Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-25T13:50:45.077Z Has data issue: false hasContentIssue false

10 - Development of the arbuscular mycorrhizal symbiosis: insights from genomics

from III - Mutualistic interactions in the environment

Published online by Cambridge University Press:  03 November 2009

Jinyuan Liu
Affiliation:
Boyce Thompson Institute for Plant Research, Ithaca, New York
Melina Lopez-Meyer
Affiliation:
Boyce Thompson Institute for Plant Research, Ithaca, New York
Ignacio Maldonado-Mendoza
Affiliation:
Boyce Thompson Institute for Plant Research, Ithaca, New York
Maria J. Harrison
Affiliation:
Boyce Thompson Institute for Plant Research, Ithaca, New York
Geoffrey Gadd
Affiliation:
University of Dundee
Sarah C. Watkinson
Affiliation:
University of Oxford
Paul S. Dyer
Affiliation:
University of Nottingham
Get access

Summary

Introduction

The majority of the vascular flowering plants have the ability to enter into symbiotic associations with a unique group of soil fungi, the arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots of the plant, where the plant provides the fungus with a source of carbon and the fungus delivers mineral nutrients to the roots. In particular, the transfer of phosphorus from the AM fungus to the plant is widely documented, but there is evidence for zinc and nitrogen transport also (Hodge et al., 2001). For both symbionts, significant quantities of nutrients may be exchanged. It is estimated that the plant allocates up to 20% of its photosynthate to the roots to support the fungal symbiont, and some studies suggest that in an AM symbiosis the plant receives all of its phosphorus via the fungus (Bago et al., 2000; Smith et al., 2003). Phosphorus is a relatively immobile nutrient and is often present at concentrations in the soil that are limiting for plant growth. Consequently, improvements in phosphorus supply resulting from the AM fungus can have a significant impact on plant health and subsequently on plant biodiversity and ecosystem productivity (van der Heijden et al., 1998).

The AM symbiosis is an ancient association. Both molecular data and fossil evidence suggest that the AM fungi originated 460 MYA (Redeker et al., 2000) at a time when bryophytes were the predominant plant form.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akiyama, K., Matsuzaki, K.-I. & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–7.CrossRefGoogle ScholarPubMed
Albrecht, C., Geurts, R., Lapeyrie, F. & Bisseling, T. (1998). Endomycorrhizae and rhizobial nod factors activate signal transduction pathways inducing PsENOD5 and PsENOD12 expression in which Sym8 is a common step. Plant Journal 15, 605–14.CrossRefGoogle Scholar
Alexander, T., Meier, R., Toth, R. & Weber, H. C. (1988). Dynamics of arbuscule development and degeneration in mycorrhizas of Triticum aestivum L. and Avena sativa L. with reference to Zea mays L. New Phytologist 110, 363–70.CrossRefGoogle Scholar
Alexander, T., Toth, R., Meier, R. and Weber, H. C. (1989). Dynamics of arbuscule development and degeneration in onion, bean and tomato with reference to vesicular-arbuscular mycorrhizae in grasses. Canadian Journal of Botany 67, 2505–13.CrossRefGoogle Scholar
Bago, B., Pfeffer, P. E. & Shachar-Hill, Y. (2000). Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiology 124, 949–57.CrossRefGoogle ScholarPubMed
Balestrini, R., Berta, G. & Bonfante, P. (1992). The plant nucleus in mycorrhizal roots: positional and structural modifications. Biology of the Cell 75, 235–43.CrossRefGoogle Scholar
Balestrini, R., Romera, C., Puigdomenech, P. & Bonfante, P. (1994). Location of a cell-wall hydroxyproline-rich glycoprotein, cellulose and β-1,3-glucans in apical and differentiated regions of maize mycorrhizal roots. Planta 195, 201–9.CrossRefGoogle Scholar
