Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-21T03:55:40.779Z Has data issue: false hasContentIssue false

9 - Water relations in lichens

from III - Mutualistic interactions in the environment

Published online by Cambridge University Press:  03 November 2009

Rosmarie Honegger
Affiliation:
Institute of Plant Biology, University of Zurich
Geoffrey Gadd
Affiliation:
University of Dundee
Sarah C. Watkinson
Affiliation:
University of Oxford
Paul S. Dyer
Affiliation:
University of Nottingham
Get access

Summary

Lichen symbiosis

Lichen-forming fungi are a polyphyletic group of nutritional specialists, which derive fixed carbon from a population of living cyanobacteria and/or green algal cells. Every fifth fungus (approximately 14,000 species), or every second ascomycete, respectively, is a lichen. Species names of lichens refer to the fungal partner, the photoautotrophic symbionts having their own names and phylogenies. Most lichen-forming fungi are physiologically facultatively biotrophic, but occur in nature almost exclusively in the symbiotic state.

The majority of lichen-forming fungi form crustose, often quite inconspicuous thalli on or within the substratum where they meet their photoautotrophic partners, but about 25% of lichen mycobionts differentiate morphologically and anatomically complex 3-D thalli, either shrubby, leaf- or band-shaped, erect or pendulous, which are the result of an amazing hyphal polymorphism. Morphologically and anatomically complex lichen thalli are sophisticated culturing chambers, built up by the fungal partner, for a population of minute photobiont cells. Most lichen-forming fungi grow at or even above the surface of the substratum in order to keep their photoautotrophic partner adequately illuminated. Thus they are exposed to solar radiation, drought and temperature extremes. Lichen-forming ascomycetes produce a wide range of poly-phenolic secondary metabolites, which crystallize at hyphal surfaces in the medullary layer and/or within the peripheral cortex, giving the thalli a characteristic coloration (Huneck & Yoshimura, 1996). Most of the cortical secondary compounds absorb ultraviolet (UV) light and transmit longer wavelengths, thus protecting fungal and photobiont cells from radiation damage.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadjian, V. (1993). The Lichen Symbiosis. New York: John Wiley.Google Scholar
Belnap, J. & Lange, O. L. (eds.) (2003). Biological Soil Crusts: Structure, Function, and Management. Berlin: Springer.CrossRefGoogle Scholar
Brown, D. H., Rapsch, S., Beckett, A. & Ascaso, C. (1987). The effects of desiccation on cell shape in the lichen Parmelia sulcata Taylor. New Phytologist 105, 295–9.CrossRefGoogle Scholar
Comstock, J. P. & Sperry, J. S. (2000). Theoretical considerations of optimal conduit length for water transport in vascular plants. New Phytologist 148, 195–218.CrossRefGoogle Scholar
Bary, A. (1866). Morphologie und Physiologie der Pilze, Flechten und Myxomyceten. Leipzig: W. Engelmann.CrossRefGoogle Scholar
Los Angeles Herrera-Campos, M., Lücking, R., Perez, R.-E., Campos, A., Colin, P. M. & Pena, A. B. (2004). The foliicolous lichen flora of Mexico. V. Biogeographical affinities, altitudinal preferences, and an updated checklist of 293 species. Lichenologist 36, 309–27.CrossRefGoogle Scholar
Englund, B. (1977). The physiology of the lichen Peltigera aphthosa, with special reference to the blue-green phycobiont (Nostoc sp.). Physiologia Plantarum 41, 298–304.CrossRefGoogle Scholar
Farrar, J. (1988). Physiological buffering. In CRC Handbook of Lichenology, ed. Galun, M., vol. 2, pp. 101–5. Boca Raton, FL: CRC Press.Google Scholar
Goebel, K. (1926). Ein Beitrag zur Biologie der Flechten. Annales du Jardin Botanique de Buitenzorg 36, 1–83.Google Scholar
Hawksworth, D. L. (1988). Effects of algae and lichen-forming fungi on tropical crops. In Perspectives of Mycopathology, ed. Agnihotri, V. P., Sarbhoy, A. K. & Kumar, D., pp. 76–83. New Delhi: Malhotra Publishing House.Google Scholar
Honegger, R. (1982). Cytological aspects of the triple symbiosis in Peltigera aphthosa. Journal of the Hattori Botanical Laboratory 52, 379–91.Google Scholar
Honegger, R. (1984). Cytological aspects of the mycobiont-phycobiont relationship in lichens. Haustorial types, phycobiont cell wall types, and the ultrastructure of the cell surface layers in some cultured and symbiotic myco- and phycobionts. Lichenologist 16, 111–27.CrossRefGoogle Scholar
