Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T03:26:14.767Z Has data issue: false hasContentIssue false

Part VII - Future Earth and Risk, Safety and Security

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 311 - 376
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

AchutaRao, K. and Sperber, K.R. (2006). ENSO simulation in coupled ocean-atmosphere models: Are the models better? Climate Dynamics, 27, 115.Google Scholar
Aguilar, E., Peterson, T.C., Obando, P.R., Frutos, R., Retana, J.A., Solera, M., Soley, J., Garcia, I.G., Araujo, R.M., Santos, A.R. and Valle, V.E. (2005). Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003, Journal of Geophysical Research – Atmospheres, 110, D23.Google Scholar
Alexeev, V.A. (2003). Sensitivity to CO2 doubling of an atmospheric GCM coupled to an oceanic layer: A linear analysis, Climate Dynamics, 20, 775787.CrossRefGoogle Scholar
Allen, M.R. and Ingram, W.J. (2002). Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224231.Google Scholar
Alley, R.B., Marotzke, J., Nordhaus, W.D., Overpeck, J.T., Peteet, D.M., Pielke, R.A. Jr., Pierrehumbert, R.T., Rhines, P.B., Stocker, T.F., Talley, L.D., Wallace, J.M. (2003). Abrupt climate change, Science, 299, 20052010.Google Scholar
Aparicio, J., Martinez-Austria, P.F., Guitron, A. and Ramirez, A.I. (2008). The October-November 2007 floods in Tabasco, Mexico: An interim diagnosis and courses of action. 4th International Symposium on Flood Defense, Toronto, Ontario, Canada, 58–1–7.Google Scholar
Arredondo-Moreno, T. and Huber-Sannwald, E. (2011). Impact of drought in agriculture in northern Mexico. Coping of Global Environmental Change, Disasters and Security, 5, 875891.Google Scholar
Arriaga-Ramirez, S. and Cavazos, T. (2010). Regional trends of daily precipitation indices in northern Mexico and southwest United States. Journal of Geophysical Research: Atmospheres, 115, D14. doi:10.1029/2009/DOI3248.Google Scholar
Ault, T.R., Cole, J.E., Overpeck, J.T., Pederson, G.T. and Meko, D.M. (2014). Assessing the risk of persistent drought using climate model simulations and paleoclimate data. Journal of Climate, 27, 75297549.Google Scholar
Beer, T. (Ed) (2010). Geophysical Hazards Minimizing Risk Maximizing Awareness. International Year of Planet Earth Series. Dordrecht: Springer Science and Business Media.Google Scholar
Beer, T. and Ismail-Zadeh, A. (Eds) (2003). Risk Science and Sustainability: Science for Reduction of Risk and Sustainable Development of Society. Dordrecht: Kluwer Academic.Google Scholar
Bronstert, A. (2003). Floods and climate change: Interactions and impacts. Risk Analysis, 23, 545557.Google Scholar
Chavez, M., Ghil, M. and Urrutia-Fucugauchi, J. (Eds) (2016). Extreme Events: Observations, Modeling and Economics. Wiley, American Geophysical Union Monograph 214.Google Scholar
Cook, B.I., Ault, T.R. and Smerdon, J.E. (2015). Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science Advances, 1(1), e1400082.CrossRefGoogle ScholarPubMed
Cook, B.I., Cook, E.R., Smerdon, J.E., Seager, R., Williams, A.P., Coats, S., Stahle, D.W. and Diaz-Villanueva, J. (2016). North American megadroughts in the Common Era: Reconstructions and simulations. Wiley Interdisciplinary Reviews: Climate Change, 7(3), 411432.Google Scholar
Davey, M. et al. (2002). STOIC: A study of coupled GCM climatology and variability in tropical ocean regions. Climate Dynamics, 18, 403420.Google Scholar
Diffenbaugh, N.S., Swain, D.L. and Touma, D. (2015). Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences, 112(13), 39313936.Google Scholar
Doutriaux-Boucher, M. and Quass, J. (2004). Evaluation of cloud thermodynamic phase parametrization in the LMDZ GCM by using POLDER satellite data. Geophysical Research Letters, 31, L06126.Google Scholar
Emori, S., Hasegawa, A., Suzuki, T. and Dairaku, K. (2005). Validation, parametrization dependence and future projection of daily precipitation simulated with an atmospheric GCM. Geophysical Research Letters, 32, L06708.Google Scholar
FAO, IFAD and WFP (2015). The State of Food Insecurity in the World. Meeting the 2015 international hunger targets: Tacking stock of uneven progress. Rome: Publ. Food and Agriculture Organization, United Nations, FAO.Google Scholar
Flato, G.M. (2005). The Third Generation Coupled Global Climate Model (CGCM3). www.cccma.bc.ec.gc.ca/models/cgcm3.shtml.Google Scholar
FONDEN. (2012). FONDEN El Fondo de Desastres Naturales de México – Una Reseña. Libro Fondo Nacional de Desastres Naturales. Banco Mundial, México: Sistema de Gestión de Riesgo de Desastres.Google Scholar
Francis, P. and Rothery, D. (2000). Remote sensing of active volcanoes. Annual Review of Earth and Planetary Sciences, 28(1), 81106.CrossRefGoogle Scholar
Gleick, P.H. (1989). Climate change, hydrology, and water resources. Reviews of Geophysics, 27(3), 329344. doi:10.1029/RG027i003p00329.Google Scholar
Griffies, S.M. (2004). Fundamentals of Ocean Climate Models. Princeton, NJ: Princeton University Press.Google Scholar
Griffin, D. and Anchukaities, K.J. (2014). How unusual is the 2012–2014 California drought? Geophysical Research Letters, 41(24), 90179023.Google Scholar
Hagemann, S. (2002). An Improved Land Surface Parameter Dataset for Global and Regional Climate Models. Max Planck Institute Meteorology Report 162, Hamburg, Germany 21 pp.Google Scholar
Hallack-Alegria, M., Ramirez-Hernandez, J. and Watkins, D.W. (2012). ENSO-conditions rainfall drought frequency analysis in northwest Baja California, Mexico. International Journal of Climatology, 32(6), 831842.Google Scholar
Haug, G. et al. (2001). Southward migration of the Intertropical Convergence Zone through the Holocene. Science, 293, 13041308.Google Scholar
Herman, J. R., Bhartia, P. K., Torres, O., Hsu, C., Seftor, C. and Celarier, E. (1997). Global distribution of UV‐absorbing aerosols from Nimbus 7/TOMS data. Journal of Geophysical Research: Atmospheres, 102(D14), 1691116922.Google Scholar
Hook, S.J., Myers, J.J., Thorne, K.J., Fitzgerald, M. and Kahle, A.B. (2001). The MODIS/ASTER airborne simulator (MASTER) – a new instrument for earth science studies. Remote Sensing of Environment, 76, 95102.Google Scholar
Hwang, L., Jordan, T., Kellog, L., Tromp, J. and Wiellemann, R. (2014). Advancing solid Earth system science through high-performance computing. Computational Infrastructure for Geodynamics Publ., University of California, Davis.Google Scholar
ICSU. (2010). Earth System Science for Global Sustainability: The Grand Challenges. Paris: International Council for Science.Google Scholar
IPCC. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the IPCC (Core Writing Team, Pachuri, R.K. and Meyer, L.A. Eds, Geneva, Switzerland.Google Scholar
Ismail-Zadeh, A., Urrutia-Fucugauchi, J., Kijko, A., Takeuchi, K. and Zialapin, I. (Eds) (2014). Extreme Natural Hazards, Disaster Risks and Societal Implications. Cambridge: Cambridge University Press.Google Scholar
Kaufman, Y.J., Tanré, D. and Boucher, O. (2002). A satellite view of aerosols in the climate system. Nature, 419, 215223.Google Scholar
Kearey, P., Brooks, M. and Hill, I. (2013). An Introduction to Geophysical Exploration. John Wiley & Sons.Google Scholar
Kleidon, A. (2004). Global datasets of rooting zone depth inferred from inverse methods. Journal of Climate, 17, 27142722.Google Scholar
Lal, R. et al. (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304, 16231627.Google Scholar
