Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-29T15:51:05.188Z Has data issue: false hasContentIssue false

Part One - Fundamentals, Processing, and Characterization

Published online by Cambridge University Press:  27 January 2017

Joseph H. Koo
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References for Future Reading

“The National Nanotechnology Initiative – Supplement to the President’s Budget for Fiscal Year 2016,” National Science and Technology Council (NSTC), Committee on Technology (CoT), Subcommittee on Nanoscale Science, Engineering, and Technology (NSET), Washington, DC, March 2015, p. 7.Google Scholar
Nanotechnology (January 1, 2006). Retrieved December 15, 2014, from www.nature.com/nnano/journal/v1/n1/full/nnano.2006.77.htmlGoogle Scholar
“National Nanotechnology Initiative Strategic Plan,” National Science and Technology Council (NSTC), Committee on Technology (CoT), Subcommittee on Nanoscale Science, Engineering, and Technology (NSET), Washington, DC, February 2014, www.nano.gov/2014StrategicPlan, p. 5.Google Scholar
Executive Office of the President, President’ Council of Advisors of Science and Technology (PCAST), Report to the President and Congress on the Fourth Assessment of the National Nanotechnology Initiative, April 2012.Google Scholar
Athavale, A. (2011). Nanotechnology: Origin and history. TechTalk@KPITCummins, 4(3), 58. Retrieved December 15, 2014, from www.kpit.com/downloads/tech-talk/tech-talk-july-september-2011.pdf#page=3Google Scholar
Feynman, R. P., “There’s Plenty of Room at the Bottom,” Annual Meeting at American Physical Society at the California Institute of Technology, December 29, 1959. First published by Caltech Engineering and Science 23(5), February 1960, 2236.Google Scholar
Size of the Nanoscale (n.d.). Retrieved December 15, 2014, from www.nano.gov/nanotech-101/what/nano-sizeGoogle Scholar
Ratner, M. and Ratner, D. (2003). Nanotechnology: A gentle introduction to the next big idea. Upper Saddle River, NJ: Prentice Hall, pp. 118.Google Scholar
Koo, J. H. (2006). Polymer Nanocomposites – Processing, Characterization, and Applications. New York: McGraw-Hill.Google Scholar
What Is Nanotechnology? (n.d.). Retrieved December 15, 2014, from www.nano.gov/nanotech-101/what/definitionGoogle Scholar
Vollath, D. (2008). Nanomaterials: An Introduction to Synthesis, Properties, and Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH, pp. 120.Google Scholar
Li, X., Chen, H., Dang, Y., Lin, Y., Larson, C. A., and Roco, M. C. (2008). A longitudinal analysis of nanotechnology literature: 1976–2004. Journal of Nanoparticle Research 10, 322.CrossRefGoogle Scholar
Li, X., Hu, D., Dang, Y., Chen, H., Roco, M. C., Larson, C. A., and Chan, J. (2009). Nano mapper: An Internet knowledge mapping system for nanotechnology development. Journal of Nanoparticle Research 11, 529552.CrossRefGoogle ScholarPubMed
Giordano, G. and Inmam, H. (2010). Thinking small plays big. Plastic Engineering 66(1), 610.CrossRefGoogle Scholar
Jancar, J., Douglas, J. F., Starr, F. W., Kumar, S. K., Cassagnau, P., Lesser, A. J., and Sterstein, S. S (2010). Current issues in research on structure-property relationships in polymer nanocomposites. Polymer 51, 33213343.CrossRefGoogle Scholar
Rocco, M. C. (1998). Nanoparticle and nanotechnology research in the USA. Journal of Aerosole Science 29, 749760.CrossRefGoogle Scholar
Janz, A., Kockritz, A., Yao, L., and Adsorption, A. M. (2010). Surface area: Fundamental calculations on the surface area determination of supported gold nanoparticles. Langmuir 26(9), 67836789.CrossRefGoogle ScholarPubMed
“Progress Review on the Coordination Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy,” National Science and Technology Council (NSTC), Committee on Technology (CoT), Subcommittee on Nanoscale Science, Engineering, and Technology (NSET), Washington, DC, June 2014, www.nano.gov/2014EHSProgressReviewGoogle Scholar
The SIINN (Safe Implementation of Innovative Nanoscience and Nanotechnology) ERA-NET is a coordination activity funded by the European Commission within the 7th Framework Programme, www.siinn.eu. It promotes the safe and rapid transfer of European research results in nanoscience and nanotechnology (N&N) into industry applications.Google Scholar
The U.S.-EU organization that bridges nanoEHS research efforts; www.us-eu.orgGoogle Scholar
Stark, W. J. (2011). Nanoparticles in Biological Systems. Angewante Chemie International Edition 50, 12421250.CrossRefGoogle ScholarPubMed
Roco, M. and Bainbridge, W. (2013). The new world of discovery, invention, and innovation: Convergence of knowledge, technology, and society. Springer Science+Business Media Dordrescht 15, 1946.Google Scholar
Tahan, C., Leung, R., Zenner, G., Ellison, K., Crone, W., and Miller, C. (2006). Nanotechnology and society: A discussion-based undergraduate course. American Journal of Physics 74, 443.CrossRefGoogle Scholar
Agarwal, A., Bakshi, S. R., and Lahiri, D. (2011). Carbon Nanotubes – Reinforced Metal Matrix Composites. Boca Raton, FL: CRC Press.Google Scholar
Ajayan, P. M., Schadler, L. S., and Braun, P. V. (2003). Nanocomposite Science and Technology. Weinheim, Germany: Wiley-VCH Verlag, GmbH.CrossRefGoogle Scholar
Bauhofer, W. and Kovacs, J. Z. (2009). A review and analysis of electrical percolation in carbon nanotube polymer composites. Composites Science and Technology 69(10), 14861498.CrossRefGoogle Scholar
Al-Malaika, S., Golovoy, A., and Wilkie, C. A. (Eds.) (1999). Chemistry and Technology of Polymer Additives. Malden, MA: Blackwell Science.Google Scholar
Beall, G. W. and Powell, C. E. (2011). Fundamentals of Polymer-Clay Nanocomposites. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bhattacharya, S. N., Gupta, R. K., and Kamal, M. R. (2008). Polymeric Nanocomposites – Theory and Practice. Cincinnati, OH: Hansen.Google Scholar
Callister, W. D., Jr. (2007). Materials Science and Engineering – An Introduction, 7th Edition. New York: Wiley & Sons.Google Scholar
Cao, G. (2004). Nanostructures and Nanomaterials – Synthesis, Properties & Applications. London: Imperial College Press.CrossRefGoogle Scholar
Chou, T. W., Gao, L., Thostenson, E. T., Zhang, Z., and Byun, B.-Y. (2011). An assessment of the science and technology of carbon nanotube-based fibers and composites: A review. Composites Science and Technology 70(1), 119.CrossRefGoogle Scholar
Dai, L. (Ed.) (2006). Carbon Nanotechnology – Recent Developments in Chemistry, Physics, Materials Science and Device Applications. Amsterdam: Elsevier.Google Scholar
Duffa, G. (2013). Ablative Thermal Protection System Modeling. Reston, VA: AIAA.CrossRefGoogle Scholar
Endo, M., Strano, M. S., and Ajayan, P. M. (2008). Potential applications of carbon nanotubes. Carbon Nanotubes: Topics in Applied Physics 111, 1361.CrossRefGoogle Scholar
Fecht, H.-J. and Werner, M. (Eds.) (2004). The Nano-Micro Interface – Bridging the Micro and Nano Worlds. Weinheim, Germany: Wiley-VCH Verlag, GmbH.CrossRefGoogle Scholar
Friedrich, K., Fakirov, S., and Zhang, Z. (Eds.) (2005). Polymer Composites – From Nano- to Macro-Scale. New York: Springer.Google Scholar
Galimberti, M. (Ed.) (2011). Rubber-Clay Nanocomposites. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Geckeler, K. E. and Rosenberg, E. (2006). Functional Nanomaterials. Stevenson Ranch, CA: American Scientific Publishers.Google Scholar
Geckeler, K. E. and Nishide, H. (Eds.) (2010). Advanced Nanomaterials Vols. 1 & 2. Weinheim, Germany: Wiley-VCH Verlag GmbH.Google Scholar
Gerard, J.-F. (Ed.) (2001). Fillers and Filled Polymers. Weinheim, Germany: Wiley-VCH Verlag GmbH.Google Scholar
Gibson, R. F. (2010). A review of recent research on mechanics of multifunctional composite materials and structures. Composite Structures 92(12), 27932810.CrossRefGoogle Scholar
Gogotsi, Y. (Ed.) (2006). Nanotubes and Nanofibers. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Green, M. J., Behabtu, N., Pasquali, M., and Adams, W. (2009). Nanotubes as polymer. Polymer 50, 49794997.CrossRefGoogle Scholar
