Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-02T15:47:24.393Z Has data issue: false hasContentIssue false

Part I - Future Earth and Planetary Issues

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 1 - 54
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Amekudzi, A., Khayesi, M., and Khisty, C. J. (2015) Sustainable development footprint: a framework for assessing sustainable development risks and opportunities in time and space, Int. J. Sustainable Development 18, 1/2: 940.Google Scholar
Beer, T. (1997) Strategic risk management: a case study of climate change, World Resource Review 9: 151164.Google Scholar
Brundtland, G. H. (1987) Report of the World Commission on Environment and Development: Our Common Future (Transmitted to the UN General Assembly as an Annex to document A/42/427 – Development and International Co-Operation: Environment), available at: www.un-documents.net/wced-ocf.htm.Google Scholar
Crutzen, P. J. and Stoermer, E. F. (2000) The ‘Anthropocene’ Global Change Newsletter 41: 1718.Google Scholar
De Mulder, E. F. J., Oberhänsli, R., Cheng, Q., Cloetingh, S., Finkelman, R., Martinez-Frías, J. Gupta, H., Meadows, M., Mogessie, A., and Meng, W. (2015) GeoSciences for Future Earth Research, available at: http://icsu-geounions.org/files/Geosci_FE.pdf.Google Scholar
Farman, J. C., Gardiner, B. G., and Shanklin, J. D. (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature 315: 207210.Google Scholar
Grant, T. and Beer, T. (2008) Life-cycle assessment of greenhouse gas emissions from irrigated maize and their significance in the value chain, Aust. J. Experimental Agriculture 48: 375381.Google Scholar
Haberl, H., Erb, K.-H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., Gingrich, S., Lucht, W., and Fischer-Kowalski, M. (2007) Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proceedings of the National Academy of Sciences 104: 1294212947.Google Scholar
Hall, C. A. S., Lambert, Jessica G., and Balogh, Stephen B. (2014) EROI of different fuels and the implications for society, Energy Policy 64: 141152. DOI: http://dx.doi.org/10.1016/j.enpol.2013.05.049, available at: www.sciencedirect.com/science/article/pii/S0301421513003856.Google Scholar
ICSU, ISSC (2015) Review of the Sustainable Development Goals: The Science Perspective, International Council for Science (ICSU), Paris.Google Scholar
International Council for Science (ICSU) (2017) A Guide to SDG Interactions: From Science to Implementation, Griggs, D. J., Nilsson, M., Stevance, A., McCollum, D. [eds.],) International Council for Science (ICSU), Paris DOI: 10.24948/2017.01.Google Scholar
Molina, Mario and Rowland, F. Sherwood (1974) Stratospheric sink for chlorofluoromethanes: chlorine atomic catalyzed destruction of ozone, Nature 249: 810812.Google Scholar
National Research Council (2014) Can Earth’s and Society’s Systems Meet the Needs of 10 Billion People? Summary of a Workshop, M. Mellody, Rapporteur, Board on Environmental Change and Society and Committee on Population, Division of Behavioral and Social Sciences and Education; Board on Life Sciences, Division on Earth and Life Studies, National Academies Press, Washington, DC.Google Scholar
Nilsson, M., Griggs, D., and Visbeck, M. (2016) Map the interactions between Sustainable Development Goals, Nature 534: 320322, available at: www.nature.com/news/policy-map-the-interactions-between-sustainable-development-goals-1.20075.Google Scholar
Odum, H. T. (1973) Energy, ecology and economics, Ambio 2(6): 220227.Google Scholar
Pimental, D. and Pimental, M. H. (2008) Food, Energy and Society, 3rd edn. CRC Press, Boca Raton, FL.Google Scholar
Pittock, A. B. (2009) Climate Change: The Science, Impacts and Solutions, 2nd edn. CSIRO, Clayton, Australia.Google Scholar
United Nations (2012) World Population Prospects: The 2012 Revision, United Nations, New York.Google Scholar