Balestrini, R., Hahn, M. G., Faccio, A., Mendgen, K. & Bonfante, P. (1996). Differential localization of carbohydrate epitopes in plant cell walls in the presence and absence of arbuscular mycorrhizal fungi. Plant Physiology 111, 203–13.CrossRefGoogle ScholarPubMed
Balestrini, R., José-Estanyol, M., Puigdoménech, P. & Bonfante, P. (1997). Hydroxyproline-rich glycoprotein mRNA accumulation in maize root cells colonized by an arbuscular mycorrhizal fungus as revealed by in situ hybridization. Protoplasma 198, 36–42.CrossRefGoogle Scholar
Bécard, G. & Fortin, J. A. (1988). Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist 108, 211–18.CrossRefGoogle Scholar
Bécard, G., Kosuta, S., Tamasloukht, M., Sejalon-Delmas, N. & Roux, C. (2004). Partner communication in the arbuscular mycorrhizal interaction. Canadian Journal of Botany 82, 1186–97.CrossRefGoogle Scholar
Blancaflor, E. B., Zhao, L. M. & Harrison, M. J. (2001). Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma 217, 154–65.CrossRefGoogle ScholarPubMed
Blee, K. A. & Anderson, A. J. (1996). Defense-related transcript accumulation in Phaseolus vulgaris L. colonized by the arbuscular mycorrhizal fungus Glomus intraradices. Plant Physiology 110, 675–88.CrossRefGoogle ScholarPubMed
Blee, K. A. & Anderson, A. J. (2002). Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules. Plant Molecular Biology 50, 197–211.CrossRefGoogle ScholarPubMed
Blilou, I., Bueno, P., Ocampo, J. A. & García-Garrido, J. M. (2000). Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycological Research 106, 722–5.CrossRefGoogle Scholar
Boisson-Dernier, A., Chabaud, M., Garcia, F., Becard, G., Rosenberg, C., & Barker, D. G. (2001). Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Molecular Plant-Microbe Interactions 14, 695–700.CrossRefGoogle Scholar
Bonanomi, A., Wiemken, A., Boller, T. & Salzer, P. (2001). Local induction of a mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biology 3, 194–9.CrossRefGoogle Scholar
Bonfante, P. & Bianciotto, V. (1995). Presymbiotic versus symbiotic phase in arbuscular endomycorrhizal fungi: morphology and cytology. In Mycorrhiza: Structure, Function, Molecular Biology and Biotechnology, ed. Varma, A. & Hock, B., pp. 229–47. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Bonfante, P., Bergero, R., Uribe, X., Romera, C., Rigau, J. & Puigdomenech, P. (1996). Transcriptional activation of a maize alpha-tubulin gene in mycorrhizal maize and transgenic tobacco plants. Plant Journal 9, 737–43.CrossRefGoogle Scholar
Bonfante-Fasolo, P. (1984). Anatomy and morphology of VA mycorrhizae. In VA Mycorrhizae, ed. Powell, C. L. & Bagyaraj, D. J., pp. 5–33. Boca Raton, FL: CRC Press.Google Scholar
Bonfante-Fasolo, P., Vian, B., Perotto, S., Faccio, A. & Knox, J. P. (1990). Cellulose and pectin localization in roots of mycorrhizal Allium porrum: labelling continuity between host cell wall and interfacial material. Planta 180, 537–47.CrossRefGoogle Scholar
Bonfante-Fasolo, P., Tamagnone, L., Peretto, R., Esquerré-Tugayé, M. T., Mazau, D., Mosiniak, M. & Vian, B. (1991). Immunocytochemical location of hydroxyproline rich glycoproteins at the interface between a mycorrhizal fungus and its host plants. Protoplasma 165, 127–38.CrossRefGoogle Scholar
Brechenmacher, L., Weidmann, S., Tuinen, D., Chatagnier, O., Gianinazzi, S., Franken, P. & Gianinazzi-Pearson, V. (2004). Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions. Mycorrhiza 14, 253–62.CrossRefGoogle ScholarPubMed
Breuninger, M. & Requena, N. (2004). Recognition events in AM symbiosis: analysis of fungal gene expression at the early appressorium stage. Fungal Genetics and Biology 41, 794–804.CrossRefGoogle ScholarPubMed
Brummell, D. A., Catala, C., Lashbrook, C. C. & Bennett, A. B. (1997). A membrane-anchored E-type endo-1,4-β-glucanase is localized on Golgi and plasma membranes in higher plants. Proceedings of the National Academy of Sciences of the USA 94, 4794–9.CrossRefGoogle ScholarPubMed
