Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-05T19:48:17.030Z Has data issue: false hasContentIssue false

20 - CMV maturation and egress

from Part II - Basic virology and viral gene effects on host cell functions: betaherpesviruses

Published online by Cambridge University Press:  24 December 2009

William J. Britt
Affiliation:
Department of Pediatrics, University of Alabama at Birmingham, AL, USA
Ann Arvin
Affiliation:
Stanford University, California
Gabriella Campadelli-Fiume
Affiliation:
Università degli Studi, Bologna, Italy
Edward Mocarski
Affiliation:
Emory University, Atlanta
Patrick S. Moore
Affiliation:
University of Pittsburgh
Bernard Roizman
Affiliation:
University of Chicago
Richard Whitley
Affiliation:
University of Alabama, Birmingham
Koichi Yamanishi
Affiliation:
University of Osaka, Japan
Get access

Summary

Introduction

The assembly of betaherpesviruses, specifically cytomegaloviruses, is a topic of considerable interest to virologists and structural biologists. These viruses are among the largest and most complex animal viruses and encode a large number of proteins. Some clinical isolates of human cytomegalovirus (HCMV) have been predicted to contain as many as 250 ORFs (Chee et al., 1990; Murphy et al., 2003), while other authors have suggested that the coding capacity of HCMV may actually be on the order of 165 ORFs (see Chapter 14). Although the number of virus-encoded proteins that are incorporated into the infectious particle is unknown, estimates from several laboratories suggest that it could approach 100 proteins (Varnum et al., 2004). In addition, the particle also contains an unknown number of host cell proteins, some that may have functional significance in the replicative cycle of these viruses (Varnum et al., 2004). Thus, the complexity of virus assembly rivals that of some cellular organelles. Furthermore, CMVs do not arrest host cell protein synthesis even at late phases of replication as do the alphaherpesviruses and therefore during their assembly can either compete with host cell protein synthetic and targeting pathways or more likely, express viral specific functions that modulate host cellular pathways to optimize viral protein synthesis and transport. Identification of these virus-specified host cell modifications together with their interactions with virion proteins will aid in the understanding of the assembly of this virus.

Type
Chapter
Information
Human Herpesviruses
Biology, Therapy, and Immunoprophylaxis
, pp. 311 - 323
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, H., Messerle, M., and Koszinowski, U. H. (2003). Cloning of herpesviral genomes as bacterial artificial chromosomes. Rev. Med. Virol., 13 (2), 111–121.CrossRefGoogle ScholarPubMed
Amara, A. and Littman, D. R. (2003). After Hrs with HIV. J. Cell Biol., 162 (3), 371–375.CrossRefGoogle Scholar
Baldick, C. J. Jr., Marchini, A., Patterson, C. E., and Shenk, T. (1997). Human cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity of viral DNA and accelerates the infectious cycle. J. Virol., 71(6), 4400–4408.Google ScholarPubMed
Beaudet-Miller, M., Zhang, R., Durkin, J., Gibson, W., Kwong, A. D., and Hong, Z. (1996). Virus-specific interaction between the human cytomegalovirus major capsid protein and the C terminus of the assembly protein precursor. J. Virol., 70(11), 8081–8088.Google Scholar