Wackernagel, M., Monfreda, C., and Deumling, D., (2002) Ecological Footprint of Nations, Sustainability Issue Brief, Redefining Progress, California.Google Scholar

References

Aguilar, E., Aziz Barry, A., Brunet, M., Ekang, L., Fernandes, A., Massoukina, M., Mbah, J., Mhanda, A., do Nascimento, D. J., Peterson, T. C., Thamba Umba, O., Tomou, M., Zhang, X. (2009). Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe 1955–2006, J. Geophys. Res., 114, D02115.Google Scholar
Barnola, J. M., Raynaud, D., Lorius, C., Barkov, N. I. (2003). Historical Carbon Dioxide Record from the Vostok Ice Core. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN. http://cdiac.ess-dive.lbl.gov/trends/co2/vostok.html.Google Scholar
Ebi, K. L., McGregor, G. (2008). Climate change, tropospheric ozone and particulate matter and health impacts. Environmental Health Perspectives. 116(11), 14491456.Google Scholar
Dogan, U., Yılmaz, M. (2011). Natural and induced sinkholes of the Obruk Plateau and Karapınar-Hotamıs Plain, Turkey. Journal of Asian Earth Sciences 40, 496508.Google Scholar
Fischer, E. M., Knutti, R. (2015), Anthropogenic contribution to global occurrence of heavy precipitation and high-temperature extremes, Nature Climate Change 5, 560564, DOI:10.1038/nclimate2617.Google Scholar
IPCC (2012). Summary for Policymakers. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation [Field, C. B., Barros, V., Stocker, T. F., Qin, D., Dokken, D. J., Ebi, K. L., Mastrandrea, M. D., Mach, K. J., Plattner, G.-K., Allen, S. K., Tignor, M., and Midgley, P. M. (eds.)]. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, pp. 119.Google Scholar
IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R. K. Pachauri and L. A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.Google Scholar
Sensoy, S., Peterson, T. C., Alexander, L. V., Zhang, X. B. (2007). Enhancing Middle East climate change monitoring and indexes, Bulletin of the American Meteorological Society, 88, 12491254.CrossRefGoogle Scholar
Tebaldi, C., Hayhoe, K., Arblaster, J. M., Meehl, G. A. (2006). Going to the extremes: an inter- comparison of model simulated historical and future changes in extreme events, Clim. Change 79, 185211.Google Scholar
WMO (2017). Statement on the State of the Global Climate in 2016, World Meteorological Organization (WMO)-No. 1189.Google Scholar
Zhang, X., Aguilar, E., Sensoy, S., Melkonyan, H., Tagiyeva, U., Ahmed, N., Kutaladze, N., Rahimzadeh, F., Taghipour, A., Hantosh, T. H., Albert, P., Semawi, M. (2005). Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res, 110, D22104, DOI: 10.1029/2005JD006181.Google Scholar
Zemp, D. C., Schleussner, C., Barbosa, H. M. J., Hirota, M., Montade, V., Sampaio, G., Staal, A., Wang-Erlandsson, L., Rammig, R. (2017). Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nature Communications 8, Article number: 14681 (2017), DOI:10.1038/ncomms14681.Google Scholar

References

Abreu, Jose A, Beer, Jürg, Ferriz-Mas, Antonio, McCracken, Kenneth G, and Steinhilber, Friedhelm. Is there a planetary influence on solar activity? Astronomy & Astrophysics, 548:A88, 2012.Google Scholar
Armstrong, James C, and Zmuda, AJ. Triaxial magnetic measurements of field-aligned currents at 800 kilometers in the auroral region: Initial results. Journal of Geophysical Research, 78 (28): 68026807, 1973.Google Scholar
Baker, Daniel N, Li, X, Pulkkinen, A, Ngwira, CM, Mays, ML, Galvin, AB, and Simunac, KDC. A major solar eruptive event in July 2012: Defining extreme space weather scenarios. Space Weather, 11 (10): 585591, 2013.Google Scholar
Baker, Daniel N, Jackson, Jamie M, and Thompson, Lauren K. Predicting and mitigating socio-economic impacts of extreme space weather: Benefits of improved forecasts. Extreme Natural Hazards, Disaster Risks and Societal Implications, 1: 113, 2014.Google Scholar
Balmaseda, Magdalena A, Trenberth, Kevin E, and Källén, Erland. Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters, 40 (9): 17541759, 2013.Google Scholar