Lambert, S.J. and Boer, G.J. (2001). CMIP1 evaluation and intercomparison of coupled climate models. Climate Dynamics, 17, 83106.Google Scholar
Latif, M. and Keenlyside, N.S. (2009). El Niño/Southern Oscillation response to global warming. Proceedings National Academy of Sciences, 106, 2057820583.Google Scholar
Lawrimore, J., Heim, R. R. Jr, Svoboda, M., Swail, V. and Englehart, P. J. (2002). Beginning a new era of drought monitoring across North America. Bulletin of the American Meteorological Society, 83(8), 11911192.Google Scholar
Mann, M.E. and Gleick, P.H. (2015). Climate change and California drought in the 21st century. Proceedings of the National Academy Sciences, 112(13), 38583859.Google Scholar
Manning, M.R., Petit, M., Easterling, D., Murphy, J., Patwardhan, A., Rogner, H., Swart, R. and Yohe, G. (Eds) (2004). IPCC workshop on describing scientific uncertainties in climate change to support analysis of risks of options. Geneva: IPCC Workshop Report.Google Scholar
McBean, G.A. (2002). Prediction as the basis for planning and response. Water International, 7, 7076.Google Scholar
McPhadden, M., Zhang, X., Hendon, H.H. and Wheeler, M.C. (2006). Large scale dynamics and MJO forcing of ENSO variability. Geophysical Research Letters, 33, L16702.Google Scholar
Mendez, M. and Magaña, V. (2010). Regional aspects of prolonged meteorological droughts over Mexico and Central America. Journal of Climate, 23, 11751188.Google Scholar
Medina-Cetina, Z. and Nadim, F. (2008). Stochastic design of an early warning system. Georisk, 2, 223236.Google Scholar
Milly, P.C.D., Wetherald, R.T., Dunne, K.A. and Delworth, T.L. (2002). Increasing risk of great floods in a changing climate. Nature, 415, 514517.CrossRefGoogle Scholar
Milly, P.C.D., Dunne, K.A. and Vecchia, A.V. (2005). Global pattern of trends in streamflow and water availability in a changing climate. Nature, 438, 347350.CrossRefGoogle Scholar
Moss, R., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuueren, D.P., Carter, T.R., Emori, S., Kainuma, M., Kram, T., Meehl, G.A., Mitchel, J., Nakicenovic, N., Rihai, K., Smith, S.J., Stouffer, R.J., Thompson, A.M., Weyyant,. P. and Wilbanks, T.J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747756.Google Scholar
Mourtzinis, S., Ortiz, B.V. and Damianidis, D. (2016). Climate change and ENSO effects on southwestern US climate patterns and maize yield. Scientific Reports, 6(29777), 17.Google Scholar
MunichRe. (2015). NatCatSERVICE Download Center. Natural catastrophes 2014 Report. www.businesswire.com/news/home/20150107005586/en/Review-natural-catastrophes-2014-losses-weather-extremes.Google Scholar
NASA. (2011). National Aeronautics and Space Administration, NPP NPOESS Preparatory Project. www.nasa.gov/NPP.Google Scholar
Parry, M. and Livermoore, M. (2002). Climate change, global food supply and risk of hunger. Issues in Environmental Science and Technology, 17, 109136.Google Scholar
Paul, F., Huggel, C. and Kääb, A. (2004). Combining satellite multispectral image data and digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 89, 510518.Google Scholar
Pérez-Cruz, L. (2006). Climate and ocean variability during mid-late Holocene recorded in laminated sediments from Alfonso basin, Gulf of California, Mexico. Quaternary Research, 65, 401410.Google Scholar
Pérez-Cruz, L. (2013). Hydrological changes and paleoproductivity in the Gulf of California during middle and late Holocene and their relationship with ITCZ and North American Monsoon variability. Quaternary Research, 79, 138151.Google Scholar
Peterson, T.C., Zhang, A., Brunet-India, M. and Vazquez-Aguirre, J.L. (2008). Changes in North American extremes derived from daily weather data. Journal of Geophysical Research: Atmospheres, 113(D7).Google Scholar
Power, S.B. and Colman, R. (2006). Multi-decadal predictability in a coupled GCM. Climate Dynamics, 26, 247272.Google Scholar
Ramanathan, V.C.P.J., Crutzen, P.J., Kiehl, J.T. and Rosenfeld, D. (2001). Aerosols, climate, and the hydrological cycle. Science, 294(5549), 21192124.Google Scholar
Ramos, J., Marrufo, L. and Gonzalez, F.J. (2009). Use of Lidar data in floodplain risk management planning: The experience of Tabasco 2007 flood. In: Advances in Geoscience and Remote Sensing, Gary Jedlovec (Ed). Available from: www.intechopen.com/books/advances-in-geoscience-and-remote-sensing/use-of-lidar-data-in-floodplain-risk-management-planning-the-experience-of-tabasco-2007-flood.Google Scholar
Reynolds, J.M. (2011). An Introduction to Applied and Environmental Geophysics. John Wiley & Sons.Google Scholar
Rivera-Trejo, F., Soto-Cortés, G. and Méndez-Antonio, B. (2010). The 2007 flood in Tabasco, Mexico: An integral analysis of a devastating phenomenon. International Journal of River Basin Management, 8(3–4), 255267.Google Scholar
Rosenzweig, C. and Parry, M.L. (1994). Potential impacts of climate change in world food supply. Nature, 367, 133138.CrossRefGoogle Scholar
Santos-Reyes, J. and Beard, A.N. (2011). Applying the SDMS model to the analysis of the Tabasco flood disaster in Mexico. Human Ecol. Risk Assessment: An International Journal, 17, 643677.Google Scholar
Schmidhuber, J. and Tubiello, F.R. (2007). Global food security under climate change. Proceedings of the National Academy of Sciences, 104(50), 1970319708.Google Scholar
Seager, R. Goddard, L., Nakamura, J., Henderson, N. and Eun Lee, D. (2014). Dynamical causes for the 2010/11 drought in Texas–northern Mexico. Journal of Hydrometereolgy, 15, 3968.Google Scholar
Seager, R., Ting, M., Held, I., Kushnir, Y., Lu, J., Vecchi, G., and Li, C. (2007). Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316(5828), 11811184.Google Scholar
Seager, R., Ting, M., Davis, M., Cane, M., Naik, N., Nakamura, J., Li, C., Cook, E. and Stahle, D.W. (2009). Mexican drought: An observational modeling and tree ring variability and climate change. Atmosfera, 22, 131.Google Scholar
Silva, I.H., Miranda, F, Beisl, C.H. and Landau, L. (2011). System for flooding alert in tropical coastal zones using GIS and remote sensing: A case study Villahermosa, Mexico. Journal of Coastal Research, 64, 17341736.Google Scholar
Soden, B.J. (2000). The sensitivity of the tropical hydrological cycle to ENSO. Journal of Climate, 13, 538549.Google Scholar
Southgate, R.J., Roth, C., Schneider, J., Shi, P., Onishi, T., Wenger, D., Amman, W., Ogallo, L., Beddington, J. and Murray, V. (2013). Using Science for Disaster Risk Reduction. UNISDR Report, www.preventionweb.net/go/scitech.Google Scholar
Stephens, G.L. (2005). Cloud feedbacks in the climate system: A critical review. Journal of Climate, 18, 237273.CrossRefGoogle Scholar
Svoboda, M. et al., (2002). The Drought Monitor. Bulletin American Metereological Society, 83, 11811190.Google Scholar
Swain, D. L., Tsiang, M., Haugen, M., Singh, D., Charland, A., Rajaratnam, B. and Diffenbaugh, N. S. (2014). The extraordinary California drought of 2013/2014: Character, context, and the role of climate change. Bulletin of the American Meteorological Society, 95(9), S3.Google Scholar
Tanré, D., Kaufman, Y. J., Holben, B. E. A., Chatenet, B., Karnieli, A., Lavenu, F., and Smirnov, A. (2001). Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum. Journal of Geophysical Research: Atmospheres, 106(D16), 1820518217.Google Scholar
Trenberth, K.E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123138.Google Scholar
