodeficiency virus. Proc. Natl Acad. Sci. USA, 91(9), 3872–3876.CrossRefGoogle ScholarPubMed
Mach, M., Kropff, B., Monte, P., and Britt, W. (2000). Complex formation by human cytomegalovirus glycoproteins M (gpUL100) and N (gpUL73). J. Virol., 74(24), 11881–11892.CrossRefGoogle Scholar
McKeating, J. A., Grundy, J. E., Varghese, Z., and Griffiths, P. D. (1986). Detection of cytomegalovirus by ELISA in urine samples is inhibited by beta 2 microglobulin. J. Med. Virol., 18(4), 341–348.CrossRefGoogle ScholarPubMed
McKeating, J. A., Griffiths, P. D., and Grundy, J. E. (1987). Cytomegalovirus in urine specimens has host beta 2 microglobulin bound to the viral envelope: a mechanism of evading the host immune response?J. Gen. Virol., 68, 785–792.CrossRefGoogle ScholarPubMed
Miyamoto, S., Teramoto, H., Gutkind, J. S., and Yamada, K. M. (1996). Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol., 135(6 Pt 1), 1633–1642.CrossRefGoogle ScholarPubMed
Moro, L., Venturino, M., Bozzo, C.et al. (1998). Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J., 17(22), 6622–6632.CrossRefGoogle ScholarPubMed
Myerson, D., Hackman, R. C., Nelson, J. A., Ward, D. C., and McDougall, J. K. (1984). Widespread presence of histologically occult cytomegalovirus. Hum. Pathol., 15(5), 430–439.CrossRefGoogle ScholarPubMed
Netterwald, J. R., Jones, T. R., Britt, W. J., Yang, S. J., McCrone, I. P., and Zhu, H. (2004). Postattachment events associated with viral entry are necessary for induction of interferon-stimulated genes by human cytomegalovirus. J. Virol., 78(12), 6688–6691.CrossRefGoogle ScholarPubMed
Nowlin, D. M., Cooper, N. R., and Compton, T. (1991). Expression of a human cytomegalovirus receptor correlates with infectibility of cells. J. Virol., 65(6), 3114–3121.Google Scholar
Ogawa, T., Asai, Y., Hashimoto, M., and Uchida, H. (2002). Bacterial fimbriae activate human peripheral blood monocytes utilizing TLR2, CD14 and CD11a/CD18 as cellular receptors. Eur. J. Immunol., 32(9), 2543–2550.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Pietropaolo, R. and Compton, T. (1997). Direct interaction between human cytomegalovirus glycoprotein B and cellular annexin II. J. Virol., 71, 9803–9807.Google ScholarPubMed
Pietropaolo, R. and Compton, T. (1999). Interference with annexin II has no effect on entry of human cytomegalovirus into fibroblast cells. J. Gen. Virol., 80(7), 1807–1816.CrossRefGoogle ScholarPubMed
Pleskoff, O., Treboute, C., Brelot, A., Heveker, N., Seman, M., and Alizon, M. (1997). Identification of a chemokine receptor encoded by human cytomegalovirus as a cofactor for HIV-1 entry. Science, 276(5320), 1874–1878.CrossRefGoogle ScholarPubMed
Pleskoff, O., Treboute, C., and Alizon, M. (1998). The cytomegalovirus-encoded chemokine receptor US28 can enhance cell–cell fusion mediated by different viral proteins. J. Virol., 72(8), 6389–6397.Google ScholarPubMed
Polic, B., Jonjic, S., Pavic, I.et al. (1996). Lack of MHC class I complex expression has no effect on spread and control of cytomegalovirus infection in vivo. J. Gen. Virol., 77(2), 217–225.CrossRefGoogle ScholarPubMed
Rassa, J. C., Meyers, J. L., Zhang, Y., Kudaravalli, R., and Ross, S. R. (2002). Murine retroviruses activate B cells via interaction with toll-like receptor 4. Proc. Natl Acad. Sci. USA, 99(4), 2281–2286.CrossRefGoogle ScholarPubMed
Raynor, C. M., Wright, J. F., Waisman, D. M., and Pryzdial, E. L. (1999). Annexin II enhances cytomegalovirus binding and fusion to phospholipid membranes. Biochemistry, 38(16), 5089–5095.CrossRefGoogle ScholarPubMed
Santoro, F., Kennedy, P. E., Locatelli, G., Malnati, M. S., Berger, E. A., and Lusso, P. (1999). CD46 is a cellular receptor for human herpesvirus 6. Cell, 99(7), 817–827.CrossRefGoogle ScholarPubMed
Simmen, K. A., Singh, J., Luukkonen, B. G., Lopper, M., Bittner, A., Miller, N. E., Jackson, M. R., Compton, T., and Fruh, K. (2001). Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc. Natl Acad. Sci. USA, 98(13), 7140–7145.CrossRefGoogle ScholarPubMed
Sinzger, C., Kahl, M., Laib, K.et al. (2000). Tropism of human cytomegalovirus for endothelial cells is determined by a post-entry step dependent on efficient translocation to the nucleus. J. Gen. Virol., 81(12), 3021–3035.CrossRefGoogle ScholarPubMed
Soderberg, C., Giugni, T. D., Zaia, J. A., Larsson, S., Wahlberg, J. M., and Moller, E. (1993a). CD13 (human aminopeptidase-N) mediates human cytomegalovirus infection. J. Virol., 67(11), 6576–6585.Google Scholar