Carling, D. E. & Brown, M. F. (1982). Anatomy and physiology of vesicular-arbuscular and nonmycorrhizal roots. Phytopathology 72, 1108–14.Google Scholar
Carter, C. & Thornburg, R. W. (2000). Tobacco Nectarin I. Purification and characterization of a germin-like manganese superoxide dismutase implicated in the defence of floral reproductive tissues. Journal of Biological Chemistry 275, 36,726–33.CrossRefGoogle Scholar
Chabaud, M., Venard, C., Defaux-Petras, A., Becard, G. & Barker, D. G. (2002). Targeted inoculation of Medicago truncatula in vitro root cultures reveals MtENOD11 expression during early stages of infection by arbuscular mycorrhizal fungi. New Phytologist 156, 265–73.CrossRefGoogle Scholar
Davies, C. & Robinson, S. P. (2000). Differential screening indicates a dramatic change in mRNA profiles during grape berry ripening: cloning and characterization of cDNAs encoding putative cell wall and stress response proteins. Plant Physiology 122, 803–12.CrossRefGoogle ScholarPubMed
Doll, J., Hause, B., Demchenko, K., Pawlowski, K. & Krajinski, F. (2003). A member of the germin-like protein family is a highly conserved mycorrhiza-specific induced gene. Plant Cell Physiology 44, 1208–14.CrossRefGoogle ScholarPubMed
Gallaud, I. (1905). Etudes sur les mycorhizes endotrophes. Revue Générale de Botanique 17, 5–48.Google Scholar
Gehrig, A., Schüßler, A. & Kluge, M. (1996). Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria) is an ancestral member of the Glomales: Evidence by SSU rRNA analysis. Journal of Molecular Evolution 43, 71–81.CrossRefGoogle ScholarPubMed
Genre, A. & Bonfante, P. (1997). A mycorrhizal fungus changes microtubule orientation in tobacco root cells. Protoplasma 199, 30–8.CrossRefGoogle Scholar
Genre, A. & Bonfante, P. (1998). Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots. New Phytologist 140, 745–52.CrossRefGoogle Scholar
Genre, A. & Bonfante, P. (1999). Cytoskeleton-related proteins in tobacco mycorrhizal cells: γ-tubulin and clathrin localisation. European Journal of Histochemistry 43, 105–11.Google ScholarPubMed
Gianinazzi-Pearson, V. (1996). Plant cell responses to arbuscular mycorrhiza fungi: getting to the roots of the symbiosis. Plant Cell 8, 1871–83.CrossRefGoogle Scholar
Gianinazzi-Pearson, V., Smith, S. E., Gianinazzi, S. & Smith, F. A. (1991). Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. New Phytologist 117, 61–74.CrossRefGoogle Scholar
Gianinazzi-Pearson, V., Dumas-Gaudot, E., Gollotte, A., Tahiri-Alaoui, A. & Gianinazzi, S. (1996). Cellular and molecular defence-related root responses to invasion by arbuscular mycorrhizal fungi. New Phytologist 133, 45–57.CrossRefGoogle Scholar
Gianinazzi-Pearson, V., Arnould, C., Oufattole, M., Arango, M. & Gianinazzi, S. (2000). Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211, 609–13.CrossRefGoogle ScholarPubMed
Goellner, M., Wang, X. & Davis, E. L. (2001). Endo-β-1,4-glucanase expression in compatible plant-nematode interactions. Plant Cell 13, 2241–55.Google ScholarPubMed
Gollotte, A., Gianinazzi-Pearson, V. & Gianinazzi, S. (1995). Immunodetection of infection thread glycoprotein and arabinogalactan protein in wild type Pisum sativum (L.) or an isogenic mycorrhiza-resistant mutant interacting with Glomus mosseae. Symbiosis 18, 69–85.Google Scholar
Gray-Mitsumune, M., Mellerowicz, E. J., Abe, H., Schrader, J., Winzell, A., Sterky, F., Blomqvist, K., McQueen-Mason, S., Teeri, T. T. & Sundberg, B. (2004). Expansins abundant in secondary xylem belong to subgroup A of the α-Expansin gene family. Plant Physiology 135, 1552–64.CrossRefGoogle ScholarPubMed
Grunwald, U., Nyamsuren, O., Tamasloukht, M. B., Lapopin, L., Becker, A., Mann, P., Gianinazzi-Pearson, V., Krajinski, F. & Franken, P. (2004). Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Molecular Biology 55, 553–66.CrossRefGoogle ScholarPubMed