Guo, Z. and Tan, L. (2009). Fundamentals and Applications of Nanomaterials. Norwood, MA: Artech House.Google Scholar
Gupta, R. K., Kennel, E., and Kim, K.-J. (Eds.) (2010). Polymer Nanocomposites Handbook. Boca Raton, FL: CRC Press.Google Scholar
Harper, C. A. (Ed.) (2002). Handbook of Plastics, Elastomers, & Composites, 4th edition. New York: McGraw-Hill.Google Scholar
Hornyak, G. L., Tibbals, H. F., Dutta, J., and Moore, J. J. (2009). Introduction to Nanoscience & Nanotechnology. Boca Raton, FL: CRC Press.Google Scholar
Hull, T. R. and Kandola, B. K. (Eds.) (2009). Fire Retardancy of Polymers: New Strategies and Mechanisms. Cambridge: RSC Publishing.Google Scholar
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354, 5658.CrossRefGoogle Scholar
Karn, B., Mascinangioli, T., Zhang, W., Colvin, V., and Alivisatos, P. (Eds.) (2005). Nanotechnology and the Environment – Applications and Implications. ACS Symposium Series 890. Washington, DC: American Chemical Society.Google Scholar
van Krevelen, D. W. and te Nigenhuis, K. (2012). Properties of Polymers, 4th edition. Amsterdam: Elsevier.Google Scholar
Krishnamoorti, R. and Vaia, R. A. (Eds.) (2005). Polymer Nanocomposites – Synthesis, Characterization, and Modeling. Washington, DC: ACS Symposium Series 804.Google Scholar
Kostoff, R. N., Johnson, J. A., Murday, J. S., Lau, C. G. Y., and Tolles, W. M. (2006). The structure and infrastructure of the global nanotechnology literature. Journal of Nanoparticle Research 8(3), 301321.CrossRefGoogle Scholar
Kostoff, R. N., Murday, J. S., Lau, C. G. Y., and Tolles, W. M. (2006). The seminal literature of nanotechnology research. Journal of Nanoparticle Research 8(2), 193213.CrossRefGoogle Scholar
Le Bras, M., Camino, G., Bourbigot, S., and Delobel, R. (Eds.) (1998). Fire Retardancy of Polymers – The Use of Intumescence. Cambridge: RSC Publishing.Google Scholar
Le Bras, M., Wilkie, C. A., Bourbigot, S., Duquesne, S., and Jama, C. (Eds.) (2005). Fire Retardancy of Polymers – New Applications of Mineral Fillers. Cambridge, United Kingdom: RSC Publishing.Google Scholar
Liu, L., Ma, W., and Zhang, Z. (2011). Macroscopic carbon nanotubes assemblies: Preparation, properties, and potential applications. Small 7(11), 15041520.CrossRefGoogle ScholarPubMed
Marijnissen, J. and Gradon, L. (Eds.) (2010). Nanoparticles in Medicine and Environment – Inhalation and Health Effects. New York: Springer.CrossRefGoogle Scholar
McNally, T. and Potschke, P. (2011). Polymer-Carbon Nanotube Composites: Preparation, Properties, and Applications. Cambridge: Woodhead Publishing.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2010). Optimization of Polymer Nanocomposites Properties. Weinheim, Germany: Wiley-VCH Verlag GmbH.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2010). Polymer Nanotube Nanocomposites – Synthesis, Properties, and Application. Salem, MA: Wiley & Scrivener Publishing.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2011). Thermally Stable and Flame Retardant Polymer Nanocomposites. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2012). Characterization Techniques for Polymer Nanocomposites. Weinheim, Germany: Wiley-VCH Verlag GmbH.CrossRefGoogle Scholar
Miziolek, W., Karna, S. P., Mauro, J. M., and Vaia, R. A. (Eds.) (2005). Defense Applications of Nanomaterials, ACS Symposium Series 891. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Morgan, B. and Wilkie, C. A. (Eds.) (2007). Flame Retardant Polymer Nanocomposites. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Mukhopadhyay, S. M. (Ed.) (2012). Nanoscale Multifunctional Materials. Hoboken, NJ: Wiley.Google Scholar
Mukhopadhyay, P. and Gupta, R. K. (Eds.) (2013). Graphite, Graphene and Their Polymer Nanocomposites. Boca Raton, FL: CRC Press.Google Scholar
Nelson, J. K. (Ed.) (2010). Dielectric Polymer Nanocomposites. New York: Springer.CrossRefGoogle Scholar
Davim, J. Paulo (Ed.) (2013). Tribology of Nanocomposites. New York: Spring.CrossRefGoogle Scholar
Pinnavaia, T. J. and Beall, G. W. (Eds.) (2000). Polymer-Clay Nanocomposites. New York: Wiley & Sons.Google Scholar
Priest, S. H. (Ed.) (2012). Nanotechnology and the Public – Risk Perception and Risk Communication. Boca Raton, FL: CRC Press.Google Scholar
Pusch, R. and Yong, R. N. (2006). Microstructure of Smectite Clays and Engineering Performance. New York: Taylor & Francis.CrossRefGoogle Scholar
Roco, M. (2011). The long view of nanotechnology development: The NNI at 10 Years. Journal of Nanoparticle Research 13, 427445.CrossRefGoogle Scholar
Schnorr, J. M. and Swager, T. M. (2011). Emerging applications of carbon nanotubes. Chemistry of Materials 23(3), 646657.CrossRefGoogle Scholar
Schulz, M. J., Kelkar, A. D., and Sundaresan, M. J. (Eds.) (2006). Nanoengineering of Structural, Functional, and Smart Materials. Boca Raton, FL: CRC Press.Google Scholar
Seal, S. (Ed.) (2008). Functional Nanostructures – Processing, Characterization, and Applications. New York: Springer.CrossRefGoogle Scholar
Spitalskya, Z., Tasisb, D., Papagelis, K., and Galiotis, C. (2010). Carbon nanotube-polymer composites: Chemistry, processing, mechanical, and electrical properties. Progress in Polymer Science 35, 357401.CrossRefGoogle Scholar
Shatkin, J. A. (2008). Nanotechnology: Health and Environmental Risks. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Tjong, S. C. (2009). Carbon Nanotube Reinforced Composites – Metal and Ceramic Matrices. Weinheim, Germany: Wiley-VCH Verlag GmbH.CrossRefGoogle Scholar
Tomanek, D. and Enbody, R. J. (2000). Science and Application of Nanotubes. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Vaia, R. A. (2002). Polymer nanocomposites open a new dimension for plastics and composites. The AMPTIAC Newsletter 6(1), 1724.Google Scholar
Di Ventra, M., Evoy, S., and Heflin, J. R., Jr. (2004). Introduction to Nanoscale Science and Technology. Norwell, MA: Kluwer Academic Publishers.CrossRefGoogle Scholar
Vilgis, T. A., Heinrich, G., and Klippel, M. (2009). Reinforcement of Polymer Nano-Composites – Theory, Experiments and Applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Vollath, D. (2008). Nanomaterials: An Introduction to Synthesis, Properties, and Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH.Google Scholar
Wang, L. (Ed.) (2000). Characterization of Nanophase Materials. Weinheim, Germany: Wiley-VCH Verlag GmbH.Google Scholar
Wang, Z. L., Liu, Y., and Zhang, Z. (Eds.) (2003). Handbook of Nanophase and Nanostructured Materials, Vol. 4: Materials Systems and Applications (II). New York: Kluwer Academic/Plenum Publishers.Google Scholar
Wardle, L. (2012). 3D Nano-engineering Composites and 2D Polymer Nanocomposites: Processing and Properties. In ASC Series on Advances in Composite Materials, Nanocomposites, Vol. 2, Chou, T.-W. and Sun, C. T. (Eds.), Lancaster, PA: DEStech Publishing.Google Scholar
Wardle, L., Koo, J. H., Odegard, G. M., and Seidel, G. D. (2016). Advanced Nanoengineering Materials. In Aerospace Materials and Applications, Bhatt, B. (Ed.), Reston, VA: AIAA.Google Scholar
Yao, N. and Wang, Z. L. (Eds.) (2005). Handbook of Microscopy for Nanotechnology. Boston, MA: Kluwer Academic Publishers.CrossRefGoogle Scholar
Zhang, J. Z. (2009). Optical Properties and Spectroscopy of Nanomaterials. Singapore: World Scientific Publishing.CrossRefGoogle Scholar

References

Pinnavaia, T. J. and Beall, G. W. (Eds.) (2000). Polymer-Clay Nanocomposites. New York: John Wiley & Sons.Google Scholar
Krishnamoorti, R. and Vaia, R. A. (Eds.) (2001). Polymer Nanocomposites: Synthesis, Characterization, and Modeling. ACS Symposium Series 804, Washington, DC: American Chemistry Society.CrossRefGoogle Scholar
Koo, J. H. (2006). Polymer Nanocomposites: Properties, Characterization, and Applications. New York: McGraw-Hill.Google Scholar
Morgan, A. B. and Wilkie, C. A. (Eds.) (2007). Flame Retardant Polymer Nanocomposites. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Gupta, R. A., Kennel, E., and Kim, K. J. (Eds.) (2010). Polymer Nanocomposites Handbook. Boca Raton, FL: CRC Press.Google Scholar