UNISDR. (2009). Reducing Disaster Risks Through Science: Issues and Actions. ISDR Scientific and Technical Committee Full Report, Geneva www.unisdr.orgfiles/11543 STCReportlibrary.pdf.Google Scholar
Urrutia-Fucugauchi, J. (2014). Magnetic studies of active volcanoes in Mexico: Implications for volcanic hazards and volcano monitoring. In: Ismail-Zadeh, A. et al. (Eds), Extreme Natural Hazards, Disaster Risks and Societal Implications. Cambridge: Cambridge University Press, 152166.Google Scholar
Urrutia-Fucugauchi, J. and Pérez-Cruz, L. (2016). Planetary sciences, geodynamics, impacts, mass extinctions and evolution: Developments and interconnections. International Journal Geophysics, 2016, ID 4703168. doi:10.1155/2016/4703168.Google Scholar
WCDRR. (2015). SATELLITE Earth Observations in Support of Disaster Risk Reduction. Special 2015 WCDRR edition. European Space Agency, CEOS Earth Observation Handbook for WCDRR.Google Scholar
Wentz, F.J. and Schabel, M. (2000). Precise climate monitoring using complementary data sets. Nature, 403, 414416.Google Scholar
Wirtz, A., Löw, P., Mahl, T. and Yildrim, S. (2014). Hitting the poor: Public-private partnership as an option. In: Ismail-Zadeh, A. et al. (Eds), Extreme Natural Hazards, Disaster Risks and Societal Implications. Cambridge: Cambridge University Pres, 386398.Google Scholar
Woodhouse, C.A., Meko, D.M., MacDonald, G.M., Stahle, D.W. and Cook, E.R. (2010). A 1,200-year perspective of 21st century drought in southwestern North America. Proceedings National Academy Science, 107, 2128321288.Google Scholar

References

BBC News (2010). ‘North Korean torpedo’ sank South’s navy ship-report, www.bbc.com/news/10129703, Downloaded February 8, 2017.Google Scholar
Bush, B. W. Dore, M. A. and Small, R. D. (1991). Nuclear Winter Source-Term Studies: Smoke Produced by a Nuclear Attack on the United States. In rep. no. DNA- TR-86–220-V6, 6. Alexandria, VA: Defense Nuclear Agency.Google Scholar
De Laat, J., Stein-Zweers, D. C., Boers, R. and Tuinder, O. N. E. (2012). A solar escalator: Observational evidence of the self-lofting of smoke and aerosols by adsorption of solar radiation in the February 2009 Australian Black Saturday plume. J. Geophys. Res., 117(D04204), doi:10.1029/2011JD017016.Google Scholar
Eden, L. (2004). Whole World on Fire. Ithaca, NY: Cornell University Press.Google Scholar
Earth Policy Institute Data Center. (September 14, 2012). World grain consumption and stocks as days of consumption, 1960–2012, Available at www.earth-policy.org/data_center/C24. Downloaded May 24, 2014.Google Scholar
Evans, G. (2014). Nuclear deterrence in Asia and the Pacific. Asia and the Pacific Policy Studies, 1, 91111, doi:10.1002/app5.00011.Google Scholar
Fears, T. R., Scotto, J., and Schneiderman, M. A. (1976). Skin cancer, melanoma and sunlight. Am. J. Public Health, 66, 461464.Google Scholar
Fromm, M. D. and Servranckx, R. (2003). Transport of forest fire smoke above the tropopause by supercell convection. Geophys. Res. Lett. 30(10), doi: 10.1029/2002GL016820.Google Scholar
Goldstein, D. (2017). Commentary: Science, politics, and risk: Catastrophic Asia from the perspective of a Brazilianist anthropologist. J. Asian Studies, doi:10.1017/S0021911817000109.Google Scholar
Harwell, M. A. and Hutchinson, T. C. (1986). Environmental Consequences of Nuclear War: Volume II: Ecological and Agricultural Effects (SCOPE SERIES VOL. 2). New York: Wiley.Google Scholar
Hayes, P. and Cavazos, R. (2015). North Korea’s nuclear force roadmap: Hard choices. NAPSNet Special Reports, March 2, 2015, http://nautilus.org/napsnet/napsnet-special-reports/north-koreas-nuclear-force-roadmap-hard-choices.Google Scholar
Helfand, I. (2013). Nuclear famine: Two billion people at risk? International Physicians for the Prevention of Nuclear War. Available at http://www.ippnw.org/pdf/nuclear-famine-two-billion-at-risk-2013.pdf. Downloaded May 24, 2014.Google Scholar
Hertsgaard, M. (2000). Mikhail Gorbachev explains what’s rotten in Russia. Salon, September 7. Available at www.salon.com/2000/09/07/gorbachev/, downloaded May 28, 2014.Google Scholar
Jeanloz, R. (2015). Environmental effects of nuclear war, in Andrei Sakharov, The Conscience of Humanity, ed Drell, Sidney D. and Shultz, George P.. Stanford, CA: Hoover Institution Press.Google Scholar
Kim, H. (2014). Stifled growth and added suffering: Tensions inherent in sanctions policies against North Korea, Critical Asian Studies, 46, 91112, doi:10.1080/14672715.2014.863579.Google Scholar
Kristensen, H. M. and Norris, R. S. (2013). Global nuclear weapons inventories, 1945–2013. Bull. Atomic Scientists 60(5): 7581, doi:10.1177/0096340213501363.Google Scholar
Kristensen, H. M. and Norris, R. S. (2014). Worldwide deployments of nuclear weapons, 2014, Bull. Atomic Scientists, 70(5), 96108, doi: 10.1177/0096340214547619. http://bos.sagepub.com/content/70/5/96.Google Scholar
Lavoy, P. R. and Smith, S. A. (2003). The Risk of Inadvertent Nuclear Use Between India and Pakistan. Strategic Insight II. ADA525408, available at http://www.dtic.mil/dtic/tr/fulltext/u2/a525408.pdf, downloaded May 18, 2015.Google Scholar
Lagi, M., Bertrand, K. Z. and Bar-Yam, Y. (2011). The food crises and political instability in North Africa and the Middle East. Available at arXiv:1108.2455 [physics.soc-ph], downloaded on May 28, 2014.Google Scholar
Lepore, J. (2017). The atomic origins of climate science. The New Yorker, http://www.newyorker.com/magazine/2017/01/30/the-atomic-origins-of-climate-science.Google Scholar
Lieber, K. A. and Press, D. G. (2006). The rise of U.S. nuclear primacy. Foreign Affairs, Available at http://www.foreignaffairs.com/articles/61508/keir-a-lieber-and-daryl-g-press/the-rise-of-us-nuclear-primacy, downloaded May 28, 2014.Google Scholar
Mills, M. J., Toon, O. B., Lee-Taylor, J. and Robock, A. (2014). Multidecadal global cooling and unprecedented ozone loss following a regional nuclear conflict. Earth’s Future, 2, 161176, doi:10.1002/2013EF000205.CrossRefGoogle Scholar
New York Times. (1985). Transcript of interview with President on a range of issues, New York Times, February 12. Available at: http://www.nytimes.com/1985/02/12/world/transcript-of-interview-with-president-on-a-range-of-issues.html?pagewanted=all, downloaded May 28, 2014.Google Scholar
Özdoğan, M., Robock, A. and Kucharik, C. (2013). Impacts of a nuclear war in South Asia on soybean and maize production in the Midwest United States. Climatic Change, 116, 373387, doi:10.1007/s10584-012-0518-1.Google Scholar
Pausata, F. S. R., Lindvall, J., Eckman, A. M. L., and Svensson, G. (2016). Climate effects of a hypothetical regional nuclear war: Sensitivity to emission duration and particle composition. Earth’s Future, 4, 498511, doi:10.1002/2016EF000415.Google Scholar
Pittock, A. B., et al. (1986). Environmental Consequences of Nuclear War: Volume I: Physical and Atmospheric Effects (SCOPE SERIES VOL. 1). New York: Wiley.Google Scholar
Robock, A., Oman, L., and Stenchikov, G. L., (2007). Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences. J. Geophys. Res. 112, D13107, doi:10.1029/2006JD008235.Google Scholar
Robock, A. and Toon, O. B. (2012). Self-assured destruction: The climate impacts of nuclear war, Bull. Atomic Scientists, 68, 6674, doi:10.1177/0096340212459127.Google Scholar