Hans, J., Hause, B., Strack, D. & Walter, M. H. (2004). Cloning, characterization, and immunolocalization of a mycorrhiza-inducible 1-deoxy-D-xylulose 5-phosphate reductoisomerase in arbuscule-containing cells of maize. Plant Physiology 134, 614–24.CrossRefGoogle ScholarPubMed
Harrison, M. J. (1996). A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. Plant Journal 9, 491–503.CrossRefGoogle ScholarPubMed
Harrison, M. J. (1997). The arbuscular mycorrhizal symbiosis: an underground association. Trends in Plant Sciences 2, 54–6.CrossRefGoogle Scholar
Harrison, M. J. (1999). Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Reviews of Plant Physiology and Plant Molecular Biology 50, 361–89.CrossRefGoogle ScholarPubMed
Harrison, M. J. (2005). Signaling in the arbuscular mycorrhizal symbiosis. Annual Reviews of Microbiology 59, 19–42.CrossRefGoogle ScholarPubMed
Harrison, M. J. & Dixon, R. A. (1994). Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant Journal 6, 9–20.CrossRefGoogle Scholar
Harrison, M. J., Dewbre, G. R. & Liu, J. (2002). A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14, 2413–29.CrossRefGoogle ScholarPubMed
Hause, B., Maier, W., Miersch, O., Kramell, R. & Strack, D. (2002). Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiology 130, 1213–20.CrossRefGoogle ScholarPubMed
Hodge, A., Campbell, C. D. & Fitter, A. H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413, 297.CrossRefGoogle ScholarPubMed
Journet, E. P., El-Gachtouli, N., Vernoud, V., Billy, F., Pichon, M., Dedieu, A., Arnould, C., Morandi, D., Barker, D. G. & Gianinazzi-Pearson, V. (2001). Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Molecular Plant-Microbe Interactions 14, 737–48.CrossRefGoogle ScholarPubMed
Journet, E. P., Tuinen, D., Gouzy, J., Crespeau, H., Carreau, V., Farmer, M. J., Niebel, A., Schiex, T., Jaillon, O., Chatagnier, O., Godiard, L., Micheli, F., Kahn, D., Gianinazzi-Pearson, V. & Gamas, P. (2002). Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Research 30, 5579–92.CrossRefGoogle ScholarPubMed
Kosuta, S., Chabaud, M., Lougnon, G., Gough, C., Denarie, J., Barker, D. G. & Becard, G. (2003). A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiology 131, 952–62.CrossRefGoogle ScholarPubMed
Krajinski, F., Hause, B., Gianinazzi-Pearson, V. & Franken, P. (2002). Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue. Plant Biology 4, 754–61.CrossRefGoogle Scholar
Kumagai, H. & Kouchi, H. (2003). Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Molecular Plant-Microbe Interactions 16, 663–8.CrossRefGoogle ScholarPubMed
Kuster, H., Hohnjec, N., Krajinski, F., El Yahyaoui, F., Manthey, K., Gouzy, J., Dondrup, M., Meyer, F., Kalinowski, J., Brechenmacher, L., Tuinen, D., Gianinazzi-Pearson, V., Puhler, A., Gamas, P. & Becker, A. (2004). Construction and validation of cDNA-based Mt6k-RIT macro- and microarrays to explore root endosymbioses in the model legume Medicago truncatula. Journal of Biotechnology 108, 95–113.CrossRefGoogle ScholarPubMed
Lapopin, L., Gianinazzi-Pearson, V. & Franken, P. (1999). Comparative differential RNA display analysis of arbuscular mycorrhiza in Pisum sativum wild type and a mutant defective in late stage development. Plant Molecular Biology 41, 669–77.CrossRefGoogle Scholar
Limpens, E., Ramos, J., Franken, C., Raz, V., Compaan, B., Franssen, H., Bisseling, T. & Geurts, R. (2004). RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. Journal of Experimental Botany 55, 983–92.CrossRefGoogle ScholarPubMed
Liu, J., Blaylock, L. & Harrison, M. J. (2004). cDNA arrays as tools to identify mycorrhiza-regulated genes: indentification of mycorrhiza-induced genes that encode or generate signaling molecules implicated in the control of root growth. Canadian Journal of Botany 82, 1177–85.CrossRefGoogle Scholar
