Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-05T20:45:32.411Z Has data issue: false hasContentIssue false

6 - Structures and Properties Characterization

from Part One - Fundamentals, Processing, and Characterization

Published online by Cambridge University Press:  27 January 2017

Joseph H. Koo
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wang, Z. L. (Ed.) (2000). Characterization of Nanophase Materials. Weinheim, Germany: Wiley VCH, pp. 37–80.Google Scholar
Yan, N. and Wang, Z. L (Eds.) (2005). Handbook of Microscopy for Nanotechnology. Boston, MA: Kluwer Academic Publishers.Google Scholar
Wang, Z. L. (Ed.) (2000). Characterization of Nanophase Materials. Weinheim, Germany: Wiley VCH, pp. 13–36Google Scholar
Cao, G. (2004). Nanostructures and Nanomaterials: Synthesis. London: Properties & Applications, Imperial College Press, pp. 329–390.CrossRefGoogle Scholar
Hornyak, G. L., Tibbals, H. F., Dutta, J., and Moore, J. J. (2009). Introduction of Nanoscience & Nanotechnology. Baca Raton, FL: CRC Press, pp. 107–175.Google Scholar
Crewe, A. V. (1970). The current state of high resolution scanning electron microscopy. Quarterly Review of Biophysics 3(1), 137175.CrossRefGoogle ScholarPubMed
Buseck, P., Cowley, J. M., and Eyring, L. (Eds.) (1988). High Resolution Transmission Electron Microscopy and Associated Techniques. New York: Oxford University Press.Google Scholar
Browing, N. D., Chisholm, M. F., and Pennycook, S. J. (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143146.CrossRefGoogle Scholar
Hobbs, S. Y. and Watkins, V. H. (2000). Morphology Characterization by Microscopy Techniques. In Polymer Blends, vol. 1: Formulation. Paul, D. R. and Bucknall, C. B. (Eds.). New York: John Wiley & Sons, pp. 239289.Google Scholar
Koo, J. H., Stretz, H., Bray, A., Weispfenning, J., Luo, Z. P., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Processing, Microstructure, and Performance. AIAA-2004-1996 paper, 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, April 19–22.CrossRefGoogle Scholar
Guinier, A. and Fournet, G. (1955). Small-Angle Scattering of X-Rays. New York: Wiley.Google Scholar
Glatter, O. and Kratky, O. (1982). Small-Angle X-Ray Scattering. London: Academic Press.Google Scholar
Levine, A. (1991). Quantum Chemistry, 4th ed. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Jalili, N. and Laxminarayana, K. (2004). A review of atomic microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 14, 907945.CrossRefGoogle Scholar
Nakajima, K., Wang, D., and Nishi, T. (2012). AFM Characterization of Polymer Nanocomposites. In Characterization Techniques for Polymer Nanocomposites, Mittal, V. (Ed.). Weinheim, Germany: Wiley-VCH, pp. 185228.CrossRefGoogle Scholar
Garea, S. A., and Iovu, H. (2012). Following the Nanocomposites Synthesis by Raman Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS). In Characterization Techniques for Polymer Nanocomposites, Mittal, V. (Ed.). Weinheim, Germany: Wiley-VCH, pp. 115142.CrossRefGoogle Scholar
Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 17–93.CrossRefGoogle Scholar
Lao, S. C., Koo, J. H., et al. (2010). Flame-retardant Polyamide 11 and 12 nanocomposites: Processing, morphology, and mechanical properties. Journal of Composite Materials 44(25), 29332951.CrossRefGoogle Scholar
Vaia, R. A., Teukolsky, R. K., and Giannelis, E. P. (1994). Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials 6(7), 10171033.CrossRefGoogle Scholar
Osman, M. A., Ploetze, M., and Skrabal, P. (2004). Structure and Properties of Alkylammonium Monolayers Self-Assembled on Montmorillonite Platelets. Journal Physical Chemistry B 108(8), 25802588.CrossRefGoogle Scholar
Eslami, H., Grmela, M., and Bousmina, M. (2009). A mesoscopic tube model of polymer/layered silicate nanocomposites. Rheological Acta 48(3), 317331.CrossRefGoogle Scholar
Eslami, H., Grmela, M., and Bousmina, M. (2009). Structure Build-Up at Rest in Polymer Nanocomposites: Flow Reversal Experiments. Journal of Polymers Science Part B 47(17), 17281741.CrossRefGoogle Scholar
Ray, S. S. (2006). Rheology of Polymer/Layered Silicate Nanocomposites. Journal of Industrial and Engineering Chemistry 12(6), 811842.Google Scholar