Mittal, V. (Ed.) (2010). Polymer Nanotube Nanocomposites: Synthesis, Properties, and Applications. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2010). Optimization of Polymer Nanocomposites Properties. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2011). Thermally Stable and Flame Retardant Polymer Nanocomposites. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Beall, G. W. and Powell, C. E. (2011). Fundamentals of Polymer-Clay Nanocomposites. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2012). Characterization Techniques for Polymer Nanocomposites. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
Briell, B. (2000). Nanoclay – Counting on Consistency, presented at Nanocomposite 2000, Southern Clay Products, Gonzales, TX.Google Scholar
Southern Clay Products, Gonzales, TX (www.nanoclay.com).Google Scholar
Nanocor, Chicago, IL (www.nanocor.com).Google Scholar
Geim, A. K. and Novoselov, K. S. (2007). The rise of graphene. Nature Materials (6), 183–191.CrossRefGoogle Scholar
Jang, B. Z. and Zhamu, A. (2000). Processing of nanographene platelets (NGPs) and NGP nanocomposites: A review. Journal of Materials Science 43, 50925101.CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science 306, 666669.CrossRefGoogle Scholar
Novoselov, K. S., Jiang, D., Schedin, F., et al. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences USA 102(30), 1045110452.CrossRefGoogle Scholar
Jang, B. Z. and Huang, W. C. (2006). US Patent 7,071,258 (July 4).Google Scholar
Jang, B. Z. (2006). US Patent 11/442,903 (June 20); a divisional of 10/274,473 (October 22, 2002).Google Scholar
Schwalm, W., Schwalm, M., and Jang, B. Z. (2004). Local Density of States for Nanoscale Graphene Fragments. American Physical Society, Paper No. C1.157, Montreal, Canada, March 2004.Google Scholar
McAllister, M. J., Li, J. L., Adamson, D. H., et al. (2007). Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials 19(18), 43964404.CrossRefGoogle Scholar
Li, J. L., Kudin, K. N., McAllister, M. J., et al. (2006). Oxygen-driven unzipping of graphitic materials. Physical Review Letters 96(17), 176101176104.CrossRefGoogle Scholar
Schniepp, H. C., Li, J. L., McAllister, M. J., et al. (2006). Functionalized single graphene sheets derived from splitting graphite oxide.Journal of Physical Chemistry B 110(17), 85358539.CrossRefGoogle Scholar
Li, X., Wang, X., Zhang, L., Lee, S., et al. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 12291232.CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197200.CrossRefGoogle Scholar
Zhang, Y., and Ando, T. (2002). Hall conductivity of a two-dimensional graphite system. Physical Review Letters B 65(24), 245420245431.Google Scholar
Zhang, Y., Tan, Y. W., Stormer, H. L., et al. (2005). Experimental observation of the quantum Hall Effect and Berry’s phase in graphene. Nature 438, 201204.CrossRefGoogle Scholar
Zhang, Y., Small, J. P., Amori, M. E., et al. (2005). Electric field modulation of Galvanomagnetic properties of mesoscopic graphite. Physical Review Letters 94(17), 176803(4pp). doi:10.1103/PhysRevLett.94.176803.CrossRefGoogle Scholar
Berger, C., Song, Z., Li, T., et al. (2004). Ultrathin epitaxial graphite: 2D Electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physical Chemistry B 108(52), 1991219916. doi: 10.1021/jp040650f.CrossRefGoogle Scholar
Enoki, T. and Kobayashi, Y. (2005). Magnetic nanographite: an approach to molecular magnetism. Journal of Materials Chemistry 15, 39994002. doi: 10.1039/b500274p.CrossRefGoogle Scholar
Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., et al. (2007). Bipolar supercurrent in graphene. Nature Letter 446, 5659. doi: 10.1038/nature05555.CrossRefGoogle Scholar
Soon, Y. W., Cohen, M. L., and Louie, S. G. (2006). Half-metallic graphene nanoribbons. Nature Letter 444, 347349. doi: 10.1038/nature05180.CrossRefGoogle Scholar
Meyer, J. C., Geim, A. K., Katsnelson, M. I., et al. (2007). The structure of suspended graphene sheets. Nature Letter 446, 6063. doi: 10.1038/nature 05545.CrossRefGoogle Scholar
Bunnell, L. R., Sr. (1991). US Patent 987(4):175.Google Scholar
Bunnell, L. R., Sr. (1991). US Patent 019(5):446.Google Scholar
Bunnell, L. R., Sr. (1993). US Patent 186(5):919.Google Scholar
Zaleski, P. L., Derwin, D. J., Girkant, R. J., et al. (2001). US Patent 287(6):694.Google Scholar
Horiuchi, S., Gotou, T., Fujiwara, M., et al. (2004). Single graphene sheet detected in a carbon nanofilm. Applied Physics Letter 84, 24032405.CrossRefGoogle Scholar
Horiuchi, S., Gotou, T., Fujiwara, M., et al. (2003). Carbon nanofilm with a new structure and property. Japan Journal of Applied Physics 42(Part 2), L1073L1076. doi:10.1143/JJAP.42.L1073.CrossRefGoogle Scholar
Hirata, M. and Horiuchi, S. (2003). US Patent 596(6):396.CrossRefGoogle Scholar
Hirata, M., Gotou, T., and Ohba, M. (2005). Thin-film particles of graphite oxide. 2: Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 43, 503510. doi: 10.1016/j.carbon.2004.10.009.CrossRefGoogle Scholar
Hirata, M., Gotou, T., Horiuchi, S., et al. (2004). Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles.Carbon 42, 29292937. doi: 10.1016/j.carbon.2004.07.003.Google Scholar
Udy, J. D. (2006). US Patent Application No. 11/243,285 (October 4); Pub. No. 2006/0269740 (November 30).Google Scholar
Chen, G. H., Weng, W., Wu, C., et al. (2004). Preparation and characterization of graphite nanosheets from ultrasonic powder technique. Carbon 42, 753759. doi:10.1016/j.carbon.2003. 12.074.Google ScholarPubMed
Jang, B. Z., Wong, S. C., and Bai, Y. (2005). US Patent Appl. No. 10/858,814 (June 3, 2004); Pub. No. US 2005/0271574 (December 8).Google Scholar
Petrik, V. I. (2006). US Patent Appl. No. 11/007,614 (December 7, 2004); Pub. No. US 2006/0121279 (June 8).Google Scholar
Drzal, L. T. and Fukushima, H. (2006). US Patent Appl. No. 11/363,336 (February 27); 11/361,255 (February 24); 10/659,577 (September 10, 2003).Google Scholar
Mack, J. J., Viculis, L. M., Kaner, R. B., et al. (2005). US Patent 872(6):330.Google Scholar
Viculis, L. M., Mack, J. J., O. M. Mayer, et al. (2005). Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Material Chemistry 15, 974978. doi: 10.1039/B413029D.CrossRefGoogle Scholar
Lu, W., Soukiassian, P., and Boecki, J. (2012). Graphene: Fundamentals and functionalialities. MRS Bulletin (December), 37.CrossRefGoogle Scholar
Muhopadhyay, P. and Gupta, R. K. (Eds.) (2013). Graphite, Graphene and Their Polymer Nanocomposites. Boca Raton, FL: CRC Press.Google Scholar
Jang, B. Z., Zhamu, A., and Song, L. (2006). US Patent Application No. 11/324,370 (January 4).Google Scholar
Song, L., Guo, J., Zhamu, A., et al. (2006). US Patent Application No. 11/328,880 (January 11).Google Scholar
Sullivan, M. J. and Ladd, D. A. (2006). US Patent 7,156,756 (January 2, 2007) and No. 7,025,696 (April 11).Google Scholar
Jang, B. Z. (2007). US Patent 186(7):474.CrossRefGoogle Scholar
Szabo, T., Szeri, A., and Dekany, I. (2005). Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 43, 8794. doi: 10.1016/j.carbon.2004.08.025.CrossRefGoogle Scholar
Wang, X., Zhi, L., and Mullen, K. (2008). Transparent, conductive graphene electrodes for dyesensitized solar cells. Nano Letters 8(1), 323327. doi: 10.1021/nl072838r.CrossRefGoogle Scholar
Koo, J. H., Pinero, D., Hao, A., Lao, S. C., Johnson, B., et al. (2013). Methodology for assessment of the morphological and thermal characteristics of nanographene platelets, AIAA-2013-1584. Presented at the 54th AIAA/ASME/ASCE/AHS/ASC, SDM, Boston, MA, April 8–11.Google Scholar
Ávila, A. F. of Universidade Federal de Minas Gerais, Department of Mechanical Engineering, Belo Horizonte, Brazil ().Google Scholar
Ávila, A. F. (2009). Composite Laminates Performance Enhancement by Nanoparticles Dispersion: An Investigation on Hybrid Nanocomposite. In Composites Performance and Trends, Columbus, F. (Ed.). Hauppauge, NY: Nova Science Publishers.Google Scholar