Honegger, R. (1991). Functional aspects of the lichen symbiosis. Annual Reviews of Plant Physiology and Plant Molecular Biology 42, 553–78.CrossRefGoogle Scholar
Honegger, R. (1993). Developmental biology of lichens. New Phytologist 125, 659–77.CrossRefGoogle Scholar
Honegger, R. (1995). Experimental studies with foliose macrolichens: fungal responses to spatial disturbance at the organismic level and to spatial problems at the cellular level during drought stress events. Canadian Journal of Botany 73 (suppl. 1), 569–87.CrossRefGoogle Scholar
Honegger, R. (1997). Metabolic interactions at the mycobiont-photobiont interface in lichens. In The Mycota, ed. Esser, K. & Lemke, P. A., vol. V, Plant Relationships, ed. G. C. Carroll & P. Tudzynski, part A, pp. 209–21. Berlin: Springer.Google Scholar
Honegger, R. (1998). The lichen symbiosis – what is so spectacular about it? Lichenologist 30, 193–212.CrossRefGoogle Scholar
Honegger, R. (2001). The symbiotic phenotype of lichen-forming ascomycetes. In The Mycota, ed. Esser, K. & Lemke, P. A., vol. IX, Fungal Associations, ed. B. Hock, pp. 165–88. Berlin: Springer.Google Scholar
Honegger, R. & Haisch, A. (2001). Immunocytochemical location of the (1→3), (1→4)-β-glucan lichenin in the lichen-forming ascomycete Cetraria islandica (“Icelandic moss”). New Phytologist 150, 739–46.CrossRefGoogle Scholar
Honegger, R. & Hugelshofer, G. (2000). Water relations in the Peltigera aphthosa group visualized with LTSEM techniques. Bibliotheca Lichenologica 75, 113–26.Google Scholar
Honegger, R., Kutasi, V. & Ruffner, H. P. (1992). Polyol patterns in 11 species of aposymbiotically cultured lichen mycobionts. Mycological Research 95, 905–14.CrossRefGoogle Scholar
Honegger, R., Peter, M. & Scherrer, S. (1996). Drought stress-induced structural alterations at the mycobiont-photobiont interface in a range of foliose macrolichens. Protoplasma 190, 221–32.CrossRefGoogle Scholar
Huneck, S. & Yoshimura, I. (1996). Identification of Lichen Substances. Berlin: Springer.CrossRefGoogle Scholar
Jürgens, N. & Niebel-Lohmann, A. (1995). Geobotanical observations on lichen fields of the Southern Namib desert. Mitteilungen des Instituts für Allgemeine Botanik Hamburg 25, 135–56.Google Scholar
Kappen, L. (1988). Ecophysiological relationships in different climatic regions. In CRC Handbook of Lichenology, ed. Galun, M., vol. 2, pp. 37–100. Boca Raton, FL: CRC Press.Google Scholar
Kappen, L. (1993). Lichens in the Antarctic region. In Antarctic Microbiology, ed. Friedman, E. I., pp. 433–90. New York: Wiley-Liss.Google Scholar
Kappen, L., Lange, O. L., Schulze, E. D., Evenari, M. & Buschbom, U. (1979). Ecophysiological investigations on lichens in the Negev Desert. VI. Annual course of the photosynthetic production of Ramalina maciformis (Del.) Bory. Flora 168, 85–108.CrossRefGoogle Scholar
Kappen, L., Sommerkorn, M. & Schroeter, B. (1995). Carbon acquisition and water relations of lichens in polar regions – potentials and limitations. Lichenologist 27, 531–45.Google Scholar
Kieft, T. L. (1988). Ice nucleation activity in lichens. Applied and Environmental Microbiology 54, 1678–81.Google ScholarPubMed
Kieft, T. L. & Ahmadjian, V. (1989). Biological ice nucleation activity in lichen mycobionts and photobionts. Lichenologist 21, 355–62.CrossRefGoogle Scholar
Kieft, T. L. & Ruscetti, T. (1990). Characterization of biological ice nuclei from a lichen. Journal of Bacteriology 172, 3519–23.CrossRefGoogle ScholarPubMed
Kranner, I., Cram, W. J., Zorn, M., Wornick, S., Yoshimura, I., Stabentheiner, E. & Pfeifhofer, H. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbionts. Proceedings of the National Academy of Sciences of the USA 102, 3141–6.CrossRefGoogle Scholar
Lange, O. L. (1990). Twenty-three years of growth measurements on the crustose lichen Caloplaca aurantia in the Negev Desert. Israel Journal of Botany 39, 383–94.Google Scholar
Lange, O. L., Schulze, E. D. & Koch, W. (1970). Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. II. CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159, 38–62.CrossRefGoogle Scholar
Lange, O. L., Kilian, E. & Ziegler, H. (1986). Water vapour uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts. Oecologia 71, 104–10.CrossRefGoogle Scholar
Lange, O. L., Green, T. G. A. & Ziegler, H. (1988). Water status-related photosynthesis and carbon isotope discrimination in species of the lichen genus Pseudocyphellaria with green and blue-green photobionts and in photosymbiodemes. Oecologia 75, 394–411.CrossRefGoogle Scholar