Song, M. and Jin, J. (2012). Characterization of Rheological Properties of Polymer Nanocomposites. In Characterization Techniques for Polymer Nanocomposites, Mittal, V. (Ed.). Weinheim, Germany: Wiley-VCH, pp. 251281.CrossRefGoogle Scholar
Krishnamoorti, R., Vaia, R. A., and Giannelis, E. P. (1996). Structure and dynamics of polymer-layered silicate nanocomposites. Chemistry of Materials 8(8), 17281734.CrossRefGoogle Scholar
Standard Test Method for Thermal Diffusivity by the Flash Method (ASTM E1461-11). American Society for Testing and Materials. Philadelphia, PA.Google Scholar
Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 94–116.CrossRefGoogle Scholar
Troitzsch, J. (Ed.) (2004). Plastics Flammability Handbook, 3rd edition. Cincinnati, OH: Hanser.CrossRefGoogle Scholar
Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 218–250.CrossRefGoogle Scholar
Babrauskas, V. (1996). The Cone Calorimeter. In Heat Release in Fires, Babrauskas, V. and Grayson, S. J. (Eds.). London: E & FN Spon, pp. 6191.Google Scholar
Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter (ASTM E1354). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Fire Tests – Reaction to Fire – Part 1: Rate of Heat Release from Building Products. ISO DOS 5660. International Organization for Standardization, Geneva, Switzerland.Google Scholar
Standard Test Method for Screening Test for Mass Loss and Ignitability of Materials (ASTM E2102). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry (ASTM D7309-11). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index) (ASTM D2863-12e1). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
UL 94, the Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing, Underwriters Laboratories, Northbrook, IL.Google Scholar
Standard Test Method for Surface Burning Characteristics of Building Materials (ASTM E84-13a). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Schmidt, D. L. and Schwartz, H. S. (1963). Evaluation methods for ablative plastics. SPE Transactions 3, 238–250.Google Scholar
Botton, B., Chazot, O, Carbonaro, M, Van Der Haegen, V, and Paris, S. (1999). The VKI Plasmatron characteristics and performance. DTIC Compilation Part Notice ADP010745. Rhode-Saint-Genese, Belgium, October.Google Scholar
Koo, J. H., Kneer, M., and Schneider, M., (1992). A cost-effective approach to evaluate high-temperature ablatives for military applications. Naval Engineers Journal 104, 166177.CrossRefGoogle Scholar
Miller, M. J., Koo, J. H., and Lin, S. (1993). Evaluation of Different Categories of Composites Ablative for Thermal Protection. AIAA-93–0839, 31st AIAA Aerospace Sciences Meeting, Reno, NV, January.Google Scholar
Cheung, F., Koo, J. H., et al. (1995). Prediction of Thermo-Mechanical Erosion of High-Temperature Ablatives in the SSRM Facility. AIAA-95–0254, 33rd Aerospace Sciences Meeting, Reno, NV, January.Google Scholar
VanMeter, M., Koo, J. H., et al. (1995). Mechanical Properties and Material Behavior of a Glass Silicone Polymer Composite. Proceedings of the 40th International SAMPE Symposium, Covina, CA, SAMPE, pp.1425–1434.Google Scholar
Koo, J. H. et al. (1998). Effect of Major Constituents on the Performance of Silicone Polymer Composites. Proceedings of the 30th International SAMPE Technical Conference, Covina, CA: SAMPE.Google Scholar
Koo, J. H. et al. (1999). Thermal Protection of a Class of Polymer Composites. Proceedings of the 44th International SAMPE Symposium. Covina, CA: SAMPE, pp.1431–1441.Google Scholar
Koo, J. H., Stretz, H., Weispfenning, J., Luo, Z., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Subscale Ablation Test. Proceedings International SAMPE 2004 Symposium on Disc [CD-ROM]. Covina, CA: SAMPE.Google Scholar
Koo, J. H., Stretz, H., Weispfenning, J., Luo, Z., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Processing, Microstructures, and Performance. AIAA-2004-1996, AIAA, Reston, VA, April.CrossRefGoogle Scholar
Koo, J. H., Pilato, L., and Wissler, G. (2007). Polymer nanostructured materials for propulsion systems. Journal of Spacecraft and Rockets 44(6), 12501262.CrossRefGoogle Scholar
Koo, J. H., Miller, M. J., Weispfenning, J., and Blackmon, C. (2011). Silicone polymer composite for thermal protection of naval launching system. Journal of Spacecraft and Rockets 48(6), 904919.CrossRefGoogle Scholar