Miller, S. G. (2008). Effects of Nanoparticle and Matrix Interface on Nanocomposite Properties. Ph.D. dissertation, University of Akron, Akron, OH.Google Scholar
Schmidt, H. K. of Rice University, Chemical and Biomolecular Engineering Dept., Houston, TX ().Google Scholar
XG Sciences, Inc. at East Lansing, MI (www.xgsciences.com).Google Scholar
Angstron Materials, LLC at Dayton, OH (www.angstronmaterials.com).Google Scholar
Skyspring Nanomaterials, Inc., Houston, TX (www.ssnano.com).Google Scholar
Cheap Tubes, Inc., Brattleboron, VT (www.cheaptubesinc.com).Google Scholar
R. Ruoff of Dept. of Mechanical Engineering, The University of Texas at Austin (). Abundant technical information can be found in Professor Ruoff’s website: www.bucky-central.me.utexas.edu. Professor Ruoff has moved to Ulsan National Institute of Science and Technology (UNIST), Ulsan, S. Korea.Google Scholar
Nacional de Grafite, Sao Paulo, Brazil (www.grafite.com).Google Scholar
Qiu, L. and Qu, B. (2011). Polymer/Layered Double Hydroxide Flame Retardant Nanocomposites. In Thermally Stable and Flame Retardant Polymer Nanocomposites, Mittal, V. (Ed.). Cambridge: Cambridge University Press, pp. 332359.Google Scholar
Matusinovic, Z., and Wilkie, C. A. (2012). Fire retardancy and morphology of layered double hydroxide nanocomposites: A review. Journal of Material Chemistry 22, 1870118704.CrossRefGoogle Scholar
Choudary, B. M., Bharathi, B., Reddy, C. V., Kantam, M. L., and Raghavan, K. V. (2001). The first example of catalytic n-oxidation of tertiary amines by tungstate-exchanged mg-al layered double hydroxide in water: a green protocol. Chemical Communications 18, 17361737.CrossRefGoogle Scholar
Choy, J. H., Kwak, S. Y., Jeong, Y. J., and Park, J. S. (2000). Inorganic layered double hydroxides as nonviral vectors. Angewandte Chemie International Edition 39, 40424045.Google ScholarPubMed
Desigaux, L., Ben Belkacem, M., Richard, P., Cellier, J., Leone, P., et al. (2006). Self-assembly and characterization of layered double hydroxide/DNA hybrids. Nano Letters 6, 199204.CrossRefGoogle ScholarPubMed
Lakraimi, M., Legrouri, A., Barroug, A., de Roy, A., and Besse, J. P. (1999). Removal of pesticides from water by anionic clays. Journal de Chimie Physique et de Physico-Chimie 96, 470478.CrossRefGoogle Scholar
Yan, D., Lu, J., Wei, M., Ma, J., Evans, D. G., and Duan, X. (2009). A combined study based on experiment and molecular dynamics: Perylene tetracarboxylate intercalated in a layered double hydroxide matrix. Physical Chemistry Chemical Physics 11, 920929.CrossRefGoogle Scholar
Tian, Y., Wang, G., Li, F., and Evans, D. G. (2007). Synthesis and thermo-optical stability of methyl red-intercalated Ni-Fe layered double hydroxide material. Materials Letters 61, 16621666.Google Scholar
Lukashin, A. V., Vertegel, A. A., Eliseev, A. A., Nikiforov, M. P., Gornert, P., and Tretyakov, Y. D. (2003). Chemical design of magnetic nanocomposites based on layered double hydroxides. Journal of Nanoparticle Research 5, 455464.CrossRefGoogle Scholar
Mohan, D. and Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents: A critical review. Journal of Hazardous Materials 142, 153.CrossRefGoogle ScholarPubMed
Tibbetts, G. G. (1984). Why are carbon filaments tubular? Journal of Crystal Growth 66, 632638.CrossRefGoogle Scholar
Lake, M. L. and Ting, J.-M., (1999). Vapor Grown Carbon Fiber Composites. In Carbon Materials for Advanced Technologies, Burchell, T. D. (Ed.). Oxford: Pergamon, pp. 139-167.Google Scholar
Tibbetts, G. G., Finegan, J. C., McHugh, J. J., Ting, J.-M., Glasgow, D. G., and Lake, M. L. (2000). Applications Research on Vapor-Grown Carbon Fibers. In Science and Application of Nanotubes, Tomanek, E. and Enbody, R. J. (Eds.). New York: Kluwer Academic/Plenum Publishers, pp. 35-51.Google Scholar
Maruyama, B. and Alam, K. (2002). Carbon nanotubes and nanofibers in composite materials. SAMPE Journal 38(3), 5970.Google Scholar
Glasgow, D. G., Tibbetts, G. G., Matuszewski, M. J., Walters, K. R., and Lake, M. L. (2004). Surface Treatment of Carbon Nanofibers for Improved Composite Mechanical Properties. Proc. SAMPE 2004 Int’l Symposium, SAMPE, Covina, CA.Google Scholar
Tibbetts, G. G., Lake, M. L., Strong, K. L., and Rice, B. P. (2007). A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Computer Science and Technology 67(7–8), 17091718.CrossRefGoogle Scholar
Terrones, M. (2003). Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes. Annual Review of Materials Research 33, 419501. doi: 10.1146/annurev.matsci.33.012802.100255.CrossRefGoogle Scholar
Harris, P. J. F. (1999). Carbon Nanotubes and Related Structures, New Materials for the Twenty-First Century. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Tanaka, K., Yamabe, T., and Fukui, K. (1999). The Science and Technology of Carbon Nanotubes. Amsterdam: Elsevier.Google Scholar
Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (1998). Physical Properties of Carbon Nanotubes. London: Imperial College Press.CrossRefGoogle Scholar
Dai, L. (Ed.) (2006). Carbon Nanotechnology. Amsterdam: Elsevier.Google Scholar
Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C. (1996). Science of Fullerenes and Carbon Nanotubes. San Diego, CA: Academic Press.Google Scholar
Ebbesen, T. W. (1994). Carbon Nanotubes. Annual Review of Materials Science 24, 235264. doi: 10.1146/annurev.ms.24.080194.001315.CrossRefGoogle Scholar
Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E. (1995). Catalytic growth of single-walled nanotubes by laser vaporization. Journal Physics Letters 243, 4954. doi: 10.1016/0009-2614(95)00825-O.Google Scholar
Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and Kroto, H. W. (1993). The production and structure of pyrolytic carbon nanotubes. Journal Physics and Chemistry of Solids 54, 18411848.CrossRefGoogle Scholar
Groning, O., Kuttel, O. M., Emmenegger, C., Groning, P., and Schlapbach, L. (1999). Field Emission Properties of Carbon Nanotubes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures B18, 665678. doi: 10.1116/1.591258.Google Scholar
Hsu, W. K., Hare, J. P., Terrones, M., Kroto, H. W., Walton, D. R. M., and Harris, P. J. F. (1995). Condensed-phase nanotubes. Nature 377, 687.CrossRefGoogle Scholar
Hsu, W. K., Terrones, M., Hare, J. P., Terrones, H., Kroto, H. W., and Walton, D. R. W. (1996). Electrolytic formation of carbon nanostructures. Chemical Physics Letters 262, 161166.CrossRefGoogle Scholar
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354, 5658. doi: 10.1038/354056a0.CrossRefGoogle Scholar
Iijima, S. and Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603605. doi: 10.1038/363603a0.CrossRefGoogle Scholar
Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., et al. (1993). The discovery of single-wall carbon nanotubes at IBM. Nature 363, 605607.CrossRefGoogle Scholar
Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., et al. (1996). Crystalline ropes of metallic carbon nanotubes. Science 273, 483487. doi: 10.1126/science.273.5274.483.CrossRefGoogle Scholar
Ajayan, P. M., Stephan, O., Colliex, C., and Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 12121214. doi: 10.1126/science.265.5176.1212.CrossRefGoogle Scholar
Kim, P., Shi, L., Majumdar, A., and McEuen, P. L. (2001). Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters 87(21), 215502(4pp).CrossRefGoogle Scholar
Cao, G. (2004). Nanostructures & Nanomaterials: Synthesis, Properties & Applications. London: Imperial College Press.CrossRefGoogle Scholar
Smith, K. (2005). Carbon Nanotechnologies, Inc., Houston, TX, personal communication, June.Google Scholar
Nanocyl, Sambreville, Belgium, Nanocyl™ SWNT, DWNT, MWNT (www.nanocly.com).Google Scholar
Bayer MaterialScience, Leverkusen, Germany, Baytubes® MWNT (www.baytubes.com).Google Scholar
Arkema, Lacq, France, Graphistrength® MWNT (www.graphistength.com).Google Scholar
Du, M., Guo, B., and Jia, D. (2010). Newly emerging applications of halloysite nanotubes: a review. Polymer International 59, 574582. doi:10.1002/pi.275.CrossRefGoogle Scholar