Sanger, D. E. and Haberman, M. (2016). In Donald Trump’s worldview, America comes first and everybody else pays. New York Times, March 26, 2016. Transcript www.nytimes.com/2016/03/27/us/politics/donald-trump-transcript.html?_r=0.Google Scholar
Schnittker, J. (1973). The 1972–73 food price spiral. Brookings papers on economic activity, Available at Brookings Institute, http://www.brookings.edu/~/media/Projects/BPEA/1973%202/1973b_bpea_schnittker.PDF, downloaded May 28, 2014.Google Scholar
Shane, S. (2015). 1950s U.S. Nuclear Target list offers chilling insight. New York Times, Dec. 23, A10, Available at www.nytimes.com/2015/12/23/us/politics/1950s-us-nuclear-target-list-offers-chilling-insight.html, downloaded February, 1, 2016.Google Scholar
Shultz, G. P., Perry, W. J., Kissinger, H. A. and Nunn, S. (2007). A world free of nuclear weapons. Wall Street Journal, January 4. Available at: http://online.wsj.com/article/SB116787515251566636.html, downloaded May 28, 2014.Google Scholar
Shultz, G. P., Perry, W. J., Kissinger, H. A. and Nunn, S. (2008). Toward a nuclear-free world. Wall Street Journal, January 15. Available at: http://online.wsj.com/article/SB120036422673589947.html, downloaded May 28, 2014.Google Scholar
Shultz, G. P., Perry, W. J., Kissinger, H. A. and Nunn, S. (2010). How to protect our nuclear deterrent. Wall Street Journal, January 19. Available at: http://online.wsj.com/article/SB10001424052748704152804574628344282735008.html, downloaded May 28, 2014.Google Scholar
Shultz, G. P., Perry, W. J., Kissinger, H. A. and Nunn, S. (2011). Deterrence in the age of nuclear proliferation. Wall Street Journal, March 7. Available at: http://online.wsj.com/article/SB10001424052748703300904576178760530169414.html, downloaded June 23, 2018.Google Scholar
Slayton, T. (2009). Rice crisis forensics: How Asian governments carelessly set the world rice market on fire. CGD Working Paper 163. Washington, D.C.: Center for Global Development. www.cgdev.org/content/publications/detail/1421260/.Google Scholar
Small, R. D. (1989). Atmospheric smoke loading from a nuclear attack on the United States. Ambio, 18, 377383.Google Scholar
Stenke, A., Hoyle, C. R., Luo, B., Rozanov, E., Gröbner, J., Maag, L., Brönnimann, S., and Peter, T. (2013). Climate and chemistry effects of a regional scale nuclear conflict, Atmos. Chem. Phys., 13(19), 97139729, doi:10.5194/acp-13-9713-2013.Google Scholar
Sternberg, T. (2013). Chinese drought, wheat, and the Egyptian uprising: how a localized hazard became globalized. In The Arab Spring and Climate Change: A Climate and Security Correlations Series, ed. Werrell, Caitlin E. and Femia, Francesco, Center for American Progress, 714. Available at http://americanprogress.org/issues/security/report/2013/02/28/54579/the-arab-spring-and-climate-change/, downloaded June 23, 2018.Google Scholar
Toon, O. B., Turco, R. P., Robock, A., Bardeen, C., Oman, L. and Stenchikov, G. L. (2007). Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism. Atm. Chem. Phys., 7, 19732002.Google Scholar
Toon, O. B., Robock, A. and Turco, R. P. (2008). Environmental consequences of nuclear war. Physics Today, 61(12), 3742 Available at http://dx.doi.org/10.1063/1.3047679.Google Scholar
Toon, O. B., Robock, A., Mills, M. and Xia, L. (2017). Asia treads the nuclear path, unaware that self-assured destruction would result from nuclear war. J. Asian Studies, 76, 437456, doi:10.1017/S0021911817000080.Google Scholar
Union of Concerned Scientists (2015). Close calls with nuclear weapons. www.ucsusa.org/weaponincidents, Downloaded June 23, 2018.Google Scholar
United States Government (2010). Nuclear posture review, www.defense.gov/Portals/1/features/defenseReviews/NPR/2010_Nuclear_Posture_Review_Report.pdf, downloaded June 23, 2018.Google Scholar
Xia, L. and Robock, A. (2013). Impacts of a nuclear war in South Asia on rice production in mainland China. Climatic Change, 116, 357372, doi:10.1007/s10584-012-0475-8.Google Scholar
Xia, L., Robock, A., Mills, M. J., Stenke, A. and Helfand, I. (2015). Decadal reduction of Chinese agriculture after a regional nuclear war. Earth’s Future, 3, 3748, doi:10.1002/2014EF000283.Google Scholar

References

Arundale, W. (1985). Edgar Nollner’s Biography. Available from: http://jukebox.uaf.edu/RavenStory/gif/Edgar%20Nollner’s%20Biography.pdf [Accessed 20th March 2017].Google Scholar
Belore, H. S., Burrell, B. C. and Beltaos, S. (1990). Ice jam mitigation. Canadian Journal of Civil Engineering, 17(5), 675685. Available from: doi:10.1139/l90-081 [Accessed 20th March 2017].Google Scholar
Beltaos, S. (2007). River ice breakup processes: Recent advances and future directions. Canadian Journal of Civil Engineering, 34(6), 703716. Available from: doi:10.1139/l06-021[Accessed 20th March 2017].Google Scholar
Beltaos, S., Miller, L., Burrell, B. C. and Sullivan, D. (2006). Formation of breakup ice jams at bridges. Journal of Hydraulic Engineering, 123(11), 1229. Available from: doi:10.1061/(ASCE)0733-9429(2006)132:11(1229) [Accessed 18th March 2017].Google Scholar
Benoit, L. (2014). Perspectives on Emergency Response in the Canadian Arctic: Sinking of the MS Arctic Sun in Cumberland Sound, Nunavut. Available from: http://gordonfoundation.ca/publication/732 [Accessed 16th March 2017].Google Scholar
Bhattacherjee, A. (2012). Social Science Research: Principles, Methods, and Practices. Available from: http://scholarcommons.usf.edu/oa_textbooks/3 [Accessed 20th February 2017].Google Scholar
Burrell, B. C., Huokuna, M., Beltaos, S., Kovachis, N., Turcotte, B. and Jasek, M. (2015). Flood Hazard and Risk Delineation of Ice-Related Floods: Present Status and Outlook. Paper presented at the 18th Workshop on the Hydraulics of Ice Covered Rivers, Quebec, Canada. Available from: www.researchgate.net/publication/308688387_Flood_Hazard_and_Risk_Delineation_of_Ice-Related_Floods_Present_Status_and_Outlook [Accessed 20th March 2017].Google Scholar
Buzin, V. A., Goroshkova, N. I. and Strizhenok, A. V. (2014). Maximum ice-jam water levels on the northern rivers of Russia under conditions of climate change and anthropogenic impact on the ice jamming process. Russian Meteorology and Hydrology, 39(12), 823827. Available from: doi:10.3103/s1068373914120061[Accessed 20th March 2017].Google Scholar
Cutter, S.L., Ismail-Zadeh, A., Alcántara-Ayala, I., Altan, O., Baker, D. N., Briceño, S. and Wu, G. (2015). Global risks: Pool knowledge to stem losses from disasters. Nature 522, 277279. Available from: doi:10.1038/522277a [Accessed 20th March 2017].Google Scholar
Global Facility for Disaster Reduction and Recovery (GFDRR). (2014). Understanding Risk Review of Open Source and Open Access Software Packages Available to Quantify Risk from Natural Hazards. Available from: www.gfdrr.org/sites/gfdrr/files/publication/UR-Software_Review-Web_Version-rev-1.1.pdf [Accessed 20th March 2017].Google Scholar
Institute for Risk and Disaster Reduction (IRDR). (2014). Arctic Risk: A Discussion of the Possible Outcomes of Two Disaster Scenarios (IRDR Report 2014–02). Available from: www.ucl.ac.uk/rdr/publications/irdr-special-reports/irdr-special-report-2014-01 [Accessed 18th March 2017].Google Scholar
Intergovernmental Panel on Climate Change (IPCC). (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. Available from www.ipcc.ch/pdf/special-reports/srex/SREX_Full_Report.pdf.Google Scholar