Liu, J. Y., Blaylock, L. A., Endre, G., Cho, J., Town, C. D., Vanden Bosch, K. A. & Harrison, M. J. (2003). Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15, 2106–23.CrossRefGoogle ScholarPubMed
Llop-Tous, I., Dominguez-Puigjaner, E., Palomer, X. and Vendrell, M. (1999). Characterization of two divergent endo-beta -1,4-glucanase cDNA clones highly expressed in the nonclimacteric strawberry fruit. Plant Physiology 119, 1415–22.CrossRefGoogle ScholarPubMed
Maldonado-Mendoza, I. E., Dewbre, G. R., Blaylock, L. & Harrison, M. J. (2005). Expression of a xyloglucan endotransglucosylase/hydrolase gene, Mt-XTH1, from Medicago truncatula is induced systemically in mycorrhizal roots. Gene 345, 191–7.CrossRefGoogle ScholarPubMed
Manthey, K., Krajinski, F., Hohnjec, N., Firnhaber, C., Puhler, A., Perlick, A. M. & Kuster, H. (2004). Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Molecular Plant-Microbe Interactions 17, 1063–77.CrossRefGoogle ScholarPubMed
Martin-Laurent, F., Tuinen, D., Dumas-Gaudot, E., Gianinazzi-Pearson, V., Gianinazzi, S. & Franken, P. (1997). Differential display analysis of RNA accumulation in arbuscular mycorrhiza of pea and isolation of a novel symbiosis-regulated plant gene. Molecular and General Genetics 256, 37–44.CrossRefGoogle ScholarPubMed
Martin-Laurent, F. A., Franken, P., van Tuinen, D., Dumas-Gaudot, E., Schlichter, U., Antoniw, J. F., Gianinazzi-Pearson, V. & Gianinazzi, S. (1996). Differential display reverse transcription polymerase chain reaction: a new approach to detect symbiosis-related genes involved in arbuscular mycorrhiza. In Mycorrhizas in Integrated Systems: from Genes to Plant Development, ed. Azcón-Aguilar, C. & Barea, J. M., pp. 195–8. Brussels, Belgium: European Commission.Google Scholar
Murphy, P. J., Langridge, P. & Smith, S. E. (1997). Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. New Phytologist 135, 291–301.CrossRefGoogle Scholar
Parniske, M. (2004). Molecular genetics of the arbuscular mycorrhizal symbiosis. Current Opinion in Plant Biology 7, 414–21.CrossRefGoogle ScholarPubMed
Paszkowski, U., Kroken, S., Roux, C. and Briggs, S. P. (2002). Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the USA 99, 13,324–9.CrossRefGoogle ScholarPubMed
Perfect, S. E., O'Connell, R. J., Green, E. F., Doering-Saad, C. & Green, J. R. (1998). Expression cloning of a fungal proline-rich glycoprotein specific to the biotrophic interface formed in the Colletotrichum-bean interaction. Plant Journal 15, 273–9.CrossRefGoogle ScholarPubMed
Pirozynski, K. A. & Malloch, D. W. (1975). The origin of land plants: a matter of mycotrophism. Biosystems 6, 153–64.CrossRefGoogle ScholarPubMed
Rasmussen, U., Johansson, C., Renglin, A., Peterson, C. & Bergman, B. (1996). A molecular characterization of the Gunnera-Nostoc symbiosis: comparison with Rhizobium- and Agrobacterium-plant interactions. New Phytologist 133, 391–8.CrossRefGoogle Scholar
Rausch, C., Daram, P., Brunner, S., Jansa, J., Laloi, M., Leggewie, G. & Bucher, M. (2001). A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414, 462–6.CrossRefGoogle ScholarPubMed
Redeker, D., Kodner, R. & Graham, L. (2000). Glomalean fungi from the Ordovician. Science 289, 1920–1.CrossRefGoogle Scholar
Remy, W., Taylor, T. N., Hass, H. & Kerp, H. (1994). Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proceedings of the National Academy of Sciences of the USA 91, 11,841–3.CrossRefGoogle ScholarPubMed
Rosewarne, G., Barker, S., Smith, S., Smith, F. & Schachtman, D. (1999). A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytologist 144, 507–16.CrossRefGoogle Scholar
Ruiz-Lozano, J. M., Roussel, H., Gianinazzi, S. & Gianinazzi-Pearson, V. (1999). Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Molecular Plant-Microbe Interactions 12, 976–84.CrossRefGoogle Scholar
Schüßler, A. (2000). Glomus claroideum forms an arbuscular mycorrhiza-like symbiosis with the hornwort Anthoceros punctatus. Mycorrhiza 10, 15–21.Google Scholar