Liu, M, Jia, Z., Jia, D, and Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science 39(8), 1498-1525. doi: 10.1016/j.progpolymsci.2014.04.004.CrossRefGoogle Scholar
Yuan, P., Tan, D., and Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science 112113, 7593. doi: 10.1016/j.clay.2015.05.001.CrossRefGoogle Scholar
Zhang, Y., Tang, A., Yang, H., and Quyang, J. (2016). Applications and interfaces of halloysite nanocomposites. Applied Clay Science 119, 817. doi: 10.1016/j.clay.2015.06.034.CrossRefGoogle Scholar
Berthier, P. (1826). Analyse de l’halloysite. Annales de Chimie et de Physique 32, 332325.Google Scholar
Prudencio, M. I., Braga, M. A. S., Paquet, H., Waerenborgh, J. C., Pereira, L. C. J., and Gouveia, M. A. (2002). Clay mineral as severages in weathered basalt profiles from central and southern Portugal: Climate. Catena 49(1), 7789. doi: 10.1016/S0341-8162(02)00018-8.CrossRefGoogle Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., and Delvaux, B. (2005). Halloysite clay minerals-a review. Clay Minerals 40, 383-426.CrossRefGoogle Scholar
Nakagaki, S. and Wypych, F. (2007). Nanofibrous and nanotubular supports for the immobilization of metalloporphyrins as oxidation catalysts. Journal of Colloid and Interface Science 315(1), 142157.CrossRefGoogle Scholar
Wilson, I. R. (2004). Kaolin and halloysite deposits of China. Clay Minerals 39(1), 115.CrossRefGoogle Scholar
Perruchot, A., Dupuis, C., Brouard, E., Nicaise, D., and Ertus, R. (1997). L’halloysite Kartstique: Comparaison des Gisements Types de Wallonie (Belgique) et du Perigord (France). Clay Minerals 32(2), 271287. doi: 10.1180/claymin.1997.032.2.08.CrossRefGoogle Scholar
Kloprogge, J. T. and Frost, R. L. (1999). Raman microprobe spectroscopy of hydrated halloysite from Neogene Cryptokarst from Southern Belgium. Journal of Raman Spectroscopy 30, 10791085.3.0.CO;2-G>CrossRefGoogle Scholar
Churchman, G. J. and Theng, B. K. G. (2002). Clay research in Australia and New Zealand. Applied Clay Science 20(4-5), 153156.Google Scholar
Kautz, C. Q. and Ryan, P. C. (2003). The 10 Å and 7 Å halloysite transition in a tropical soil sequence, Costa Rica. Clays and Clay Minerals 51(3), 252263. doi: 10.1346/CCMN.2003.0510302.CrossRefGoogle Scholar
Hillier, S. and Ryan, P. C. (2002). Identification of halloysite (7 Å) by ethylene glycol solvation: the ‘MacEwan effect.’ Clay Minerals 37, 487496. doi: 10.1180/0009855023730047.CrossRefGoogle Scholar
Du, M. L., Guo, B. C., Cai, X. J., Jia, Z. X., Liu, M. X., and Jia, D. M. (2008). Morphology and properties of halloysite nanotubes reinforced polypropylene nanocomposites. e-Polymers 130, 114.Google Scholar
Ye, Y. P., Chen, H. B., Wu, J. S., and Ye, L. (2007). High strength epoxy nanocomposites with natural nanotubes. Polymer 48, 64266433.CrossRefGoogle Scholar
Liu, M. X., Guo, B. C., Du, M. L., Cai, X. J., and Jia, D. M. (2007). Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18, 455703 (9pp).CrossRefGoogle Scholar
Imai, T., Naitoh, Y., Yamamoto, T., and Ohyanagi, M. (2006). Translucent nano mullite based ceramic fabricated by spark plasma. Journal of the Ceramic Society of Japan 114, 138140.CrossRefGoogle Scholar
Am Ceram Soc Bull (2007): 86, pp. A19.Google Scholar
Du, M. L., Guo, B. C., Liu, M. X., and Jia, D. M. (2006). Preparation and characterization of polypropylene grafted halloysite and their compatibility effect of polypropylene/halloysite. Polymer Journal. 38, 11981204. doi: 10.1295/polyj.PJ2006038.CrossRefGoogle Scholar
Ma, J., Xiang, P., Mai, Y. W., and Zhang, L. Q. (2004). A novel approach to high performance elastomer by using clay. Macromolecular Rapid Communication 25, 16921696.CrossRefGoogle Scholar
Guo, B. C., Lei, Y. D., Chen, F., Liu, X. L., Du, M. L., and Jia, D. M. (2008). Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid. Applied Surface Science: 255, 2715-2722. doi: 10.1016/j.apsusc.2008.07.188.CrossRefGoogle Scholar
Du, M. L., Guo, B. C., Lei, Y. D., Liu, M. X., and Jia, D. M. (2008). Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49(22), 48714876.CrossRefGoogle Scholar
Guo, B. C., Chen, F., Lei, Y. D., Zhou, W. Y., and Jia, D. M. (2010). Tubular clay composites with high strength and transparency. Journal of Macromolecular Science B: Physics 49, 111121.CrossRefGoogle Scholar
Liu, M. X., Guo, B. C., Du, M. L., Lei, Y. D., and Jia, D. M. (2008). Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research 15, 205212.CrossRefGoogle Scholar
Du, M. L., Guo, B. C., and Jia, D. M. (2006). Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). European Polymer Journal 42, 13621369. doi: 10.1016/j.eurpolymj.2005.12.006.CrossRefGoogle Scholar
Labour, T., Gauthier, C., Seguela, R., Vigier, G., Bomal, Y., and Orange, G. (2001). Influence of the β crystalline phase of the mechanical properties of unfilled and CaCO3-filled polypropylene. I. Structural and mechanical characterization. Polymer 42, 71277135.Google Scholar
Tordjeman, P., Robert, C., Marin, G., and Gerard, P. (2001). The effect of α, β crystalline structure on the mechanical properties of polypropylene. European Physics Journal E 4, 459465.CrossRefGoogle Scholar
Ning, N. Y., Yin, Q. J., Luo, F., Zhang, Q., Du, R., and Fu, Q. (2007). Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48, 73747384. doi: 10.1016/j.polymer.2007.10.005.CrossRefGoogle Scholar
Du, M. L., Guo, B. C., Wan, J. J., Zou, Q. L., and Jia, D. M. (2010). Effects of halloysite nanotubes on kinetics and activation energy of non-isotherm crystallization of polypropylene. Journal of Polymer Research 17, 109118.CrossRefGoogle Scholar
Nanostrand User Guide, Conductive Composites, Heber City, Utah (www.conductivecomposites.com).Google Scholar
Conductive Composites, Huber City, Utah, (www.conductivecomposites.com).Google Scholar
ANF Technology Ltd, Warlingham, Surrey, United Kingdom (www.nafen.eu).Google Scholar
Hybrid Plastics, Inc., Hattiesburg, Mississippi (www.hybridplastics.com).Google Scholar
Voronkov, M. G. and Vavrent’yev, V. I. (1982). Polyhedral oligosilsesquioxanes and their homo derivatives. Topics in Current Chemistry 102, 199236.CrossRefGoogle Scholar
Agaskar, P. A., Klemperer, W. G. (1995). The higher hydridospherosiloxanes: synthesis and structures of HnSinO1.5n (n=12, 14, 16, 18). Inorganica Chimica Acta 229, 355364.CrossRefGoogle Scholar
Baney, R. H., Itoh, M., Sakakibara, A., and Suzuki, T. (1995). Silsesquiosanes. Chemical Reviews 95(5), 14091430.CrossRefGoogle Scholar
Lichtenhan, J. D. (1995). Polyhedral oligomeric silsesquioxanes: Building blocks for silsesquioxane-based polymers and hybrid materials. Comments on Inorganic Chemistry 17(2), 115130. doi: 10.1080/02603599508035785.CrossRefGoogle Scholar
Lichtenhan, J. D., (1996). In Polymeric Materials Encyclopaedia, Salamore, J. C. (Ed.). Boca Raton, FL: CRC Press, pp. 77697778.Google Scholar
Li, G. Z., Wang, L. C., Ni, H. L., and Pittman, C. U. Jr.(2001). Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review. Journal of Inorganic and Organometallic Polymers 11(3), 123154. doi: 10.1023/A: 1015287910502CrossRefGoogle Scholar
Phillips, S. H., Haddad, T. S., and Tomczak, S. J. (2004). Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Current Opinion in Solid State & Materials Science 8, 2129. doi: 10.1016/j.cossms.2004.03.002.CrossRefGoogle Scholar
Sorathia, U., and Perez, I. (2004). Improving fire performance characteristics of composite materials for naval applications. Polymeric Materials: Science & Engineering 91, 292296.Google Scholar
Hartman-Thompson, C. (Ed.) (2011). Applications of Polyhedral Oligomeric Silsesquioxanes. New York: Springer.CrossRefGoogle Scholar
Technical Bulletin AEROSIL® No. 27, Degussa AG, D-63403 Hanau-Wolfgang, Germany, October 2001.Google Scholar
Technical Bulletin AEROSIL® No. 56, Degussa AG, D-63403 Hanau-Wolfgang, Germany, October 1990.Google Scholar
Technical Bulletin AEROSIL® Fumed Silica, Degussa AG, D-63403 Hanau-Wolfgang, Germany, September 2002.Google Scholar