Koo, J. H., Miller, M. J., Weispfenning, J., and Blackmon, C. (2011). Silicone polymer composites for thermal protection system: Fiber reinforcements and microstructures. Journal of Composite Materials 45(13), 13631380.CrossRefGoogle Scholar
Blanski, R., Koo, J. H., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation-Ablation Performance. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Koo, J. H., Marchant, D., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation–Processing, Microstructure, and Mechanical Properties. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Ruth, P., Blanski, R., and Koo, J. H.. (2004). Preparation of Polymer Nanostructured Materials for Solid Rocket Motor Insulation. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Natali, M, Monti, M., Kenny, J. M., and Torre, L. (2011). A nanostructured ablative bulk moulding compound: Development and characterization. Composites: Part A 42(9), 11971204.CrossRefGoogle Scholar
Pulci, G, Tirillo, J, Marra, F, Fossati, F, Bartuli, C, and Valente, T. (2010). Carbon-phenolic ablative materials for re-entry space vehicles: manufacturing and properties. Composites: Part A 41(10), 14831490.CrossRefGoogle Scholar
Allcorn, E, Robinson, S, Tschoepe, D, Koo, J. H., Natali, M. (2011). Development of an experimental apparatus for ablative nanocomposites testing. AIAA-20116050, 47th AIAA/ASME/SAE Joint Propulsion Conference, San Diego, CA, August 1–4.CrossRefGoogle Scholar
Gutierrez, L., Koo, J. H., et al. (2015). Design of Small-scale Ablative Testing Apparatus with Sample Position and Velocity Control. AIAA-2015-1584, AIAA SciTech 2015, Kissimmee, FL, January 5–9.CrossRefGoogle Scholar
Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter (ASTM E457-08). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Lee, J. C. (2010). Characterization of Ablative Properties of Thermoplastic Polyurethane Elastomer Nanocomposites. Ph.D. dissertation, The University of Texas at Austin, Austin, TX, December.Google Scholar
Lee, J. C., Koo, J. H., and Ezekoye, O. A. (2011). Thermoplastic Polyurethane Elastomer Nanocomposite Ablatives: Characterization and Performance. AIAA-2011–6051, 47th AIAA/ASME/SAE Joint Propulsion Conference, San Diego, CA, August 1–4.CrossRefGoogle Scholar
Lee, J. C., Koo, J. H., et al. (2009). Thermoplastic Polyurethane Elastomer Nanocomposites: Density, Hardness, and Flammability Properties Correlations. AIAA-2009–5273, AIAA Joint Propulsion Conference, Denver, CO, August 2–5.CrossRefGoogle Scholar
Lee, J. C., Koo, J. H., et al. (2009). Heating Rate and Nanoparticle Loading Effects on Thermoplastic Polyurethane Elastomer Nanocomposite Kinetics. AIAA-2009–4096, AIAA Thermophysics Conference, San Antonio, TX, June 22–25.CrossRefGoogle Scholar
Allcorn, E., Natali, M., and Koo, J. H. (2011). Ablation Performance and Characterization of Thermoplastic Elastomer Nanocomposites. Proceedings of the SAMPE 2011 ISTC, Fort Worth, TX, October 17–20.Google Scholar
Allcorn, E. K., Natali, M., and Koo, J. H. (2013). Ablation performance and characterization of thermoplastic polyurethane elastomer nanocomposites. Composites: Part A 45, 109118.CrossRefGoogle Scholar
Wong, D., Koo, J. H., et al. (2013). Thermoplastic Polyurethane Elastomer Nanocomposites: Ablation and Charring Characteristics. Proceedings of the SAMPE 2013 ISSE, Long Beach, CA, May 6–9.Google Scholar
Wong, D., Pinero, D., Jaramillo, M., Koo, J. H., Ambuken, P., and Stretz, H. (2013). Ablation and Combustion Characteristics of Thermoplastic Polyurethane Nanocomposites. AIAA-2013–3862, 49th AIAA/ASEM/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 14–17.Google Scholar
Donskoy, A. (1996). Elastomeric heat shielding materials for internal surfaces of missile engines. International Journal of Polymer Materials 31(1), 215236.CrossRefGoogle Scholar
Solid Rocket Motor Internal Insulation, NASA Space Vehicle Design Criteria. NASA-SP-8093, 1976.Google Scholar
Bell, M. S. and Tam, W. (1992). ASRM Case Insulation Design and Development. NASA-CR-191947.Google Scholar
Bhuvaneswari, C. M., Kakade, S. D., Deuskar, V. D., Dange, A. B., and Gupta, M. (2008). Filled ethylene-propylene dieneterpolymer elastomer as thermal insulator for case-bonded solid rocket motors. Defence Science Journal 58(1), 94102.CrossRefGoogle Scholar