Bond, Gerard, Kromer, Bernd, Beer, Juerg, Muscheler, Raimund, Evans, Michael N, Showers, William, Hoffmann, Sharon, Lotti-Bond, Rusty, Hajdas, Irka, and Bonani, Georges. Persistent solar influence on north atlantic climate during the holocene. Science, 294 (5549): 21302136, 2001.Google Scholar
Dunne, Eimear M, Gordon, Hamish, Kürten, Andreas, Almeida, João, Duplissy, Jonathan, Williamson, Christina, Ortega, Ismael K, Pringle, Kirsty J, Adamov, Alexey, Baltensperger, Urs et al. Global atmospheric particle formation from cern cloud measurements. Science, 354 (6316): 11191124, 2016.Google Scholar
Eddy, John A. Climate and the changing sun. Climatic Change, 1 (2): 173190, 1977.Google Scholar
Finlay, Christopher C, Aubert, Julien, and Gillet, Nicolas. Gyre-driven decay of the earth’s magnetic dipole. Nature communications, 7, 2016.Google Scholar
Friis-Christensen, E, and Lassen, K. Length of the solar cycle: An indicator of solar activity closely associated with climate. Science, 254 (5032): 698700, 1991.Google Scholar
Friis-Christensen, Eigil, Lühr, H, and Hulot, Gauthier. Swarm: A constellation to study the earth’s magnetic field. Earth, Planets and Space, 58 (4): 351358, 2006.Google Scholar
Friis-Christensen, Eigil, Lühr, Hermann, Hulot, Gauthier, Haagmans, Roger, and Purucker, Michael. Geomagnetic Research from Space. Eos, 90 (25): 213214, 2009.Google Scholar
Gonzalez, WD, Joselyn, JA, Kamide, Y, Kroehl, HW, Rostoker, G, Tsurutani, BT, and Vasyliunas, VM. What is a geomagnetic storm? Journal of Geophysical Research: Space Physics, 99 (A4): 57715792, 1994.Google Scholar
Gopalswamy, N, Barbieri, L, Cliver, EW, Lu, G, Plunkett, SP, and Skoug, RM. Introduction to violent sun-earth connection events of October–November 2003. Journal of Geophysical Research: Space Physics, 110 (A9), 2005. https://doi.org/10.1029/2005JA011268.Google Scholar
Gray, Lesley J, Beer, Jürg, Geller, Marvin, Haigh, Joanna D, Lockwood, Michael, Matthes, Katja, Cubasch, Ulrich, Fleitmann, Dominik, Harrison, G, Hood, L et al. Solar influences on climate. Reviews of Geophysics, 48 (4), 2010.Google Scholar
Heirtzler, James R, Allen, Joe H, and Wilkinson, Daniel C. Ever-present south Atlantic anomaly damages spacecraft. EOS, Transactions American Geophysical Union, 83 (15): 165169, 2002.Google Scholar
Herschel, W. Some remarks on the stability of the light of the sun. Philos. Trans. Roy. Soc., London, 166: 1796, 1796.Google Scholar
Hulot, Gauthier, Eymin, Céline, Langlais, Benoît, Mandea, Mioara, and Olsen, Nils. Small-scale structure of the geodynamo inferred from oersted and magsat satellite data. Nature, 4160 (6881): 620623, 2002.Google Scholar
Imbrie, J, Berger, André, Boyle, EA, Clemens, SC, Duffy, A, Howard, WR, Kukla, G, Kutzbach, J, Martinson, DG, McIntyre, A et al. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography, 8 (6): 699735, 1993.Google Scholar
Kirkby, Jasper, Curtius, Joachim, Almeida, João, Dunne, Eimear, Duplissy, Jonathan, Ehrhart, Sebastian, Franchin, Alessandro, Gagné, Stéphanie, Ickes, Luisa, Kürten, Andreas et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 476 (7361): 429433, 2011.Google Scholar
Kirkby, Jasper, Duplissy, Jonathan, Sengupta, Kamalika, Frege, Carla, Gordon, Hamish, Williamson, Christina, Heinritzi, Martin, Simon, Mario, Yan, Chao, Almeida, João et al. Ion-induced nucleation of pure biogenic particles. Nature, 533 (7604): 521526, 2016.Google Scholar
Krausmann, E, Andersson, E, Gibbs, M, and Murtagh, W. Space weather and critical infrastructures: Findings and outlooks. EUR 28237 EN, 2016. doi: 10.2788/152877.Google Scholar
Labitzke, Karin, and Van Loon, Harry. Associations between the 11-year solar cycle, the QBO and the atmosphere. Part I: The troposphere and stratosphere in the northern hemisphere in winter. Journal of Atmospheric and Terrestrial Physics, 50 (3): 197206, 1988.Google Scholar