Bogner, E., Radsak, K., and Stinski, M. F. (1998). The gene product of human cytomegalovirus open reading frame UL56 binds the pac motif and has specific nuclease activity. J. Virol., 72 (3), 2259–2264.Google ScholarPubMed
Borst, E. M., Hahn, G., Koszinowski, U. H., and Messerle, M. (1999). Cloning of the human cytomegalovirus (HCMV) genome as an infectious bacterial artificial chromosome in Escherichia coli: a new approach for construction of HCMV mutants. J. Virol., 73(10), 8320–8329.Google ScholarPubMed
Borst, E. M., Mathys, S., Wagner, M., Muranyi, W., and Messerle, M. (2001). Genetic evidence of an essential role for cytomegalovirus small capsid protein in viral growth. J. Virol., 75(3), 1450–1458.CrossRefGoogle ScholarPubMed
Brack, A. R., Dijkstra, J. M., Granzow, H., Klupp, B. G., and Mettenleiter, T. C. (1999). Inhibition of virion maturation by simultaneous deletion of glycoproteins E, I, and M of pseudorabies virus. J. Virol., 73(7), 5364–5372.Google Scholar
Britt, W., Jarvis, M., Seo, J. Y., Drummond, D., and Nelson, J. (2004). Rapid genetic engineering of human cytomegalovirus using a lambda phage based linear recombination system: demonstration that pp28 (UL99) is essential for production of infectious virus. J. Virol., 78(1), 539–543.CrossRefGoogle Scholar
Browne, E. P. and Shenk, T. (2003). Human cytomegalovirus UL83-coded pp65 virion protein inhibits antiviral gene expression in infected cells. Proc. Natl Acad. Sci. USA, 100(20), 11439–11444.CrossRefGoogle ScholarPubMed
Butcher, S. J., Aitken, J., Mitchell, J., Gowen, B., and Dargan, D. J. (1998). Structure of the human cytomegalovirus B capsid by electron cryomicroscopy and Image reconstruction. J. Struct. Biol., 124(1), 70–76.CrossRefGoogle ScholarPubMed
Campadelli-Fiume, G., Farabegoli, F., Gaeta, S., and Roizman, B. (1991). Origin of unenveloped capsids in the cytoplasm of cells infected with herpes simplex virus 1. J. Virol., 65(3), 1589–1595.Google ScholarPubMed
Chee, M. S., Bankier, A. T.Beck, S.et al. (1990). Analysis of the protein-coding content of the sequence of human cytomegalovirus strain AD169. Curr. Top. Microbiol. Immunol., 154, 125–170.Google ScholarPubMed
Chen, D. H., Jiang, H., Lee, M., Liu, F., and Zhou, Z. H. (1999). Three-dimensional visualization of tegument/capsid interactions in the intact human cytomegalovirus. Virology, 260, 10–16.CrossRefGoogle ScholarPubMed
Crump, C. M., Hung, C. H., Thomas, L., Wan, L., and Thomas, G. (2003). Role of PACS-1 in trafficking of human cytomegalovirus glycoprotein B and virus production. J. Virol., 77(20), 11105–11113.CrossRefGoogle ScholarPubMed
Monte, P., Pignatelli, S., Zini, N.et al. (2002). Analysis of intracellular and intraviral localization of the human cytomegalovirus UL53 protein. J. Gen. Virol., 83(5), 1005–1012.CrossRefGoogle Scholar
Noronha, C. M., Sherman, M. P., Lin, H. W.et al. (2001). Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr.[see comment]. Science, 294 (5544), 1105–1108.CrossRefGoogle Scholar
Rio, T., Werner, H. C., and Enquist, L. W. (2002). The pseudorabies virus VP22 homologue (UL49) is dispensable for virus growth in vitro and has no effect on virulence and neuronal spread in rodents. J. Virol., 76(2), 774–782.Google ScholarPubMed
Dominguez, G., Dambaugh, T. R., Stamey, F. R., Dewhurst, S., Inoue, N., and Pellett, P. E. (1999). Human herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 6A. J. Virol., 73 (10), 8040–8052.Google ScholarPubMed