Sprenger, S. and Pyrlik, M. (2004). Nanoparticles in Composites and Adhesives: Synergy with Elastomers. Proceedings of the 11th International Conference on Composites/Nano Engineering, Hilton Head Island, SC, August.Google Scholar
Yang, F., Yngard, R., and Nelson, G. L. (2005). Flammability of polymer-clay and polymer-silica nanocomposites. Journal of Fire Sciences 23, 209226.CrossRefGoogle Scholar
U.S. Patent Application, 20040147029 (July 29, 2004).Google Scholar
Cinquin, J., Bechtel, S., Schmidtke, K., and Meer, T. (2004). Polymer Nano-Composites of Aeronautic Applications: From Dream to Reality? Proceedings of the 11th International Conference on Composites/Nano Engineering, Hilton Head Island, SC, August.Google Scholar
Pool, A. D. and Hahn, H. T. (2003). A Nanocomposite for Improved Stereolithography. Proceedings of the 2003 SAMPE ISSE, SAMPE, Covina, CA.Google Scholar
Inorganic Specialty Chemicals-Alumina Nano-particles, Sasol NA, Houston, TX.Google Scholar
Disperal®/Dispal®-High purity dispersible alumina. Technical datasheet, Sasol NA, Germany.Google Scholar
Huang, H., Tian, M., Liu, L., Liang, W., and Zhang, L. (2006). Effect of particle size of flame retardancy of Mg (OH)2-filled ethylene vinyl acetate copolymer composites. Journal of Applied Polymer Science 100, 44614469.CrossRefGoogle Scholar
Chen, T. and Isarov, A. (2007). New Magnesium Hydroxides Enabling Low-Smoke Cable Compounds. 56th IWCS Conference, Pittsburg, PA, November.Google Scholar
Yong, V. and Hahn, H. T. (2004). Kevlar/Vinyl Ester Composites with SiC Nanoparticles. Proceedings of the 2004 SAMPE ISSE, SAMPE, Covina, CA.Google Scholar
Sakka, Y., Bidinger, D. D., and Aksay, I. A. (1995). Processing of silicon carbide-mullite-alumina nanocomposites. Journal of the American Ceramics Society 78(21), 479486.CrossRefGoogle Scholar
Padhi, P. and Sachikanta, K. (2011). A Novel Route for Development of Bulk Al/SiC Metal Matrix Nano Composites. Department of Mechanical Engineering, Konark Institute of Science & Technology, Bhubaneswar, India & Central Tool Room of Training Center, Bhubaneswar, India.Google Scholar
Kassiba, A. et al. (2007). Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites. Journal of Physics: Conference Series Volume 79, doi:10.1088/1742–6596/79/1/012002.Google Scholar
Oldenburg, S. J. (2005). Silver Nanoparticles: Properties and Applications. San Diego, CA: nanoComposix.Google Scholar
Wang, Z. L. (2004). Zinc oxide nanostructures: Growth, properties and applications. Journal of Physics: Condensed Matter 16, R829R858.Google Scholar
Fan, Z. and Lu, J. G. (2005). Zinc oxide nanostructures: Synthesis and properties. Journal of Nanoscience and Nanotechnology 5(10), 113.CrossRefGoogle ScholarPubMed
Ricker, A., Liu-Snyder, P., and Webster, T. J. (2008). The influence of nano MgO and BaSO4 particle size additives on properties of PMMA bone cement. International Journal of Nanomedicine 3(1), 125132.Google ScholarPubMed
Aninwene, G., Stout, D., Yang, Z., and Webster, T. J. (2013). Nano-BaSO4: a novel antimicrobial additive to pellethane. International Journal of Nanomedicine 8, 11971205.Google ScholarPubMed
Aninwene, G., Stout, D. A., Yang, Z., and Webster, T. J. (2013). Nano BaSO4: A Novel Means to Create Antimicrobial Radiopaque Thermoplastics. Proceedings of the 2013 AlChE Annual Meeting, November 3–8, San Francisco, CA.Google Scholar
Chanmal, C. V. and Jog, J. P. (2008). Dielectric relaxations in PVDF/BaTiO3 nanocomposites. Express Polymer Letters 2(3), 294301.CrossRefGoogle Scholar
Beltran, H., Maso, N., Cordoncillo, E., and West, A. R. (2007). Nanocomposite ceramics based on La-doped BaTi2O3 and BaTiO3 with high temperature-independent permittivity and low dielectric loss. Journal of Electroceramics 18(3–4), 277282.CrossRefGoogle Scholar
Singh, K. C. and Jiten, C. (2013). Production of BaTiO2, nanocrystalline powders by high energy milling and piezoelectric properties of corresponding ceramics. Key Engineering Materials 547, 133138.CrossRefGoogle Scholar
Chatterjee, A. and Mishra, S. (2013). Rheological, thermal, and mechanical properties of nano-calcium carbonate (CaCO3)/Poly(methyl methacrylate) (PMMC) core-shell nanoparticles reinforced polypropylene (PP) composites. Macromolecular Research 21(5), 474483.CrossRefGoogle Scholar
Shelesh-Nezhad, K., Orang, H., and Motallebi, M. (2012). The Effects of Adding Nano-Calcium Carbonate Particles on the Mechanical and Shrinkage Characteristics and Molding Process Consistency of PP/nano-CaCO3 Nanocomposites. In Polypropylene, F. Dogan (Ed.), pp. 357–368, ISBN: 978-953-51-0636-4, InTech (www.intechopen.com). doi: 10.5772/35272. Available from: http://www.intechopen.com/books/polypropylene/the-effects-of-adding-nano-calcium-carbonate-particles-on-the-mechanical-and-shrinkage-character.Google Scholar
Sato, T. and Beaudoin, J. J. (2011). Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Advances in Cement Research 23(1), 3343.CrossRefGoogle Scholar
Hu, C., Mou, Z., Lu, G., Chen, N., Dong, Z., et al. (2013). 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Physical Chemistry Chemical Physics 15, 1303813043.CrossRefGoogle ScholarPubMed
Gu, H., Huang, Y., Zhang, X., Wang, Q., Zhu, J., et al. (2012). Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectric properties. Polymer 53, 801809.CrossRefGoogle Scholar
Kalantari, K., Ahmad, M. B., Shemeli, K., and Khandanlou, R. K. (2013). Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method. International Journal of Nanomedicine 8, 18171823.Google ScholarPubMed
Mahapatra, A., Mishra, B. G., and Hota, G. (2013). Electrospun Fe2O3-Al2O3 nanocomposite fibers as efficient absorbent for removal of heavy metal ions from aqueous solution. Journal of Hazard Materials 258–259, 116123.CrossRefGoogle Scholar
Ortega, D., Garitaonandia, J. S., Barrera-Solano, C., Ramirez-del-Solar, M., Blanco, E., and Dominguez, M. (2006). γ-Fe2O3/SiO2 nanocomposites for magneto-optical applications: Nanostructural and magnetic properties. Journal of Non-Crystalline Solids 352, 28012810.CrossRefGoogle Scholar
Menon, L., Patibandla, S., Bhargava Ram, K., Shkuratov, S. I., Aurongzeb, D., et al. (2004). Ignition studies of Al/Fe2O3 energetic nanocomposites. Applied Physics Letters 84(23), 47354737.CrossRefGoogle Scholar
Kidalov, S. V., Shakhov, F. M., and Vul, A. Y. (2007). Thermal conductivity of nanocomposites based on diamonds and nanodiamonds. Diamond and Related Materials 16(12), 20632066.CrossRefGoogle Scholar
Mochalin, V. N., Shenderova, O., Ho, D., and Gogotsi, Y. (2012). The properties and applications of nanodiamonds. Nature Nanotechnology 7, 1123. doi: 10.1038/nnao.2011.209.CrossRefGoogle Scholar
Neitzel, I. (2012). Nanodiamond-Polymer Composites, Ph.D. dissertation, Drexel University, Dept. of Materials Engineering, Philadelphia, PA.Google Scholar
Pugh-Thomas, D., Walsh, B. M., and Gupta, M. C. (2011). CdSe (ZnS) nanocomposite luminescent high temperature sensor. Nanotechnology 22(18), 185503 (7pp). doi:10.1088/0957-4484/22/18/185503.CrossRefGoogle ScholarPubMed
Pan, S. and Liu, Z. (2012). ZnS-Graphene nanocomposites: Synthesis, characterization and optical properties. Journal of Solid Chemistry 191, 5156.CrossRefGoogle Scholar
Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., and Manuspiya, H. (2012). Hybrid organic-inorganic of ZnS embedded PVP nanocomposite film for photoluminescent application. Computes Rendus Physique 13(9–10), 9941000.CrossRefGoogle Scholar
Patil, B. N. and Acharya, S. A. (2013). Preparation of ZnS-graphene nanocomposites and its photocatalytic behavior for dye degradation. Advanced Materials Letters (May 12). doi: 10.5185/amlett.2013.fdm.16.Google Scholar

References

American Chemical Council Plastics Statistics Data (2015). (www.americanchemistry.com).Google Scholar
Mills, N. J. (2005). Plastics – Microstructure and Engineering Application, 3rd Edition. Oxford: Elsevier.Google Scholar
Wright, R. E. (2002). Thermosets, Reinforced Plastics, and Composites. In Handbook of Plastics, Elastomers, and Composites, 4th Edition. New York: C. A. Harper, Ed., McGraw-Hill, pp. 109188.Google Scholar