Laken, Benjamin A, Palle, Enric, Calogovic, Jasa, and Dunne, Eimear M. A cosmic ray-climate link and cloud observations. J. Space Weath. Space Clim., 2: A18, 2012. doi: 10.1051/swsc/2012018.Google Scholar
Lassen, K, and Friis-Christensen, E. Reply [to solar cycle lengths and climate: A reference revisited]. Journal of Geophysical Research: Space Physics, 105 (A12): 2749327495, 2000. ISSN 2156–2202. doi: 10.1029/2000JA900067. URL http://dx.doi.org/10.1029/2000JA900067.Google Scholar
Lassen, Knud, and Friis-Christensen, Eigil. Variability of the solar cycle length during the past five centuries and the apparent association with terrestrial climate. Journal of Atmospheric and Terrestrial Physics, 57 (8): 835845, 1995.Google Scholar
Lockwood, Mike, and Fröhlich, Claus. Recent oppositely directed trends in solar climate forcings and the global mean surface air temperature. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Volume 463, pages 24472460. The Royal Society, 2007.Google Scholar
Lockwood, Mike, Harrison, Richard Giles, Woollings, T, and Solanki, Sami K. Are cold winters in Europe associated with low solar activity? Environmental Research Letters, 5 (2): 024001, 2010.Google Scholar
Marsh, Nigel, and Svensmark, Henrik. Cosmic rays, clouds, and climate. Space Science Reviews, 94 (1–2): 215230, 2000.Google Scholar
Maus, Stefan, MacMillan, Susan, Chernova, T, Choi, S, Dater, D, Golovkov, V, Lesur, V, Lowes, F, Lühr, H, Mai, W et al. The 10th-generation international geomagnetic reference field. Geophysical Journal International, 161 (3): 561565, 2005.Google Scholar
McCracken, K G, Beer, J, Steinhilber, F, and Abreu, J. A phenomenological study of the cosmic ray variations over the past 9400 years, and their implications regarding solar activity and the solar dynamo. Solar Physics, 286 (2): 609627, 2013. ISSN 1573–093X. doi: 10.1007/s11207–013–0265–0. URL http://dx.doi.org/10.1007/s11207–013–0265–0.Google Scholar
Neff, U, Burns, SJ, Mangini, A, Mudelsee, M, Fleitmann, D, and Matter, A. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature, 411 (6835): 290293, 2001.Google Scholar
Ney, Edward P. Cosmic radiation and the weather. Nature, 183: 451452, 1959.Google Scholar
Ngwira, Chigomezyo M, Pulkkinen, Antti, Mays, M Leila, Kuznetsova, Maria M, Galvin, AB, Simunac, Kristin, Baker, Daniel N, Li, Xinlin, Zheng, Yihua, and Glocer, Alex. Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare cme was earth directed? Space Weather, 11 (12): 671679, 2013.Google Scholar
Partamies, N, Juusola, L, Tanskanen, E, Kauristie, K, Weygand, JM, and Ogawa, Y. Substorms during different storm phases. In Annales Geophysicae, 29, 2031–2043.Google Scholar
Plainaki, Christina, Lilensten, Jean, Radioti, Aikaterini, Andriopoulou, Maria, Milillo, Anna, Nordheim, Tom A, Dandouras, Iannis, Coustenis, Athena, Grassi, Davide, Mangano, Valeria et al. Planetary space weather: Scientific aspects and future perspectives. Journal of Space Weather and Space Climate, 6: A31, 2016.Google Scholar
Riley, Pete. On the probability of occurrence of extreme space weather events. Space Weather, 10 (2), 2012.Google Scholar
Schlegel, Kristian, Lühr, Hermann, Maurice, J-P St, Crowley, Geoff, and Hackert, Chris. Thermospheric density structures over the polar regions observed with champ. Annales Geophysicae, 23, 16591672, 2005.Google Scholar
Shaviv, Nir J. Publisher’s note: Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climatic connection [Phys. Rev. Lett. 89, 051102 (2002)]. Phys. Rev. Lett., 89: 089901, Aug 2002. doi: 10.1103/PhysRevLett.89.089901. URL http://link.aps.org/doi/10.1103/PhysRevLett.89.089901.Google Scholar
Shaviv, Nir J. Using the oceans as a calorimeter to quantify the solar radiative forcing. Journal of Geophysical Research: Space Physics, 113 (A11), 2008.Google Scholar
Solanki, SK and Fligge, M. Solar irradiance variations and climate. Journal of Atmospheric and Solar-Terrestrial Physics, 64 (5): 677685, 2002.Google Scholar