Soderberg, C., Larsson, S., Bergstedtlindqvist, S., and Moller, E. (1993b). Definition of a subset of human peripheral blood mononuclear cells that are permissive to human cytomegalovirus infection. J. Virol., 67(6), 3166–3175.Google Scholar
Spear, P. G. and Longnecker, R. (2003). Herpesvirus entry: an update. J. Virol., 77(19), 10179–10185.CrossRefGoogle ScholarPubMed
Stannard, L. M. (1989). Beta 2 microglobulin binds to the tegument of cytomegalovirus: an immunogold study. J. Gen. Virol., 70, 2179–2184.CrossRefGoogle ScholarPubMed
Stewart, P. L., Dermody, T. S., and Nemerow, G. R. (2003). Structural basis for nonenveloped virus entry. Adv. Protein Chem., 64, 455–491.CrossRefGoogle Scholar
Stone, A. L., Kroeger, M., and Sang, Q. X. (1999). Structure–function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins (review). J. Protein Chem., 18(4), 447–465.CrossRefGoogle Scholar
Taylor, H. P. and Cooper, N. R. (1990). The human cytomegalovirus receptor on fibroblasts is a 30-kilodalton membrane protein. J. Virol., 64(6), 2484–2490.Google ScholarPubMed
Triantafilou, M., Miyake, K., Golenbock, D. T., and Triantafilou, K. (2002). Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J. Cell Sci., 115(12), 2603–2611.Google ScholarPubMed
Tugizov, S., Navarro, D., Paz, P., Wang, Y. L., Qadri, I., and Pereira, L. (1994). Function of human cytomegalovirus glycoprotein B: syncytium formation in cells constitutively expressing gB is blocked by virus-neutralizing antibodies. Virology, 201(2), 263–276.CrossRefGoogle ScholarPubMed
Utz, U., Britt, W., Vugler, L., and Mach, M. (1989). Identification of a neutralizing epitope on glycoprotein gp58 of human cytomegalovirus. J. Virol., 63, 1995–2001.Google ScholarPubMed
Wang, X., Huong, S. M., Chiu, M. L., Raab-Traub, N., and Huang, E. S. (2003). Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature, 424(6947), 456–461.CrossRefGoogle ScholarPubMed
Warren, A. P., Owens, C. N., Borysiewicz, L. K., and Patel, K. (1994). Down-regulation of integrin alpha 1/beta 1 expression and association with cell rounding in human cytomegalovirus-infected fibroblasts. J. Gen. Virol., 75(12), 3319–3325.CrossRefGoogle Scholar
White, J. M. (2003). ADAMs: modulators of cell-cell and cell-matrix interactions. Curr. Opin. Cell Biol., 15(5), 598–606.CrossRefGoogle ScholarPubMed
Wolfsberg, T. G., Primakoff, P., Myles, D. G., and White, J. M. (1995). ADAM, a novel family of membrane proteins containing a disintegrin and metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. J. Cell Biol., 131(2), 275–278.CrossRefGoogle ScholarPubMed
Wright, R., Kurosky, A., and Wasi, S. (1993). Annexin II associated with human cytomegalovirus particles: possible implications for cell infectivity. FASEB J., 7, A1301.Google Scholar
Wright, J. F., Kurosky, A., and Wasi, S. (1994). An endothelial cell-surface form of annexin II binds human cytomegalovirus. Biochem. Biophys. Res. Commun., 198(3), 983–989.CrossRefGoogle ScholarPubMed
Wright, J. F., Kurosky, A., Pryzdial, E. L., and Wasi, S. (1995). Host cellular annexin II is associated with cytomegalovirus particles isolated from cultured human fibroblasts. J. Virol., 69, 4784–4791.Google ScholarPubMed
Wu, Q. H., Trymbulak, W., Tatake, R. J., Forman, S. J., Zeff, R. A., and Shanley, J. D. (1994). Replication of human cytomegalovirus in cells deficient in beta(2)-microglobulin gene expression. J. Gen. Virol., 75(10), 2755–2759.CrossRefGoogle ScholarPubMed
Yu, D., Smith, G. A., Enquist, L. W., and Shenk, T. (2002). Construction of a self-excisable bacterial artificial chromosome containing the human cytomegalovirus genome and mutagenesis of the diploid TRL/IRL13 gene. J. Virol., 76(5), 2316–2328.CrossRefGoogle ScholarPubMed
Yurochko, A. D. and Huang, E. S. (1999). Human cytomegalovirus binding to human monocytes induces immunoregulatory gene expression. J. Immunol., 162, 4806–4816.Google ScholarPubMed
Yurochko, A. D., Kowalik, T. F., Huong, S. M., and Huang, E. S. (1995). Human cytomegalovirus upregulates NF-kappa B activity by transactivating the NF-kappa B p105/p50 and p65 promoters. J. Virol., 69(9), 5391–5400.Google ScholarPubMed
Yurochko, A. D., Hwang, E. S., Rasmussen, L., Keay, S., Pereira, L., and Huang, E. S. (1997). The human cytomegalovirus UL55 (gB) and UL75 (gH) glycoprotein ligands initiate the rapid activation of Sp1 and NF-kappaB during infection. J. Virol., 71, 5051–5059.Google ScholarPubMed
Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T., and Shenk, T. (1998). Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 95(24), 14470–14475.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×