Fraile-Ramos, A., Kledal, T. N., Pelchen-Matthews, A., Bowers, K., Schwartz, T. W., and Marsh, M. (2001). The human cytomegalovirus US28 protein is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Mol. Biol. Cell, 12 (6), 1737–1749.CrossRefGoogle Scholar
Fuchs, W., Klupp, B. G., Granzow, H., Osterrieder, N., and Mettenleiter, T. C. (2002). The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J. Virol., 76 (1), 364–378.CrossRefGoogle Scholar
Gallina, A., Simoncini, L., Garbelli, S.et al. (1999). Polo-like kinase 1 as a target for human cytomegalovirus pp65 lower matrix protein. J. Virol., 73 (2), 1468–1478.Google ScholarPubMed
Gibson, W. (1996). Structure and assembly of the virion. Intervirology, 39(5–6), 389–400.CrossRefGoogle ScholarPubMed
Gibson, W., Marcy, A. I., Comolli, J. C., and Lee, J. (1990). Identification of precursor to cytomegalovirus capsid assembly protein and evidence that processing results in loss of its carboxy-terminal end. J. Virol., 64, 1241–1249.Google ScholarPubMed
Gibson, W., McNally, L. M., Welch, A. R. et al. (1993). Cytomegalovirus maturational proteinase: site-directed mutagenesis used to probe enzymatic and substrate domains. In Multidisciplinary Approach to Understanding Cytomegalovirus Disease ed. Michelson, S., and Plotkin, S. A., pp. 21–25. Amsterdam: Elsevier.Google Scholar
Gibson, W., Baxter, M. K., and Clopper, K. S. (1996). Cytomegalovirus “missing” capsid protein identified as heat-aggregable product of human cytomegalovirus UL46. J. Virol., 70(11), 7454–7461.Google ScholarPubMed
Giesen, K., Radsak, K., and Bogner, E. (2000). The potential terminase subunit of human cytomegalovirus, pUL56, is translocated into the nucleus by its own nuclear localization signal and interacts with importin alpha. J. Gen. Virol., 81(9), 2231–2244.CrossRefGoogle ScholarPubMed
Gompels, U. A., Nicholas, J., Lawrence, G.et al. (1995). The DNA sequence of human herpesvirus 6: structure, coding content, and genome evolution. Virology, 209, 29–51.CrossRefGoogle ScholarPubMed
Gould, S. J., Booth, A. M., and Hildreth, J. E. (2003). The Trojan exosome hypothesis. Proc. Natl Acad. Sci. USA, 100(19), 10592–10597.CrossRefGoogle ScholarPubMed
Granzow, H., Weiland, F., Jons, A., Klupp, B. G., Karger, A., and Mettenleiter, T. C. (1997). Ultrastructural analysis of the replication cycle of pseudorabies virus in cell culture: a reassessment. J. Virol., 71(3), 2072–2082.Google ScholarPubMed
Granzow, H., Klupp, B. G., Fuchs, W., Veits, J., Osterrieder, N., and Mettenleiter, T. C. (2001). Egress of alphaherpesviruses: comparative ultrastructural study. J. Virol., 75(8), 3675–3684.CrossRefGoogle ScholarPubMed
Grunewald, K., Desai, P., Winkler, D. C.et al. (2003). Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science, 302, 1396–1398.CrossRefGoogle ScholarPubMed
Hensel, G., Meyer, H., Gartner, S., Brand, G., and Kern, H. F. (1995). Nuclear localization of the human cytomegalovirus tegument protein pp150 (ppUL32). J. Gen. Virol., 76, 1591–1601.CrossRefGoogle Scholar
Heymann, J. B., Cheng, N., Newcomb, W. W., Trus, B. L., Brown, J. C., and Steven, A. C. (2003). Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy [comment]. Nat. Struct. Biol., 10(5), 334–341.CrossRefGoogle Scholar
Homman-Loudiyi, M., Hultenby, K., Britt, W., and Soderberg-Naucler, C. (2003). Envelopment of human cytomegalovirus occurs by budding into Golgi-derived vacuole compartments positive for gB, Rab 3, trans-golgi network 46, and mannosidase II. J. Virol., 77, 3191–3203.CrossRefGoogle ScholarPubMed