Soon, WH, Posmentier, ES, and Baliunas, SL. Inference of solar irradiance variability from terrestrial temperature changes, 1880–1993: An astrophysical application of the sun-climate connection. The Astrophysical Journal, 472 (2): 891, 1996.Google Scholar
Stefani, F, Giesecke, A, Weber, N, and Weier, T. Synchronized helicity oscillations: A link between planetary tides and the solar cycle? Solar Physics, 1–16, 2016. ISSN 1573–093X. doi: 10.1007/s11207–016–0968–0. URL http://dx.doi.org/10.1007/s11207-016-0968-0.Google Scholar
Svensmark, Henrik. Evidence of nearby supernovae affecting life on earth. Monthly Notices of the Royal Astronomical Society, 423 (2): 12341253, 2012. ISSN 1365–2966. doi: 10.1111/j.1365–2966.2012.20953.x. URL http://dx.doi.org/10.1111/j.1365–2966.2012.20953.x.Google Scholar
Svensmark, Henrik, and Friis-Christensen, Eigil. Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics, 59 (11): 12251232, 1997.Google Scholar
Svensmark, Henrik, Pedersen, Jens Olaf P, Marsh, Nigel D, Enghoff, Martin B, and Uggerhøj, Ulrik I. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Volume 463, pages 385396. The Royal Society, 2007.Google Scholar
Svensmark, Henrik, Enghoff, Martin B, and Pedersen, Jens Olaf Pepke. Response of cloud condensation nuclei (>50nm) to changes in ion-nucleation. Physics Letters A, 377 (37): 23432347, 2013.Google Scholar
Svensmark, J, Enghoff, MB, Shaviv, NJ, and Svensmark, Henrik. The response of clouds and aerosols to cosmic ray decreases. Journal of Geophysical Research: Space Physics, 121(9): 81528181, 2016.Google Scholar
Victor, David G, and Kennel, Charles F. Climate policy: ditch the 2 °C warming goal. Nature, 1219(9), 81478151.Google Scholar

References

Coustenis, A., and Taylor, F. W. (1999). Titan, the Earth-like Moon, Singapore: World Scientific.Google Scholar
Coustenis, A., and Taylor, F. W. (2008). Titan: Exploring an Earthlike World, Singapore: World Scientific.Google Scholar
Griffith, C. A. (2009). Storms, polar deposits and the methane cycle in Titan’s atmosphere. Phil. Trans. R. Soc. A, 367, 713728.Google Scholar
Jia, X., Walker, R. J., Kivelson, M. G. et al. (2009). Properties of Ganymede’s magnetosphere inferred from improved three-dimensional MHD simulations. J. Geophys. Res. [Space Phys.], 114, A09209, DOI: 10.1029/2009JA014375.Google Scholar
Lilensten, J., Coates, A. J., Dehant, V., et al. (2014). What characterizes planetary space weather? Astron. Astrophys. Rev., 22, 79, DOI: 10.1007/s00159–014-0079–6.Google Scholar
Lunine, J. I. and Atreya, S. (2008). The methane cycle on Titan. Nature Geoscience 1, 159164.Google Scholar
McKay, C. P., Pollack, J. B. and Courtin, R. (1991) The greenhouse and anti-greenhouse effects on Titan. Science 253, 11181121, DOI:10.1126/science.11538492.Google Scholar
Plainaki, C., Lilensten, J., Radioti, A. et al. (2016a). Planetary Space Weather: Scientific Aspects and Future Perspectives. J. Space Weather Space Climate, 6, A31, DOI:10.1051/swsc/2016024.Google Scholar
Plainaki, C., Paschalis, P., Grassi, D., Mavromichalaki, H. and Andriopoulou, M. (2016b). Solar energetic particle interactions with the Venusian atmosphere. Ann. Geophys., 34, 595608, DOI:10.5194/angeo-34–595-2016b.Google Scholar
Taylor, F. W. (2009). The Scientific Exploration of Mars, Cambridge University Press.Google Scholar
Taylor, F. W. (2010). Planetary Atmospheres. Oxford University Press.Google Scholar
Taylor, F. W. (2014). The Scientific Exploration of Venus. Cambridge University Press.Google Scholar
Taylor, F. W. and Grinspoon, D. H. (2009). The Climate Evolution of Venus. J. Geophys. Res., 114, 21562202.Google Scholar
Taylor, F. W. and Hunten, D. M. (2014). Venus: Atmosphere. In Encyclopaedia of the Solar System, ed. Spohn, T., Breuer, D., & Johnson, T. V., Elsevier, pp. 305322.Google Scholar
Zurbuchen, T. H., Raines, J. M. and Slavin, J. A. et al. (2011). MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science, 333 (6051), 18621865.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×