Kontar, Y. Y., Bhatt, U. S., Lindsey, S. D., Plumb, E. W. and Thoman, R. L. (2015). Interdisciplinary approach to hydrological hazard mitigation and disaster response and effects of climate change on the occurrence of flood severity in central Alaska. Proceedings of IAHS, 369, 1317. Available from: doi:10.5194/piahs-369-13-2015 [Accessed 20th March 2017].Google Scholar
Kravitz, M. and Gastaldo, V. (2013). Emergency Management in the Arctic: The context explained. Available from: www.gordonfoundation.ca/publication/686 [Accessed 18th March 2017].Google Scholar
Kusatov, K. I., Ammosov, A. P., Kornilova, Z. G. and Shpakova, R. N. (2012). Anthropogenic factor of ice jamming and spring breakup flooding on the Lena River. Russian Meteorology and Hydrology, 37(6), 392396. Available from: doi:10.3103/S1068373912060064 [Accessed 18th March 2017].Google Scholar
Lindenau, Y. I. (1983). Историко-этнографические материалы о народах Сибири и Северо-Востока: первая половина XVIII века [Historical and ethnographic materials about peoples of Siberia and the Russian far east: First half of the 18th century]. Magadan, Russia: Magadan.Google Scholar
Mongin, A., Mesloh, D. E. and Beck, P. L. (1972). History of Alaskan Air Command, 1 July 1970–30 June 1972.Google Scholar
Morgan, L. (1972). Galena – How to Win a Flood. Anchorage, AK: The Alicia Patterson Fund.Google Scholar
News Miner. (1971a). Galena residents flee high waters of the Yukon River. News Miner, May 24.Google Scholar
News Miner. (1971b). Galena flood damage may reach $2 million. News Miner, May 29.Google Scholar
Old Sakha. (no date). Географическая и историческая справка о наслеге [Geographical and historical information about nasleg]. Available from: http://old.sakha.gov.ru/node/7353 [Accessed 18th March 2017].Google Scholar
Osofsky, S. (1974). Soviet agricultural policy: toward the abolition of collective farms. Westport, CT: Greenwood.Google Scholar
Prowse, T. D., Alfredsen, K., Beltaos, S., Bonsal, B., Duguay, C., Korhola, A., and Wrona, F. (2011). Changing Lake and River Ice Regimes: Trends, Effects and Implications. Available from: www.amap.no/documents/doc/snow-water-ice-and-permafrost-in-the-arctic-swipa-climate-change-and-the-cryosphere/743 [Accessed 18th March 2017].Google Scholar
Sprott, J. E. (2000). Neelghu neets’edeneyh – We work together, we help each other: the story of Louden Tribal Council’s Self-Governance process, 1993–2000. Anchorage, AK: Environment and Natural Resources Institute.Google Scholar
Taylor, K. M., Hum, R. and Kontar, Y. Y. (2016). Comparative analysis of virtual relief networks and communication channels during disaster recovery after a major flood in Galena, Alaska, spring 2013. In Communicating Climate-Change and Natural Hazard Risk and Cultivating Resilience: Case Studies for a Multi-disciplinary Approach, ed. Drake, J. L., Kontar, Y. Y., Eichelberger, J. C., Rupp, T. S. and Taylor, K. M.. Cham, Switzerland: Springer, pp. 151171.Google Scholar
United Nations International Strategy for Disaster Reduction (UNISDR). (2015). Making development sustainable: The future of disaster risk management. Global assessment report on disaster risk reduction. Available from: www.preventionweb.net/english/hyogo/gar/2015/en/gar-pdf/GAR2015_EN.pdf [Accessed 18th March 2017].Google Scholar
U.S. Census Bureau. (2015). Annual Estimates of the Resident Population in Galena, Alaska: April 1, 2010-July 1, 2015. Available from: https://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk.Google Scholar

References

Adey, P., Anderson, B. and Guerrero, L. L. (2011). An ash cloud, airspace and environmental threat. Transactions of the Institute of British Geographers, 36, 338343.Google Scholar
Alcántara-Ayala, I. (2014). The spatial-temporal dimensions of landslide disasters. In: Extreme Natural Hazards, Disaster Risks and Societal Implications, eds. Ismail-Zadeh, A., Fucugauchi, J. U., Kijko, A., Takeuchi, K., and Zaliapin, I.. Cambridge University Press, Cambridge, pp. 6176.Google Scholar
Babayev, G., Ismail-Zadeh, A. and Le Mouël, J.-L. (2010). Scenario-based earthquake hazard and risk assessment for Baku (Azerbaijan). Natural Hazard and Earth System Sciences, 10, 26972712.Google Scholar
Baker, J. (2013) Seismology: Quake catcher. Nature, 498, 290292.Google Scholar
Beer, T. and Ismail-Zadeh, A., eds. (2003). Risk Science and Sustainability. Dordrecht: Kluwer Academic.Google Scholar
Braile, L. W., Hinze, W. J., Keller, G. R., Lidiak, E. G. and Sexton, J. L. (1986). Tectonic development of the New Madrid Rift Complex, Mississippi Embayment, North America. Tectonophysics, 131, 121.Google Scholar
Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 15831606.Google Scholar
Costa, A. and Macedonio, G. (2005). Numerical simulation of lava flows based on depth-averaged equations. Geophysical Research Letters, 32, L05304, DOI: 10.1029/2004GL021817.Google Scholar
Cutter, S, Ismail-Zadeh, A., Alcántara-Ayala, I. et al. (2015). Pool knowledge to stem losses from disasters. Nature, 522, 277279.Google Scholar
Dietterich, H. R., Cashman, K. V., Rust, A. C. and Lev, E. (2015). Diverting lava flows in the lab. Nature Geoscience, 8, 494496.Google Scholar
Dilley, M., Chen, R. S., Deichmann, W., Lerner-Lam, A. L. and Arnold, M. (2005). Natural Disaster Hotspots: A Global Risk Analysis. Washington DC: The World Bank.Google Scholar
Donovan, A. R. and Oppenheimer, C. (2011). The 2010 Eyjafjallajökull eruption and the reconstruction of geography, The Geographical Journal, 177, 411.Google Scholar
Donovan, A. R. and Oppenheimer, C. (2014). Extreme volcanism: disaster risks and societal implications. In: Extreme Natural Hazards, Disaster Risks and Societal Implications, eds. Ismail-Zadeh, A., Fucugauchi, J. U., Kijko, A., Takeuchi, K., and Zaliapin, I.. Cambridge University Press, Cambridge, pp. 2946.Google Scholar
Doocy, S., Daniels, A., Dooling, S., and Gorokhovich, Y. (2013). The human impact of volcanoes: a historical review of events 1900–2009 and systematic literature review. PLOS Currents Disasters, 1, DOI: 10.1371/currents.dis.841859091a706efebf8a30f4ed7a1901.Google Scholar
Evans, S., Roberts, N., Ischuk, A., Delaney, K., Morozova, G. and Tutubalina, O. (2009). Landslides triggered by the 1949 Khait Earthquake, Tajikistan, and associated loss of life. Engineering Geology, 109, 195212.Google Scholar
Fujita, E., Hidaka, M., Goto, A. and Umino, S. (2009). Simulations of measures to control lava flows. Bulletin of Volcanology, 71, 401408.Google Scholar
Gabrielov, A. M., Levshina, T. A. and Rotwain, I. M. (1990). Block model of earthquake sequence. Physics of the Earth and Planetary Interiors, 61, 1828.Google Scholar
Giardini, D., Grünthal, G., Shedlock, K. M. and Zhang, P. (1999). The GSHAP Global Seismic Hazard Map. Annali di Geofisica, 42, 12251228.Google Scholar
Ghafory-Ashtiany, M. (2014). Earthquake risk and risk reduction capacity building in Iran. In: Extreme Natural Hazards, Disaster Risks and Societal Implications, eds. Ismail-Zadeh, A., Fucugauchi, J. U., Kijko, A., Takeuchi, K. and Zaliapin, I.. Cambridge University Press, Cambridge, pp. 267278.Google Scholar
Ghafory-Ashtiany, M. and Hosseini, M. (2008). Post Bam recovery and reconstruction. Natural Hazard, 44, 229241.Google Scholar
Gluckman, P. (2016). The science–policy interface. Science, 353, 969, DOI: 10.1126/science.aai8837.Google Scholar
Green, H. W. II and Burnley, P. C. (1989). A new self-organizing mechanism for deep-focus earthquakes. Nature, 341, 733737.Google Scholar