Schüßler, A., Schwarzott, D. & Walker, C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research 105, 1414–21.Google Scholar
Showalter, A. M. (2001). Arabinogalactan-proteins: structure, expression and function. Cell Molecular Life Sciences 58, 1399–417.CrossRefGoogle ScholarPubMed
Smith, S. E. & Read, D. J. (1997). Mycorrhizal Symbiosis. San Diego, CA: Academic Press.Google Scholar
Smith, S. E., Smith, F. A., and Jakobsen, I. (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133, 16–20.CrossRefGoogle ScholarPubMed
St-Arnaud, M., Hamel, C., Vimard, B., Caron, M. & Fortin, J. A. (1996). Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycological Research 100, 328–32.CrossRefGoogle Scholar
Strittmatter, G., Gheysen, G., Gianinazzi-Pearson, V., Hahn, K., Niebel, A., Rohde, W. & Tacke, E. (1996). Infections with various types of organisms stimulate transcription from a short promoter fragment of the potato gst1 gene. Molecular Plant-Microbe Interactions 9, 68–73.CrossRefGoogle ScholarPubMed
Tahiri-Alaoui, A. & Antoniw, J. F. (1996). Cloning of genes associated with the colonization of tomato roots by the arbuscular mycorrhizal fungus Glomus mosseae. Agronomie 16, 699–707.CrossRefGoogle Scholar
Tamasloukht, M., Sejalon-Delmas, N., Kluever, A., Jauneau, A., Roux, C., Becard, G. & Franken, P. (2003). Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiology 131, 1468–78.CrossRefGoogle ScholarPubMed
van Buuren, M. L., Trieu, A. T., Blaylock, L. A. & Harrison, M. J. (1999a). Isolation of genes induced during arbuscular mycorrhizal associations using a combination of subtractive hybridization and differential screening. In Proceedings of the American Phytopathological Society 1998, ed. Podila, G. K. and Douds, J., pp. 91–9. St. Paul, MN: APS Press.Google Scholar
Buuren, M. L., Maldonado-Mendoza, I. E., Trieu, A. T., Blaylock, L. A. & Harrison, M. J. (1999b). Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis between M. truncatula and G. versiforme. Molecular Plant-Microbe Interactions 12, 171–81.CrossRefGoogle Scholar
Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A. & Sanders, I. R. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72.CrossRefGoogle Scholar
Rhijn, P., Fang, Y., Galili, S., Shaul, O., Atzmon, N., Wininger, S., Eshed, Y., Lum, M., Li, Y., To, V., Fujishige, N., Kapulnik, Y. & Hirsch, A. M. (1997). Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium-induced nodules may be conserved. Proceedings of the National Academy of Sciences of the USA 94, 5467–72.CrossRefGoogle ScholarPubMed
Vieweg, M. F., Fruhling, M., Quandt, H. J., Heim, U., Baumlein, H., Puhler, A., Kuster, H. & Perlick, A. M. (2004). The promoter of the Vicia faba L. leghemoglobin gene VfLb29 is specifically activated in the infected cells of root nodules and in the arbuscule-containing cells of mycorrhizal roots from different legume and non-legume plants. Molecular Plant-Microbe Interactions 17, 62–9.CrossRefGoogle Scholar
Weidmann, S., Sanchez, L., Descombin, J., Chatagnier, O., Gianinazzi, S. & Gianinazzi-Pearson, V. (2004). Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the Dmi3 gene in Medicago truncatula. Molecular Plant-Microbe Interactions 17, 1385–93.CrossRefGoogle ScholarPubMed
Wulf, A., Manthey, K., Doll, J., Perlick, A. M., Linke, B., Bekel, T., Meyer, F., Franken, P., Kuster, H. & Krajinski, F. (2003). Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Molecular Plant-Microbe Interactions 16, 306–14.CrossRefGoogle ScholarPubMed
Yamahara, T., Shiono, T., Suzuki, T., Tanaka, K., Takio, S., Sato, K., Yamazaki, S. & Satoh, T. (1999). Isolation of a germin-like protein with manganese superoxide dismutase activity from cells of a moss, Barbula unguiculata. Journal of Biological Chemistry 274, 33274–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×