Lange, O. L., Meyer, A., Zellner, H., Ullmann, I. & Wessels, D. C. J. (1990). Eight days in the life of a desert lichen: water relations and photosynthesis of Teleschistes capensis in the coastal fog zone of the Namib desert. Madoqua 17, 17–30.Google Scholar
Lange, O. L., Meyer, A., Ullmann, I. & Zellner, H. (1991). Mikroklima, Wassergehalt und Photosynthese von Flechten in der küstennahen Nebelzone der Namib-Wüste: Messungen während der herbstlichen Witterungsperiode. Flora 185, 233–66.CrossRefGoogle Scholar
Lange, O. L., Belnap, J. & Reichenberger, H. (1998). Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Functional Ecology 12, 195–202.CrossRefGoogle Scholar
Lücking, R. (1995). Biodiversity and conservation of foliicolous lichens in Costa Rica. Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft 70, 63–92.Google Scholar
Lücking, R. (1997). The use of foliicolous lichens as bioindicators in the tropics, with special reference to the microclimate. Abstracta Botanica 21, 99–116.Google Scholar
Lücking, R., Wirth, V., Ferraro, L. I. & Caceres, M. E. S. (2003). Foliicolous lichens from Valdivian temperate rain forest of Chile and Argentina: Evidence of an austral element, with the description of seven new taxa. Global Ecology and Biogeography 12, 21–36.CrossRefGoogle Scholar
Pérez, F. L. (1997a). Geoecology of erreatic lichens of Xanthoparmelia vagans in an equatorial Andean Paramo. Plant Ecology 129, 11–28.CrossRefGoogle Scholar
Pérez, F. L. (1997b). Geoecology of erratic globular lichens of Catapyrenium lachneum in the high Andean Paramo. Flora 192, 241–59.CrossRefGoogle Scholar
Sancho, L. G. & Pintado, A. (2004). Evidence of high annual growth rate for lichens in the maritime Antarctic. Polar Biology 27, 312–19.CrossRefGoogle Scholar
Sanders, W. B. (2002). In situ development of the foliicolous lichen Phyllophiale (Trichotheliaceae) from propagule germination to propagule production. American Journal of Botany 89, 1741–6.CrossRefGoogle ScholarPubMed
Scheidegger, C., Schroeter, B. & Frey, B. (1995). Structural and functional processes during water vapour uptake and desiccation in selected lichens with green algal photobionts. Planta 197, 399–409.CrossRefGoogle Scholar
Scherrer, S. & Honegger, R. (2003). Inter- and intraspecific variation of homologous hydrophobin (H1) gene sequences among Xanthoria spp. (lichen-forming ascomycetes). New Phytologist 157, 375–89.CrossRefGoogle Scholar
Scherrer, S., Vries, O. M. H., Dudler, R., Wessels, J. G. H. & Honegger, R. (2000). Interfacial self-assembly of fungal hydrophobins of the lichen-forming ascomycetes Xanthoria parietina and X. ectaneoides. Fungal Genetics and Biology 30, 81–93.CrossRefGoogle ScholarPubMed
Scherrer, S., Haisch, A. & Honegger, R. (2002). Characterization and expression of XPH1, the hydrophobin gene of the lichen-forming ascomycete Xanthoria parietina. New Phytologist 154, 175–84.CrossRefGoogle Scholar
Schroeter, B. (1994). In situ photosynthetic differentiation of the green algal and the cyanobacterial photobiont in the crustose lichen Placopsis contortuplicata. Oecologia 98, 212–20.CrossRefGoogle ScholarPubMed
Schroeter, B. & Scheidegger, C. (1995). Water relations in lichens at subzero temperatures: structural changes and carbon dioxide exchange in the lichen Umbilicaria aprina from continental Antarctica. New Phytologist 131, 273–85.CrossRefGoogle Scholar
Sillett, S. C. & Antoine, M. E. (2004). Lichens and bryophytes in forest canopies. In Forest Canopies, ed. Lowman, M. D. & Rinker, H. B., 2nd edn, pp. 151–74. Oxford: Elsevier Academic Press.Google Scholar
Sipman, H. J. M. (1994). Foliicolous lichens on plastic tape. Lichenologist 26, 311–12.CrossRefGoogle Scholar
Smith, R. I. Lewis (1995). Colonization by lichens and the development of lichen-dominated communities in the maritime Antarctic. Lichenologist 27, 473–83.CrossRefGoogle Scholar
Trembley, M. L.Ringli, C. & Honegger, R. (2002a). Hydrophobins DGH1, DGH2 and DGH3 in the lichen-forming basidiomycete Dictyonema glabratum. Fungal Genetics and Biology 35, 247–59.CrossRefGoogle Scholar
Trembley, M. L., Ringli, C. & Honegger, R. (2002b). Differential expression of hydrophobins DGH1, DGH2 and DGH3 and immunolocalization of DGH1 in strata of the lichenized basidiocarp of Dictyonema glabratum. New Phytologist 154, 185–95.CrossRefGoogle Scholar
Wessels, J. G. H. (1999). Fungi in their own right. Fungal Genetics and Biology 27, 134–45.CrossRefGoogle ScholarPubMed
Wösten, H. A. B. (2001). Hydrophobins: multipurpose proteins. Annual Review of Microbiology 55, 625–46.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×