Griffiths, R. W. (2000). The dynamics of lava flows. Annual Review of Fluid Mechanics, 32, 477518.Google Scholar
Griggs, D. T. and Baker, D. W. (1969). The origin of deep-focus earthquakes. In Properties of Matter Under Unusual Conditions, eds. Mark, H. and Fernbach, S.. New York: Wiley, pp. 2342.Google Scholar
Gupta, H. K., Purnachandra Rao, N., Rastogi, B. K., and Sarkar, D. (2001). The deadliest intraplate earthquake. Science, 291, 21012102.Google Scholar
Gutenberg, B. and Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185188.Google Scholar
Hirsch Hadorn, G., Hoffmann-Riem, H., Biber-Klemm, S. et al., eds. (2008). Handbook of Transdisciplinary Research. Dordrecht: Springer.Google Scholar
Huybers, P. and Langmuir, C. (2009). Feedback between deglaciation, volcanism, and atmospheric CO2. Earth and Planetary Science Letters, 286, 479491.Google Scholar
IPCC (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C. B., Barros, V., Stocker, T. F. et al., eds.]. Cambridge, UK, and New York, NY, USA: Cambridge University Press.Google Scholar
IRDR (2013). Issue Brief: Disaster Risk Reduction and Sustainable Development. Beijing: Integrated Research on Disaster Risk. Available at: www.irdrinternational.org/wp-content/uploads/2013/12/IRDR-ICSU-Brief-DRR-SD.pdf (retrieved on 05.08.2016).Google Scholar
Ismail-Zadeh, A. T., Panza, G. F. and Naimark, B. M. (2000). Stress in the descending relic slab beneath Vrancea, Romania. Pure and Applied Geophysics, 157, 111130.Google Scholar
Ismail-Zadeh, A. and Takeuchi, K. (2007a). Preventive disaster management of extreme natural events. Natural Hazards, 42, 459467.Google Scholar
Ismail-Zadeh, A. T., Le Mouël, J. L., Soloviev, A., Tapponnier, P. and Vorobieva, I. (2007b). Numerical modeling of crustal block-and-fault dynamics, earthquakes and slip rates in the Tibet-Himalayan region. Earth and Planetary Science Letters, 258, 465485.Google Scholar
Ismail-Zadeh, A., Schubert, G., Tsepelev, I., and Korotkii, A. (2008). Thermal evolution and geometry of the descending lithosphere beneath the SE-Carpathians: An insight from the past. Earth and Planetary Science Letters, 273, 6879.Google Scholar
Ismail-Zadeh, A., Le Mouël, J.-L. and Soloviev, A. (2012a). Modeling of extreme seismic events. In Extreme Events and Natural Hazards: The Complexity Perspective, eds. Sharma, S. A., Bunde, A., Dimri, V. P. and Baker, D. N., Geophysical Monograph 196. Washington, DC: American Geophysical Union, pp. 7597.Google Scholar
Ismail-Zadeh, A., Matenco, L., Radulian, M., Cloetingh, S. and Panza, G. (2012b). Geodynamic and intermediate-depth seismicity in Vrancea (the south-eastern Carpathians): Current state-of-the-art. Tectonophysics, 530 –531, 5079.Google Scholar
Ismail-Zadeh, A. (2014). Extreme seismic events: from basic science to disaster risk mitigation. In Extreme Natural Events, Disaster Risks and Societal Implications, eds. Ismail-Zadeh, A. Fucugauchi, J., Kijko, A., et al. Cambridge: Cambridge University Press, pp. 4760.Google Scholar
Ismail-Zadeh, A., and Cutter, S. eds. (2015). Disaster Risks Research and Assessment to Promote Risk Reduction and Management. Paris: ICSU-ISSC.Google Scholar
Ismail-Zadeh, A., Cutter, S. L., Takeuchi, K., and Paton, D. (2017). Forging a paradigm shift in disaster science, Natural Hazards, 86(2), 969988.Google Scholar
Kantorovich, L., Keilis-Borok, V. I. and Molchan, G. (1973). Seismic risk and principles of seismic zoning. In Computational and Statistical Methods for Interpretation of Seismic Data, ed. Keilis-Borok, V. I.. Moscow: Nauka, pp. 320 (in Russian).Google Scholar
Kilburn, C. R. J. and Petley, D. N. (2003). Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology, 54, 2132.Google Scholar
Korotkii, A., Kovtunov, D., Ismail-Zadeh, A., Tsepelev, I. and Melnik, O. (2016). Quantitative reconstruction of thermal and dynamic characteristics of lava from surface thermal measurements. Geophysical Journal International, 205, 17671779.Google Scholar
Latter, J. H. (1981). Tsunamis of volcanic origin: summary of causes, with particular reference to Krakatoa, 1883. Bulletin of Volcanology, 44, 467490.Google Scholar
Malamud, B. D. and Turcotte, D. L. (1999). Self-organized criticality applied to natural hazards. Natural Hazards, 20, 93116.Google Scholar
McBean, G. (2014). The grand challenges of integrated research on disaster risk. In Extreme Natural Hazards, Disaster Risks and Societal Implications, eds. Ismail-Zadeh, A., Fucugauchi, J. U., Kijko, A. et al. Cambridge: Cambridge University Press, pp. 1525.Google Scholar
Moroi, T. and Takemura, M. (2004). Mortality estimation by causes of death due to the 1923 Kanto earthquake (in Japanese with English abstract). Journal of the Japan Association of Earthquake Engineers, 4(4), 2145.Google Scholar
Re, Munich (2014). Topics Geo - Annual review of natural catastrophes 2013. Analyses, assessments, positions. Munich: MunichRe (retrieved on 05.08.2016).Google Scholar
Re, Munich (2015). Loss events worldwide 1980 – 2014: 10 costliest events ordered by overall losses. MunichRe, NatCatSERVICE. Avaialble at: www.munichre.com/site/corporate/get/documents_E-567437233/mr/assetpool.shared/Documents/5_Touch/_NatCatService/Significant-Natural-Catastrophes/2014/10-costliest-events-ordered-by-overall-losses.pdf (retrieved on 12.02.2017).Google Scholar
Oppenheimer, C. (2003). Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress in Physical Geography, 27, 230259.Google Scholar
Panza, G. F., Irikura, K., Kouteva, M., Peresan, A., Wang, Z. and Saragoni, R. (2010). Advanced seismic hazard assessment. Pure and Applied Geophysics, 168, DOI: 10.1007/s00024–010-0179–9.Google Scholar
Reuters (2014). Obama declares Hawaiian lava flow to be major disaster. Reuters, November 4, 2014. Available at: www.reuters.com/article/us-usa-lava-hawaii-idUSKBN0IO07E20141104 (retrieved on 12.02.2017).Google Scholar
Reuters (2016). Magnitude 6.6 quake jolts western Japan, no tsunami warning or major damage. Reuters, October 21, 2016. Available at: www.reuters.com/article/us-earthquake-japan-idUSKCN12L0F3 (retrieved on 12.02.2017).Google Scholar
Satake, K. (2014). The 2011 Tohoku, Japan, earthquake and tsunami. In: Extreme Natural Hazards, Disaster Risks and Societal Implications, eds. Ismail-Zadeh, A., Fucugauchi, J. U., Kijko, A., Takeuchi, K., and Zaliapin, I.. Cambridge University Press, Cambridge, pp. 310321.Google Scholar
Schuster, R. L., and Alford, D. (2004). Usoi landslide dam and lake Sarez, Pamir Mountains, Tajikistan. Environmental & Engineering Geoscience 10, 151168.Google Scholar
Semenza, E. and Ghirotti, M. (2000). History of the 1963 Vaiont slide: the importance of geological factors. Bulletin of Engineering Geology and the Environment, 59, 8797.Google Scholar
Sendai Framework (2015). Sendai Framework for Disaster Risk Reduction 2015–2030. Available at: www.unisdr.org/we/inform/publications/43291 (retrieved on 05.08.2016)Google Scholar
Simkin, T. and Siebert, L. (1994). Volcanoes of the World: A Regional Directory, Gazetteer, and Chronology of Volcanism during the Last 10,000 Years. Tucson, AZ: Geoscience Press.Google Scholar
Sokolov, V. and Ismail-Zadeh, A. (2015). Seismic hazard from instrumentally recorded, historical and simulated earthquakes: Application to the Tibet-Himalayan region. Tectonophysics, 657, 187204.Google Scholar