Jarvis, M. A., Fish, K. N., Soderberg-Naucler, C.et al. (2002). Retrieval of human cytomegalovirus glycoprotein B from cell surface is not required for virus envelopment in astrocytoma cells. J. Virol., 76(10), 5147–5155.CrossRefGoogle Scholar
Jarvis, M. A., Jones, T. R., Drummond, D. D.et al. (2004). Phosphorylation of human cytomegalovirus glycoprotein B (gB) at the acidic cluster casein kinase 2 site (Ser900) is required for localization of gB to the trans-Golgi network and efficient virus replication. J. Virol., 78(1), 285–293.CrossRefGoogle ScholarPubMed
Johnson, D. C. and Spear, P. G. (1982). Monesin inhibits the processing of herpes simplex virus glycoproteins, their transport to the cell surface, and egress of virions from infected cells. J. Virol., 43, 1102–1112.Google Scholar
Jones, F. and Grose, C. (1988). Role of cytoplasmic vacuoles in varicella-zoster virus glycoprotein trafficking and virion envelopment. J. Virol., 62(8), 2701–2711.Google ScholarPubMed
Jones, T. R. and Lee, S. W. (2004). An acidic cluster of human cytomegalovirus UL99 tegument protein is required for trafficking and function. J. Virol., 78, 1488–1502.CrossRefGoogle ScholarPubMed
Kalejta, R. F. and Shenk, T. (2003). The human cytomegalovirus UL82 gene product (pp71) accelerates progression through the G1 phase of the cell cycle. J. Virol., 77(6), 3451–3459.CrossRefGoogle ScholarPubMed
Klupp, B. G., Granzow, H., and Mettenleiter, T. C. (2000). Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. J. Virol., 74(21), 10063–10073.CrossRefGoogle ScholarPubMed
Komazin, G., Townsend, L. B., and Drach, J. C. (2004). Role of a mutation in human cytomegalovirus gene UL104 in resistance to benzimidazole ribonucleosides. J. Virol., 78(2), 710–715.CrossRefGoogle ScholarPubMed
Kopp, M., Granzow, H., Fuchs, W.et al. (2003). The pseudorabies virus UL11 protein is a virion component involved in secondary envelopment in the cytoplasm. J. Virol., 77(9), 5339–5351.CrossRefGoogle ScholarPubMed
Krosky, P. M., Underwood, M. R., Turk, S. R.et al. (1998). Resistance of human cytomegalovirus to benzimidazole ribonucleosides maps to two open reading frames: UL89 and UL56. J. Virol., 72(6), 4721–4728.Google ScholarPubMed
Lai, L. and Britt, W. J. (2003). The interaction between the major capsid protein and the smallest capsid protein of human cytomegalovirus is dependent on two linear sequences in the smallest capsid protein. J. Virol., 77(4), 2730–2735.CrossRefGoogle ScholarPubMed
Lee, J. Y., Irmiere, A., and Gibson, W. (1988). Primate cytomegalovirus assembly: evidence that DNA packaging occurs subsequent to B capsid assembly. Virology, 167(1), 87–96.CrossRefGoogle ScholarPubMed
Liu, B. and Stinski, M. F. (1992). Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J. Virol., 66, 4434–4444.Google ScholarPubMed
Liu, F. and Roizman, B. (1992). Differentiation of multiple domains in the herpes simplex virus 1 protease encoded by the UL26 gene. Proce. Natl Acad. Sci. USA, 89(6), 2076–2080.CrossRefGoogle ScholarPubMed
Messerle, M., Hahn, G., Brune, W., and Koszinowski, U. H. (2000). Cytomegalovirus bacterial artificial chromosomes: a new herpesvirus vector approach. Adv. Virus Res., 55, 463–478.CrossRefGoogle ScholarPubMed
Mettenleiter, T. C. (2002). Herpesvirus assembly and egress. J. Virol., 76(4), 1537–1547.CrossRefGoogle ScholarPubMed
Mocarski, E. S. and Courcelle, Tan C. (2001). Cytomegaloviruses and their replication. 4th ed. In Fields Virology 4th edn., ed. D. M. K. A. P. M. Howley, Vol. 2, pp. 2629–2673. Philadelphia: Lippincott, Williams and Wilkins.Google Scholar