Koo, J. H. (2006). Polymer Nanocomposites: Processing, Characterization, and Applications. New York: McGraw-Hill.Google Scholar
Floral, R. F. and Peters, S. T. (1989). Composite Structures and Technologies. Tutorial notes.Google Scholar
Margolis, J. M. (2002). Elastomeric Materials and Processes. In Handbook of Plastics, Elastomers, and Composites, 4th Edition. New York: C. A. Harper, Ed., McGraw-Hill, pp. 189228.Google Scholar
Baker, A-M. M. and Mead, J. (2002). Thermoplastics. In Handbook of Plastics, Elastomers, and Composites, 4th Edition. New York: C. A. Harper, Ed., McGraw-Hill, pp. 1108.Google Scholar
Callister, W. D. (2007). Materials Science and Engineering – An Introduction, 7th Edition. New York: John Wiley & Sons, pp. 567.Google Scholar
Ahluwalia, V. K. and Mishra, A. (2008). Polymer Science – a Textbook. Boca Raton, FL: CRC Press.Google Scholar
ASTM Standard D 638. “Standard Test Method for Tensile Properties of Plastics.”Google Scholar
Callister, W. D. (2007). Materials Science and Engineering – an Introduction, 7th Edition. New York: John Wiley & Sons, pp. 525–543.Google Scholar
Odegard, G. M. and Bandyopadhyay, A. (2011). Physical aging of epoxy polymers and their composites. Journal of Polymer Science Part B: Polymer Physics 49, 16951716.CrossRefGoogle Scholar
Fried, J. R. (2008). Polymers in Aerospace Applications. Shrewsbury, UK: Smithers Rapra Technology.Google Scholar
Mills, N. (2007). Polymer Foams Handbook. New York: Butterworth-Heinemann, p. 2.Google Scholar
Rousseau, I. A. (2008). Challenges of shape memory polymers: A review of the progress towards overcoming SMP’s limitations. Polymer Engineering and Science 48, 20752089.CrossRefGoogle Scholar

References

Pinnavaia, T. J. (1983). Intercalated clay catalysts. Science 220, 365371.CrossRefGoogle ScholarPubMed
Mehrotra, V. and Giannelis, E. P. (1990). Conducting molecular multilayers: intercalation of conjugated polymers in layered media. Materials Research Society Symposium Proceedings 171, 3944.CrossRefGoogle Scholar
Giannelis, E. P. (1992). A new strategy for synthesizing polymer-ceramic nanocomposites. Journal of Minerals 44, 2830.Google Scholar
Carter, L. W., Hendricks, J. G., and Bolley, D. S. (1950). United States Patent No. 2531396 (assigned to National Lead Co.).Google Scholar
Nahin, P. G. and Backlund, P. S. (1963). United States Patent No. 3084117 (assigned to Union Oil Co.).Google Scholar
Fujiwara, S. and Sakamoto, T. (1976). Japanese Kokai Patent Application No. 109998 (assigned to Unichika K.K., Japan).Google Scholar
Fukushima, Y. and Inagaki, S. (1987). Synthesis of an intercalated compound of montmorillonite and 6-polyamide. Journal of Inclusion Phenomena 5, 473482.CrossRefGoogle Scholar
Okada, A., Fukushima, Y., Kawasumi, M., Inagaki, S., Usuki, A., Sugiyama, S., Kuraunch, T., and Kamigaito, O. (1988). United States Patent No. 4739007 (assigned to Toyota Motor Co., Japan).Google Scholar
Kawasumi, M., Kohzaki, M., Kojima, Y., Okada, A., and Kamigaito, O. (1989). United States Patent No. 4810734 (assigned to Toyota Motor Co., Japan).Google Scholar
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukusima, Y., et al. (1993). Synthesis of nylon 6-clay hybrid. Journal of Material Research 8, 11791184.CrossRefGoogle Scholar
Ray, S. S. and Okamoto, M. (2003). Polymer/layered silicate nanocomposites: A review from preparation to processing. Progress in Polymer Science 28, 15391641.Google Scholar
Vaia, R. A., Ishii, H., and Giannelis, E. P. (1993). Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chemistry of Materials 5, 16941696.CrossRefGoogle Scholar
Vaia, R. A., Jandt, K. D., Kramer, E. J., and Giannelis, E. P. (1995). Kinetics of polymer melt intercalation. Macromolecules 28, 80808085.CrossRefGoogle Scholar
Vaia, R. A. and Giannelis, E. P. (1997). Lattice model of polymer melt intercalation in organically-modified layered silicates. Macromolecules 30, 79907999.CrossRefGoogle Scholar
Vaia, R. A. and Giannelis, E. P. (1997). Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules 30, 80008009.CrossRefGoogle Scholar
Dennis, H. R., Hunter, D. L., Chang, D., Kim, S., et al. (2001). Effect of melting processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42, 95139522.CrossRefGoogle Scholar
Cho, J. W. and Paul, D. R. (2001). Nylon 6 nanocomposites by melt compounding. Polymer 42, 10831094.CrossRefGoogle Scholar
Fornes, T. D., Yoon, P. J., Keskula, H, and Paul, D. R. (2001). Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer 42, 99299940.CrossRefGoogle Scholar
Fornes, T. D., Yoon, P. J., Hunter, D. L., Keskula, H., and Paul, D. R. (2002). Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 43, 59155933.CrossRefGoogle Scholar
Baraton, M. I. (2002). Synthesis, Fictionalization and Surface Treatment of Nanoparticles. Los Angeles, CA: American Science Publishers.Google Scholar
Brown, J. M., Curliss, D., and Vaia, R. A. (2000). Thermoset-layered silicate nanocomposites: Quaternary ammonium montmorillonite with primary diamine cured epoxies. Chemistry of Materials 12, 33763384.CrossRefGoogle Scholar
Gilman, J. W. (1999). Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Applied Clay Science 15, 3159.CrossRefGoogle Scholar
Vaia, R. A., Price, G., Ruth, P. N., Nguyen, H. T., and Lichtenhan, J. (1999). Polymer/layered silicate nanocomposites as high performance ablative materials. Applied Clay Science 15, 6792.CrossRefGoogle Scholar
Becker, O., Varley, R., and Simon, G. (2002). Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43, 43654373.CrossRefGoogle Scholar
Becker, O., Cheng, Y-B., Varley, R. J., and Simon, G. P. (2003). Layered Silicate nanocomposites based on various high-functionality epoxy resins: The influence of cure temperature on morphology, mechanical properties, and free volume. Macromolecules 36, 16161625.CrossRefGoogle Scholar
Lan, T. and Pinnavaia, J. T., (1994). Clay-reinforced epoxy nanocomposites. Chemistry of Materials 6, 22162219.CrossRefGoogle Scholar
Wang, K., Chen, L., Wu, J., Toh, M. L., He, C., and Yee, A. F. (2005). Epoxy nanocomposites with highly exfoliated clay: Mechanical properties and fracture mechanisms. Macromolecules 38, 788800.CrossRefGoogle Scholar
Bondioli, F., Cannillo, V., Fabbri, E., and Messori, M. (2005). Epoxy-silica nanocomposites: Preparation, experimental characterization, and modeling. Journal of Applied Polymer Science 97, 23822386.CrossRefGoogle Scholar
Carter, W. C., Langer, S. A., and Fuller, E. R. (1998). OOF Manual: Version 1.0. www.ctcms.nist.gov/oofGoogle Scholar
Barbero, E. J. (1998). Introduction to Composite Materials Design (Solution Manual). New York: Taylor & Francis.Google Scholar
Lewis, T. B. and Nielsen, L. E. (1970). Dynamic mechanical properties of particulate-filled composites. Journal of Applied Polymer Science 14, 14491471.CrossRefGoogle Scholar
Gao, S.-L. and Mader, E. (2002). Characterisation of interphase nanoscale property variations in glass fibre reinforced polypropylene and epoxy resin composites. Composites Part A 33, 559576.CrossRefGoogle Scholar
Wang, H., Bai, Y., Liu, S., Wu, J., and Wong, C. P. (2002). Combined effects of silica filler and its interface in epoxy resin. Acta Materialia 50, 43694377.CrossRefGoogle Scholar
Hoffmann, B., Dietrich, C., Thomann, R., Friedrich, C., and Mulhaupt, R. (2000). Morphology and rheology of polystyrene nanocomposites based upon organoclay. Macromolecular Rapid Communications 21, 5761.3.0.CO;2-E>CrossRefGoogle Scholar
Kawasumi, M., Hasegawa, N., Kato, M., Usuki, A., and Okada, A. (1997). Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules 30, 63336338.CrossRefGoogle Scholar
Reichert, P., Nitz, H., Klinke, S., Brahdsch, R., Thomann, R., and Mulhaupt, R. (2000). Poly(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification. Macromolecular Materials Engineering 275, 817.3.0.CO;2-6>CrossRefGoogle Scholar