Bhuvaneswari, C. M., Sureshkumar, M. S., Kakade, S. D., and Gupta, M. (2006). Ethylene-propylene diene rubber as a futuristic elastomer for insulation of solid rocket motors. Defence Science Journal 56(3), 309320.CrossRefGoogle Scholar
Redondo, H., Atreya, M., Kan, M., and Koo, J. H.. (2010). Evaluation of Char Strength of Polymer Nanocomposites for Propulsion Systems. Proceedings of the SAMPE 2010 ISSE [CD-ROM]. Covina, CA, May.Google Scholar
Reshetnikov, S., Garashenko, A. N., and Strakhov, V. L. (2000). Experimental Investigation into Mechanical Destruction of Intumescent Chars. Polymers for Advanced Technologies 11, 392397.3.0.CO;2-K>CrossRefGoogle Scholar
Nguyen, H.. (2012). Air Force Research Laboratory, Edwards AFB, CA, private communication.Google Scholar
Jaramillo, M., Koo, J. H., Edd, A., and Wells, D. (2011). An Experimental Investigation of Char Strength of Polymer Nanocomposites for Propulsion Applications. Proceedings of the SAMPE 2011 ISTC [CD-ROM]. Covina, CA, October.Google Scholar
Jaramillo, M., Forinash, D., Wong, D., Natali, M., and Koo, J. H. (2013). An Investigation of Compressive and Shear Strength of Char from Polymer Nanocomposites for Propulsion Applications. AIAA-2013–3864, 49th AIAA/ASEM/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 14–17.CrossRefGoogle Scholar
Jaramillo, M., Koo, J. H., and Natali, M. (2014). Compressive char strength of polyurethane elastomer nanocomposites. Polymers for Advanced Technology 25(77), 742751.CrossRefGoogle Scholar
Forinash, D. M., Alter, R. J., Clatanoff, S. B., Newman, J. E., Jaramillo, M., and Koo, J. H.. (2012). Development of an Apparatus for Measuring the Shear Strength of Charred Ablatives. Proceedings of the SAMPE TECH 2012 [CD-ROM]. Covina, CA, October.Google Scholar
Natali, M., Koo, J. H., Allcorn, E., and Ezekoye, O. A.. (2013). In-situ Ablation Recession Sensor Based on Ultra-Miniature Thermocouples – Part A: 0.25mm Diameter Thermocouples. AIAA-2013–3660, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 15–17.Google Scholar
Natali, M., Koo, J. H., Allcorn, E., and Ezekoye, O. A. (2014). An in-situ ablation recession sensor for carbon/carbon ablatives based on commercial ultra-miniature thermocouples. Sensors and Actuators B: Chemical 196, 46–56.CrossRefGoogle Scholar
Yee, C., Ray, M., Tang, F., Wan, J., Koo, J. H., and Natali, M. (2013). In-situ Ablation Recession Sensor Based on Ultra-Miniature Thermocouples – Part B: 0.50mm Diameter Thermocouples. AIAA-2013–3659, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 15–17.Google Scholar
Yee, C., Ray, M., Tang, F., Wan, J., Koo, J. H., and Natali, M. (2014). In-situ ablation recession and thermal sensor based on ultra-fine thermocouples. Journal of Spacecraft and Rockets 51(6), 17891796.CrossRefGoogle Scholar
Lisco, B., Yao, E., Pinero, D., and Koo, J. H. (2014). In-situ Ablation Recession and Thermal Sensors for Low Density Ablators – Revisited. Proceedings of the CAMX 2014, Orlando, FL, October 13–16.Google Scholar
Cameron, S., Astley, A., Leggett, S., Sirgo, G., and Koo, J. H.. (2015). In-situ Ablation Recession and Thermal Sensor Based on Ultra-fine Thermocouples. Proceedings of the SAMPE 2015 ISTC, Baltimore, MD, May 18–21.Google Scholar
Koo, J. H., Natali, M., et al. (2015). A Versatile In-situ Ablation Recession and Thermal Sensor Adaptable for Different Ablatives. AIAA-2015-1122, AIAA SciTech 2015, Kissimmee, FL, January 5–9.CrossRefGoogle Scholar
Grantham, T., Koo, J. H., et al. (2015). Ablation, Thermal, and Morphological Properties of SiC Fibers Reinforced Glass Ceramic Matrix Composites. AIAA-2015-1581, AIAA SciTech 2015, Kissimmee, FL, January 5–9.Google Scholar
Koo, J. H. et al. (2015). A Versatile In-situ Ablation Recession and Thermal Sensor Based on Ultra-fine Gage Thermocouples for Ablative TPS Materials. Proceedings of the National Space & Missile Materials Symposium (NSMMS), Chantilly, VA, June 22–25.Google Scholar
ASTM D4935 – 10 Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 157–175.CrossRefGoogle Scholar
Zhang, J. Z. (2009). Optical Properties and Spectroscopy of Nanomaterials. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×