Mori, Y., Yang, X., Akkapaiboon, P., Okuno, T., and Yamanishi, K. (2003). Human herpesvirus 6 variant A glycoprotein H-glycoprotein L-glycoprotein Q complex associates with human CD46. J. Virol., 77(8), 4992–4999.CrossRefGoogle ScholarPubMed
Muranyi, W., Haas, J., Wagner, M., Krohne, G., and Koszinowski, U. H. (2002). Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina.[comment]. Science, 297(5582), 854–857.CrossRefGoogle Scholar
Murphy, E., Yu, D., Grimwood, J.et al. (2003). Coding capacity of laboratory and clinical strains of human cytomegalovirus. Proc. Natl Acad. Sci. USA, 100(25), 14976–14981.CrossRefGoogle Scholar
Newcomb, W. W., Homa, F. L., Thomsen, D. R., Ye, Z., and Brown, J. C. (1994). Cell-free assembly of the herpes simplex virus capsid. J. Virol., 68, 6059–6063.Google ScholarPubMed
Newcomb, W. W., Homa, F. L., Thomsen, D. R.et al. (1996). Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J. Mol. Biol., 263(3), 432–446.CrossRefGoogle ScholarPubMed
Newcomb, W. W., Homa, F. L., Thomsen, D. R.et al. (1999). Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J. Virol., 73(5), 4239–4250.Google ScholarPubMed
Newcomb, W. W., Homa, F. L., Thomsen, D. R., and Brown, J. C. (2001). In vitro assembly of the herpes simplex virus procapsid: formation of small procapsids at reduced scaffolding protein concentration. J. Struct. Biol., 133(1), 23–31.CrossRefGoogle ScholarPubMed
Nicholas, J. (1996). Determination and analysis of the complete nucleotide sequence of human herpesvirus. J. Virol., 70(9), 5975–5989.Google ScholarPubMed
Nicholson, P., Addison, C., Cross, A. M., Kennard, J., Preston, V. G., and Rixon, F. J. (1994). Localization of the herpes simplex virus type 1 major capsid protein VP5 to the cell nucleus requires the abundant scaffolding protein VP22a. J. Gen. Virol., 75(5), 1091–1099.CrossRefGoogle ScholarPubMed
Oien, N. L., Thomsen, D. R., Wathen, M. W., Newcomb, W. W., Brown, J. C., and Homa, F. L. (1997). Assembly of herpes simplex virus capsids using the human cytomegalovirus scaffold protein: critical role of the C terminus. J. Virol., 71(2), 1281–1291.Google ScholarPubMed
Pelchen-Matthews, A., Kramer, B., and Marsh, M. (2003). Infectious HIV-1 assembles in late endosomes in primary macrophages. J. Cell Biol., 162(3), 443–455.CrossRefGoogle ScholarPubMed
Pombo, A., Ferreira, J., Bridge, E., and Carmo-Fonseca, M. (1994). Adenovirus replication and transcription sites are spatially separated in the nucleus of infected cells. EMBO J., 13(21), 5075–5085.Google ScholarPubMed
Preston, V. G., Rixon, F. J., McDougall, I. M., McGregor, M., and al-Kobaisi, M. F. (1992). Processing of the herpes simplex virus assembly protein ICP35 near its carboxy terminal end requires the product of the whole of the UL26 reading frame. Virology, 186(1), 87–98.CrossRefGoogle Scholar
Preston, V. G., al-Kobaisi, M. F., McDougall, I. M., and Rixon, F. J. (1994). The herpes simplex virus gene UL26 proteinase in the presence of the UL26.5 gene product promotes the formation of scaffold-like structures. J. Gen. Virol., 75(9), 2355–2366.CrossRefGoogle ScholarPubMed
Radsak, K. D., Brucher, K. H., and Georgatos, S. D. (1991). Focal nuclear envelope lesions and specific nuclear lamin A/C dephosphorylation during infection with human cytomegalovirus. Eur. J. Cell Biol., 54, 299–304.Google ScholarPubMed