Sokolov, V. and Ismail-Zadeh, A. (2016). On the use of multiple-site estimations in probabilistic seismic hazard assessment. Bulletin of the Seismological Society of America, 106(5), DOI: 10.1785/01201503062016.Google Scholar
Soloviev, A. A. and Ismail-Zadeh, A. T. (2003). Models of dynamics of block-and-fault systems. In Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, eds. Keilis-Borok, V. I. and Soloviev, A. A. Heidelberg: Springer, pp. 69138.Google Scholar
Stein, S., Geller, R. and Liu, M. (2011). Bad assumptions or bad luck: why earthquake hazard maps need objective testing. Seismological Research Letters, 82, 623626.Google Scholar
Stone, R. (2009). Peril in the Pamirs. Science, 326, 16141617.Google Scholar
Tsepelev, I., Ismail-Zadeh, A., Melnik, O. and Korotkii, A. (2016). Numerical modelling of fluid flow with rafts: An application to lava flows. Journal of Geodynamics, 97, 3141.Google Scholar
Turcotte, D. L. and Schubert, G. (2014). Geodynamics, 3rd edn. Cambridge: Cambridge University Press.Google Scholar
UN (2015). Transforming our World: The 2030 Agenda for Sustainable Development. A/RES/70/1. United Nations, New York.Google Scholar
UN (2017). Report of the open-ended intergovernmental expert working group on indicators and terminology relating to disaster risk reduction. Available at: www.preventionweb.net/files/50683_oiewgreportenglish.pdf (retrieved on 12.02.2017)Google Scholar
UNGA (1987). United Nations General Assembly Report of the World Commission on Environment and Development: Our Common Future. New York: UN Headquarters. Available at: www.un-documents.net/wced-ocf.htm (retrieved on 05.08.2016).Google Scholar
UNISDR (2005). Hyogo Framework for Action 2005–2015: Building the Resilience of Nations and Communities to Disasters. World Conference on Disaster Reduction. Available at: www.unisdr.org/2005/wcdr/intergover/official-doc/L-docs/Hyogo-declaration-english.pdf (retrieved on 05.08.2016).Google Scholar
UNISDR (2009). The Global Assessment Report on Disaster Risk Reduction (GAR2009). Geneva: UN Office for Disaster Risk Reduction.Google Scholar
UNISDR (2013). The Global Assessment Report on Disaster Risk Reduction (GAR2013). Geneva: UN Office for Disaster Risk Reduction.Google Scholar
Wu, Z., and Ma, T. (2014). The 2008 Wenchuan, China, earthquake. In: Extreme Natural Hazards, Disaster Risks and Societal Implications, eds. Ismail-Zadeh, A., Fucugauchi, J. U., Kijko, A., Takeuchi, K., and Zaliapin, I.. Cambridge University Press, Cambridge, pp. 301309.Google Scholar
Wyss, M., Nekraskova, A. and Kossobokov, V. (2012). Errors in expected human losses due to incorrect seismic hazard estimates. Natural Hazards, 62, 927935.Google Scholar

References

Armstead, H. (1983). Geothermal Energy: Its Past, Present and Future Contributions to the Energy Needs of Man, 2nd ed.: E. & F.N. Spon, New York.Google Scholar
Baujard, C., Genter, A., Dalmais, E., Maurer, V., Hehn, R., Rosillette, R. (2016). Temperature and hydraulic properties of the Rittershoffen EGS reservoir, France. Proceedings, European Geothermal Congress 2016 Strasbourg, France, 19–24 September 2016 Available at: www.geothermal-energy.org/pdf/IGAstandard/EGC/2016/EGC2016-T-DU-112.pdf.Google Scholar
Bertani, R. (2015). Geothermal Power Generation in the World – 2010–2015 Update Report. Proceedings, World Geothermal Congress 2015 Melbourne, Australia, 19–25 April 2015. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/01001.pdf.Google Scholar
Bodri, L., Čermák, V. (2007). Borehole Climatology – a New Method How to Reconstruct Climate. Elsevier Science, Amsterdam.Google Scholar
Chandrasekharam, D., Lashin, A., Al Arifi, N., Bassam, A., Varun, C. (2016). Desalination of Seawater using Geothermal Energy to Meet Future Fresh Water Demand of Saudi Arabia Water Resources Management 30, 1–16. DOI: 10.1007/s11269–016–1419–2.Google Scholar
Dal Porto, F., Pasqui, G., Fedeli, M. (2016). Geothermal Power Plant Production Boosting by Biomass Combustion: Cornia 2 Case Study. Proceedings, European Geothermal Congress 2016 Strasbourg, France, 19–24 Sept 2016 Available at: www.geothermal-energy.org/pdf/IGAstandard/EGC/2016/EGC2016-T-PO-175.pdf.Google Scholar
Date, A., Ahmadi, M., Akbarzadeh, A., Gabguly, S., Mohan Kumar, M. (2015). Experimental Performance Investigation and Case Study of Combined Desalination and Power Generation. Proceedings, World Geothermal Congress 2015 Melbourne, Australia, 19–25 April 2015. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/26061.pdf.Google Scholar
Deichmann, N., and Giardini, D. (2009). ‘Earthquakes Induced by the Stimulation of an Enhanced Geothermal System below Basel (Switzerland). Seismological Research Letters, 80(5), 784798. DOI:10.1785/gssrl.80.5.784.Google Scholar
DiMarzio, G., Angelini, L., Price, W., Chun, C., Harries, S. (2015). The Stillwater Triple Hybrid Power Plant: Integrating Geothermal, Solar Photovoltaic and Solar Thermal Power Generation. Proceedings, World Geothermal Congress 2015 Melbourne, Australia, 19–25 April 2015.Available at: https://pangea.stanford.edu/ERE/db/WGC/papers/WGC/2015/38001.pdf.Google Scholar
EGEC (2012). Strategic Research Priorities for Geothermal Technology - European Technology Platform on Renewable Heating and Cooling. European Communities, Brussels. Available at: www.rhc-platform.org/fileadmin/Publications/Geothermal_SRA.pdf.Google Scholar
Fox, Don B., Sutters, D., Beckers, K., Maciej, Z., Koch, D., Anderson, B., Tester, J. (2013). Sustainable heat farming: Modeling extraction and recovery in discretely fractured geothermal reservoirs. Geothermics 46, 4254. Available at: http://dx.doi.org/10.1016/j.geothermics.2012.09.001.Google Scholar
Freeze, R., Javandel, I. (2008). An interview with Paul Witherspoon, distinguished hydrogeologist from the USA. Hydrogeol. J. 16, 811815. DOI: 10.1007/s10040–008–0308-z.Google Scholar
GEA (2016). Geothermal Energy Accociation 2016 Annual U.S. & Global Geothermal Power Production Report. Available at: http://geoenergy.org/reports/2016/2016%20Annual%20US%20Global%20Geothermal%20Power%20Production.pdf.Google Scholar
GHL (1988).’ Honey Lake Power Facility under Construction’, Geothermal Hot Line; (USA), 18, No. 2 pp. 61–62 Available at: http://pubs.geothermal-library.org/lib/journals/hotline_18_2_Dec_1988.pdf.Google Scholar
Goldstein, B., Hiriart, G., Bertani, R., Bromley, C., Gutierrez-Negrin, L., Huenges, E., Muraoka, H., Ragnarsson, A., Tester, J., Zui, V. (2011). Geothermal Energy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlomer, S., von Stechow, C. (eds)], Cambridge University Press, Cambridge and New York. Available at: www.ipcc.ch/pdf/special-reports/srren/Chapter%204%20Geothermal%20Energy.pdf.Google Scholar
Grant, M.A. (2016). Physical performance indicators for HDR/EGS projects. Geothermics 63, 24. Available at: http://dx.doi.org/10.1016/j.geothermics.2015.01.004.Google Scholar
Gutierrez, H., Espindola, S. (2010). Using Low Enthalpy Geothermal Resources to Desalinate Sea Water and Electricity Production on Desert Areas in Mexico. Proceedings, World Geothermal Congress 2010 Bali, Indonesia, 25–29 April 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/2808.pdf.Google Scholar
Hiriart, R., Prol-Ledesma, R.M., Alcocer, S., Espindola, S. (2010). Submarine Geothermics; Hydrothermal Vents and Electricity Generation Proceedings, World Geothermal Congress 2010 Bali, Indonesia, 25–29 April 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/3704.pdf.Google Scholar