Radsak, K., Eickmann, M., Mockenhaupt, T.et al. (1996). Retrieval of human cytomegalovirus glycoprotein B from the infected cell surface for virus envelopment. Arch. Virol., 141, 557–572.CrossRefGoogle ScholarPubMed
Roffman, E., Albert, J. P., Goff, J. P., and Frenkel, N. (1990). Putative site for the acquisition of human herpesvirus 6 virion tegument. J. Virol., 64(12), 6308–6313.Google ScholarPubMed
Rudolph, S. A., Kuhn, J. E., Korn, K., Braun, R. W., and Jahn, G. (1990). Prokaryotic expression of the major capsid protein of human cytomegalovirus and antigenic cross-reactions with herpes simplex virus type 1. J. Gen. Virol., 71, 2023–2031.CrossRefGoogle ScholarPubMed
Sanchez, V., Angeletti, P. C., Engler, J. A., and Britt, W. J. (1998). Localization of human cytomegalovirus structural proteins to the nuclear matrix of infected human fibroblasts. J. Virol., 72, 3321–3329.Google ScholarPubMed
Sanchez, V., Greis, K. D., Sztul, E., and Britt, W. J. (2000a). Accumulation of virion tegument and envelope proteins in a stable cytoplasmic compartment during human cytomegalovirus replication. Characterization of a potential site of virus assembly. J. Virol., 74, 975–986.CrossRefGoogle Scholar
Sanchez, V., Sztul, E., and Britt, W. J. (2000b). Human cytomegalovirus pp28 (UL99) localizes to a cytoplasmic compartment which overlaps the endoplasmic reticulum-golgi-intermediate compartment. J. Virol., 74(8), 3842–3851.CrossRefGoogle Scholar
Scheffczik, H., Savva, C. G., Holzenburg, A., Kolesnikova, L., and Bogner, E. (2002). The terminase subunits pUL56 and pUL89 of human cytomegalovirus are DNA-metabolizing proteins with toroidal structure. Nucl. Acids Res., 30(7), 1695–1703.CrossRefGoogle ScholarPubMed
Schirmbeck, R. and Deppert, W. (1989). Nuclear subcompartmentalization of simian virus 40 large T antigen: evidence for in vivo regulation of biochemical activities. J. Virol., 63(5), 2308–2316.Google ScholarPubMed
Scholz, B., Rechter, S., Drach, J. C., Townsend, L. B., and Bogner, E. (2003). Identification of the ATP-binding site in the terminase subunit pUL56 of human cytomegalovirus. Nucl. Acids Res., 31(5), 1426–1433.CrossRefGoogle ScholarPubMed
Silva, M. C., Yu, Q. C., Enquist, L., and Shenk, T. (2003). Human cytomegalovirus UL99-encoded pp28 is required for the cytoplasmic envelopment of tegument-associated capsids. J. Virol., 77(19), 10594–10605.CrossRefGoogle ScholarPubMed
Skeppner, J. N., Browne, H. and Minson, A. (2001). Herpes simplex virus nucleocapsids mature to progeny virus by an envelopment–deenvelopment–reenvelopment pathway. J. Virol., 75(12), 5697–5702.CrossRefGoogle Scholar
Smith, G. A. and Enquist, L. W. (1999). Construction and transposon mutagenesis in Escherichia coli of a full-length infectious clone of pseudorabies virus, an alphaherpesvirus. J. Virol., 73(8), 6405–6414.Google ScholarPubMed
Smith, J. D. and DeHarven, E. (1973). Herpes simplex virus and human cytomegalovirus replication in WI-38 cells. I. Sequence of viral replication. J. Virol., 12, 919–930.Google ScholarPubMed
Steen, R. L., Martins, S. B., Tasken, K., and Collas, P. (2000). Recruitment of protein phosphatase 1 to the nuclear envelope by A-kinase anchoring protein AKAP149 is a prerequisite for nuclear lamina assembly. J. Cell Biol., 150(6), 1251–1262.CrossRefGoogle ScholarPubMed
Steven, A. C. and Spear, P. G. (1997). Herpes capsid assembly and envelopment. In Structural Biology of Viruses ed. Chiu, W., Burnett, R. M., and Garcea, R. L., pp. 312–351. New York: Oxford University Press.Google Scholar
Stuurman, N., Heins, S., and Aebi, U. (1998). Nuclear lamins: their structure, assembly, and interactions. J. Struct. Biol., 122(1–2), 42–66.CrossRefGoogle ScholarPubMed
Tatman, J. D., Preston, V. G., Nicholson, P., Elliott, R. M., and Rixon, F. J. (1994). Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J. Gen. Virol., 75(5), 1101–1113.CrossRefGoogle ScholarPubMed
Tooze, J., Hollinshead, M., Reis, B., Radsak, K., and Kern, H. (1993). Progeny vaccinia and human cytomegalovirus particles utilize early endosomal cisternae for their envelopes. Eur. J. Cell. Biol., 601(1), 163–178.Google Scholar
Trus, B. L., Gibson, W., Cheng, N., and Steven, A. C. (1999). Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites [erratum appears in J. Virol. 1999 May;73(5):4530]. J. Virol., 73(3), 2181–2192.Google Scholar
Tugizov, S., Maidji, E., Xiao, J., and Pereira, L. (1999). An acidic cluster in the cytosolic domain of human cytomegalovirus glycoprotein B is a signal for endocytosis from the plasma membrane. J. Virol., 73(10), 8677–8688.Google ScholarPubMed
Varnum, S. M., Streblow, D. N., Monroe, M. E.et al. (2004). Identification of proteins in human cytomegalovirus (HCMV) particles: the HCMV proteome. J. Virol., 78, 10960–10966.CrossRefGoogle ScholarPubMed
Wang, Z. H., Gershon, M. D., Lungu, O., Zhu, Z., and Gershon, A. A. (2000). Trafficking of varicella-zoster virus glycoprotein gI: T(338)-dependent retention in the trans-Golgi network, secretion, and mannose 6-phosphate-inhibitable uptake of the ectodomain. J. Virol., 74(14), 6600–6613.CrossRefGoogle Scholar
Welch, A. R., McNally, L. M., and Gibson, W. (1991a). Cytomegalovirus assembly protein nested gene family: four 3′-coterminal transcripts encode four in-frame, overlapping proteins. J. Virol., 65(8), 4091–4100.Google Scholar
Welch, A. R., Woods, A. S., McNally, L. M., Cotter, R. J., and Gibson, W. (1991b). A herpesvirus maturational proteinase, assemblin: identification of its gene, putative active site domain, and cleavage site. Proc. Natl Acad. Sci. USA, 88, 10792–10796.CrossRefGoogle Scholar
Whealy, M. E., Card, J. P., Meade, R. P., Robbins, A. K., and Enquist, L. W. (1991). Effect of Brefeldin A on alphaherpesvirus membrane protein glycosylation and virus egress. J. Virol., 65, 1066–1081.Google ScholarPubMed
Wood, L. J., Baxter, M. K., Plafker, S. M., and Gibson, W. (1997). Human cytomegalovirus capsid assembly protein precursor (pUL80.5) interacts with itself and with the major capsid protein (pUL86) through two different domains. J. Virol., 71(1), 179–190.Google ScholarPubMed
Yu, X., Shah, S., Atanasov, I.et al. (2005). Three-dimensional localization of the smallest capsid protein in the human cytomegalovirus capsid. J. Virol., 79(2), 1327–1332.CrossRefGoogle ScholarPubMed
Zhu, Z., Gershon, M. D., Hao, Y., Ambron, R. T., Gabel, C. A., and Gershon, A. A. (1995). Envelopment of varicella-zoster virus: targeting of viral gylcoproteins to the trans-Golgi network. J. Virol., 69, 7951–7959.Google Scholar
Zhou, Z. H., Chen, D. H., Jakana, J., Rixon, F. J., and Chiu, W. (1999). Visualization of tegument-capsid interactions and DNA in intact herpes simplex virus type 1 virions. J. Virol., 73(4), 3210–3218.Google ScholarPubMed
Zhou, Z. H., Dougherty, M., Jakana, J., He, J., Rixon, F. J., and Chiu, W. (2000). Seeing the herpesvirus capsid at 8.5 A. Science, 288(5467), 877–880.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×