Jain, C., Vogt, C., Clauser, C. (2015). Maximum potential for geothermal power in Germany based on engineered geothermal systems. Geothermal Energy 3, 120. Available at: https://geothermal-energy-journal.springeropen.com/articles/10.1186/s40517-015-0033-5.Google Scholar
Kant, M., Becker, D., Brkic, D., Meier, T., Schuler, M., Philipp Rudolf von Rohr, P. (2015). Investigation of a Novel Drilling Technology – Influence of the Surface Temperature for Hydrothermal Spallation Drilling. Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19–25 April 2015. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/21015.pdf.Google Scholar
Kohl, T., Speck, R. (2004). Electricity Production by Geothermal Hybrid Plants in Low-Enthalpy Areas. Proceedings, Twenty-Ninth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 26–28, 2004 Availabe at: www.geothermal-energy.org/pdf/IGAstandard/SGW/2004/Kohl.pdf.Google Scholar
Lund, J., Boyd, T. (1999). Small geothermal power project examples. Geothermal Resources Council Bulletin, June 1999, 926. Available at: https://geothermal.org/bulletin.html.Google Scholar
Lund, J., Boyd, T. (2015). Direct Utilization of Geothermal Energy 2015 Worldwide Review. Proceedings, World Geothermal Congress 2015 Melbourne, Australia, 19–25 April 2015. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/01000.pdf.Google Scholar
Manente, G., Field, R., DiPippo, R., Tester, J.W., Paci, M., Rossi, N. (2011). Hybrid Solar-Geothermal Power Generation to Increase the Energy Production from a Binary Geothermal Plant, Proceedings 2011 ASME International Mechanic Engineering Congress and Exposition, Paper no. IMECE 2011–63665. Denver, CO. Available at: https://inldigitallibrary.inl.gov/sti/6330916.pdf.Google Scholar
Menberg, K., Blum, P., Schaffitel, A., Bayer, P. (2013). Long-Term Evolution of Anthropogenic Heat Fluxes into a Subsurface Urban Heat Island. Environmental Sci. Technol. 47(17), 97479755. DOI: 10.1021/es401546u.Google Scholar
Menberg, K., Blum, P., Kurylyk, B., Bayer, P. (2014). Observed groundwater temperature response to recent climate change. Hydrol. Earth Syst. Sci. 18, 44534466. Available at: www.hydrol-earth-syst-sci.net/18/4453/2014/hess-18-4453-2014.pdf.Google Scholar
NEA (2013). Underground Research Laboratories (URL). Radioactive Waste Management. Nuclear Energy Agency OECD, Paris, 52 p. Available at: www.oecd-nea.org/rwm/reports/2013/78122-rwm-url-brochure.pdf.Google Scholar
OECD (2013) Radioactive Waste Management: Underground Research Laboratories (URL), NEA/RWM/R(2013)2. OECD, Nuclear Energy Agency.Google Scholar
Pruess, K., Spycher, N. (2010). Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission Fluid – a Scheme for Combining Recovery of Renewable Energy with Geologic Storage of CO2. Proceedings, World Geothermal Congress 2010 Bali, Indonesia, 25–29 April 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/3107.pdf.Google Scholar
Randolph, J.B., Saar, M.O. (2011). Combining geothermal energy capture with geologic carbon dioxide sequestration, Geophys. Res. Lett. 38, L10401. DOI: 10.1029/2011GL047265.Google Scholar
REN21 (2016). Renewables 2016 Global Status Report 2016. REN21 Secretariat, Paris. Available at: www.ren21.net/wpcontent/uploads/2016/10/REN21_GSR2016_FullReport_en_11.pdf.Google Scholar
Richter, B. (2010). Geothermal Energy Plant Unterhaching, Germany. Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25–29 April 2010. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/0408.pdf.Google Scholar
Rogner, H.H. (2000). Energy Resources. In: World Energy Assessment: Energy and the Challenge of Sustainability. United Nations Development Programme, New York, 135172.Google Scholar
Rybach, L. (1992). An attempt to interpret the temperature profile of the KTB pilot drrillhole (Germany) by paleoclimatic considerations. Paleogeogr. Paleoclimatol. Paleoecol. (Global Planet. Change Sect.) 98, 193197.Google Scholar
Rybach, L., Megel, T., Eugster, W. (1999). How renewable are geothermal resources? Geothermal Resources Council Transactions 23, 563566. Available at: www.geothermal-library.org/index.php?mode=pubs&action=view&record=1016527.Google Scholar
Rybach, L., Megel, T., Eugster, W. (2000). At What Timescale Are Geothermal Resources Renewable? Proceedings World Geothermal Congress 2000, Kyushu, Tohoku, Japan, May 28 - June 10, 2000. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2000/R0900.PDF.Google Scholar
Rybach, L., Kohl, T. (2004). Waste heat problems and solutions in geothermal energy. In: Energy, Waste and the Environment, Gieré, R., Stille, P. (eds.), Geological Society, London, Special Publications 236, p. 369380. DOI: 10.1144/GSL.SP.2004.236.01.21.Google Scholar
Rybach, L., Mongillo, M. (2006). Geothermal sustainability – a review with identified research needs. Geothermal Resources Council Transactions 30, 10831090. Available at: www.geothermal-library.org/index.php?mode=pubs&action=view&record=1025179.Google Scholar
Rybach, L., Bayer, P., Rivera, J., Blum, P. (2016). Influence factors in the depth domain of borehole heat exchangers – global warming and urban heating. Proceedings, European Geothermal Congress 2016 Strasbourg, France, 19–24 September 2016. Available at: www.geothermal-energy.org/pdf/IGAstandard/EGC/2016/EGC2016-S-GP-267.pdf.Google Scholar
Sanyal, S., Butler, S. (2005): An Analysis of Power Generation Prospects from Enhanced Geothermal Systems. Proceedings World Geothermal Congress, Antalya, Turkey, 24–29 April 2005. Availabel at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2005/1632.pdf.Google Scholar
Schiegg, H.O., Rødland, A., Zhu, G., Rødland, A., Yuen, D. (2015) Electro-pulse-boring (EPB): Novel super-deep drilling technology for low cost electricity. J. Earth Sci. 1, 3746. DOI: 10.1007/s12583–015–0519-x.CrossRefGoogle Scholar
Schill, E., Nicolas Cuenot, N., Genter, A., Kohl, T. (2015). Review of the Hydraulic Development in the Multi-Reservoir / Multi-Well EGS Project of Soultz-sous Forêts. Proceedings, World Geothermal Congress 2015 Melbourne, Australia, 19–25 April 2015. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/31064.pdf.Google Scholar
Shnell, J., Hiriart, G., Nichols, K., Orcutt, J. (2015). Energy from Ocean Floor Geothermal Resources. Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19–25 April 2015. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/37011.pdf.Google Scholar
Tester, J.W., Anderson, B.J., Batchelor, A.S., Blackwell, D.D., DiPippo, R., Drake, E.M., Garnish, J., Livesay, B., Moore, M.C., Nichols, K., Petty, S. , Toksoz, M.N. and Veatch, R.W. Jr. (2006). The Future of Geothermal Energy: Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century, Massachusetts Institute of Technology, Cambridge, MA (November 1, 2006). Available at: https://energy.mit.edu/wp-content/uploads/2006/11/MITEI-The-Future-of-Geothermal-Energy.pdf.Google Scholar
Thain, I., DiPippo, R. (2015): Hybrid Geothermal-Biomass Power Plants: Applications, Designs and Performance Analysis. Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19–25 April 2015. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/2015/26020.pdf.Google Scholar
Wright, P.M. (1995). The Sustainability of Production from Geothermal Resources. Proceedings, World Geothermal Congress 1995, p. 2825–2836. Available at: www.geothermal-energy.org/pdf/IGAstandard/WGC/1995/4-Wright.pdf.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×