Fasulo, P. D., Rodgers, W. R., Ottaviani, R. A., and Hunter, D. L. (2004). Extrusion processing of TPO nanocomposites. Polymer Engineering and Science 44, 10361045.CrossRefGoogle Scholar

References

Tomanek, E. and Enbody, R. J. (Eds.) (2000). Science and Application of Nanotubes. New York: Kluwer Academic/Plenum Publishers.Google Scholar
Pinnavaia, T. J. and Beall, G. W. (Eds.) (2000). Polymer-Clay Nanocomposites. New York: John Wiley & Sons.Google Scholar
Krishnamoorti, R. and Vaia, R. A. (Eds.) (2001). Polymer Nanocomposites: Synthesis, Characterization, and Modeling. ACS Symposium Series 804. Washington, DC: ACS.CrossRefGoogle Scholar
Wang, Z. L., Liu, Y., and Zhang, Z. (Eds.) (2003). Handbook of Nanophase and Nanostructured Materials, Vol. 4: Materials Systems and Applications (II). New York: Kluwer Academic/Plenum Publishers.Google Scholar
Cao, G. (2004). Nanostructures & Nanomaterials Synthesis, Properties & Applications. London: Imperial College Press.CrossRefGoogle Scholar
Di Ventra, M., Evoy, S., and Heflin, J. R. Jr. (Eds.) (2004). Introduction to Nanoscale Science and Technology. New York: Kluwer Academic Publishers.CrossRefGoogle Scholar
Schulz, M. J., Kelkar, A. D., and Sundaresan, M. J. (Eds.) (2006). Nanoengineering of Structural, Functional, and Smart Materials. Boca Raton, FL: CRC.Google Scholar
Alexandre, M. and Dubois, P. (2000). Polymer-layered silicate nanocomposites: preparation, properties, and uses of a new class of materials. Material Science Engineering R28, 163.Google Scholar
Sanchez, C., Julian, B., Belleville, P., and Popall, M. (2005). Applications of hybrid organic-inorganic nanocomposites. Journal of Material Chemistry 15, 35593592.CrossRefGoogle Scholar
Lerner, M. and Oriakhi, C. (1997). Handbook of Nanophase Materials. New York: Mekker Decker.Google Scholar
Lagaly, B. (1999). Introduction from clay mineral-powder interactions to clay mineral-polymer nanocomposites. Applied Clay Science 15, 19.Google Scholar
Greenland, D. J. (1963). Adsorption of polyvinylalcohols by montmorillonite. Journal of Colloidal Science 18, 647664.CrossRefGoogle Scholar
Ogata, N., Kawakage, S., and Orgihara, T. (1997). Poly (vinyl alcohol)-clay and poly (ethylene oxide)-clay blend prepared using water as solvent. Journal of Applied Polymer Science 66, 573581.3.0.CO;2-W>CrossRefGoogle Scholar
Parfitt, R. L. and Greenland, D. L. (1970). Absorption of poly(ethylene glycols) on montmorillonites. Clay Mineral 8, 305323.CrossRefGoogle Scholar
Zhao, X., Urano, K., and Ogasawara, S. (1989). Adsorption of polyethylene glycol from aqueous solutions on montmorillonite clays. Colloidal Polymer Science 267, 899906.CrossRefGoogle Scholar
Ruiz-Hitzky, E., Aranda, P., Casal, B., and Galvan, J. C. (1995). Nanocomposite materials with controlled ion mobility. Advanced Materials 7, 180184.CrossRefGoogle Scholar
Billingham, J., Breen, C., and Yarwood, J. (1997). Adsorption of polyamide, polyacrylic acid and polyethylene glycol on montmorillonite: An in situ study using ATR-FTIR. Vibrational Spectroscopy 14, 1934.CrossRefGoogle Scholar
Levy, R. and Francis, C. W. (1975). Interlayer adsorption of polyvinylpyrrolidone on montmorillonite. Journal of Colloid Interface Science 50, 442450.CrossRefGoogle Scholar
Wu, J. and Lerner, M. M. (1993). Structural, thermal, and electrically characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers. Chemistry of Materials 5, 835838.CrossRefGoogle Scholar
Harris, D. J., Bonagamba, T. J., and Schmidt-Rohr, K. (1999). Conformation of poly(ethylene oxide) intercalated in clay and MoS2 studied by two-dimensional double-quantum NMR. Macromolecules 32, 67186724.CrossRefGoogle Scholar
Yano, K., Usuki, A., Okada, A., Kurauchi, T., and Kamigaito, O. (1993). Synthesis and properties of polyimide-clay hybrid. Journal of Polymer Science Part A: Polymer Chemistry 31, 24932498.CrossRefGoogle Scholar
Yano, K., Usuki, A., and Okada, A. (1997). Synthesis and properties of polyimide-clay hybrid films. Journal of Polymer Science Part A: Polymer Chemistry 35, 22892294.3.0.CO;2-9>CrossRefGoogle Scholar
Shen, Z., Simon, G. P., and Cheng, Y. B. (2002). Comparison of solution intercalation and melt intercalation of polymer-clay nanocomposites. Polymer 43(15), 42514260.CrossRefGoogle Scholar
Chen, W. and Qu, B. (2003). Structural characteristics and thermal properties of Pe-G-Ma/Mgal-Ldh exfoliation nanocomposites synthesized by solution intercalation. Chemistry of Materials 15(16), 32083213.CrossRefGoogle Scholar
Vaia, R. A. and Giannelis, E. P. (1997). Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules 30, 80008009.CrossRefGoogle Scholar
Vaia, R. A., Ishii, H., and Giannelis, E. P. (1993). Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chemistry of Materials 5, 16941696.CrossRefGoogle Scholar
Dennis, H. R., Hunter, D. L., Chang, D., Kim, S., White, J. L., et al. (2001). Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42(23), 95139522.CrossRefGoogle Scholar
Burnside, S. D. and Giannelis, E. P. (1995). Synthesis and properties of new poly(dimethylsiloxane) nanocomposites. Chemistry of Materials 7, 15971600.CrossRefGoogle Scholar
Li, Y. and Shimizu, H. (2009). Toward a stretchable, elastic, and electrically conductive nanocomposite: Morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42(7), 25872593.CrossRefGoogle Scholar
Blanski, R., Koo, J. H., Ruth, P., Nguyen, N., Pittman, C., and Phillips, S. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation – Ablation Performance. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIA, Columbia, MD.Google Scholar
Koo, J. H., Marchant, D., Wissler, G., Ruth, P., Barker, S., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation – Processing, Microstructure, and Mechanical Properties. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIA, Columbia, MD.Google Scholar
Ruth, P., Blanski, R., and Koo, J. H. (2004). Preparation of Polymer Nanocomposites for Solid Rocket Motor Insulation. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIA, Columbia, MD.Google Scholar
Blanski, R., Koo, J. H., Ruth, P., Nguyen, N., Pittman, C., and Phillips, S. (2004). Ablation Characteristics of Nanostructured Materials for Solid Rocket Motor Insulation. Proceedings of the National Space & Missile Materials Symposium, Seattle, WA, June 21–25.Google Scholar
Koo, J. H., Marchant, D., Wissler, G., Ruth, P., Barker, S., et al. (2004). Processing and Characterization of Nanostructured Materials for Solid Rocket Motors. Proceedings of the National Space & Missile Materials Symposium, Seattle, WA, June 21–25.Google Scholar
Marchant, D., Koo, J. H., Blanski, R., Weber, E. H., Ruth, P., et al. (2004). Flammability and Thermophysical Characterization of Thermoplastic Elastomer Nanocomposites. ACS National Meeting, Fire & Polymers Symposium, Philadelphia, PA, August 22–26.Google Scholar
Gupta, S. K., Schwab, J. J., Lee, A., Gu, B. X., and Hsiao, B. S. (2002). POSS® Reinforced Fire Retarding EVE Resins. Proceedings of the SAMPE 2002 ISSE, SAMPE, Covina, CA, pp. 1517–1526.Google Scholar
Yasmin, A., Abot, J. L., and Daniel, I. M. (2003). Processing of clay/epoxy nanocomposites with a three-roll mill machine. Materials Research Society Symposium Proceedings, 740, 7580.Google Scholar
Rosca, I. D. and Hoa, S. V. (2009). Highly conductive multiwall carbon nanotube and epoxy composites produced by three-roll milling. Carbon 47(8), 19581968.CrossRefGoogle Scholar
Yasmin, A., Abot, J. L., and Daniel, I. M. (2003). Processing of clay/epoxy nanocomposites by shear mixing. Scripta Materialia 49(1), 8186.CrossRefGoogle Scholar
Seyhan, A. T., Tanoğlu, M., and Schulte, K. (2009). Tensile mechanical behavior and fracture toughness of MWCNT and DWCNT modified vinyl-ester/polyester hybrid nanocomposites produced by 3-roll milling. Materials Science and Engineering: A 523(1), 8592.CrossRefGoogle Scholar
Yuan, M., Johnson, B., Koo, J. H., and Bourell, D. (2014). Polyamide 11-MWNT nanocomposites: Thermal and electrical conductivity measurements. Journal of Composite Materials 48(15), 1833-1841.CrossRefGoogle Scholar
Lu, C., Krifa, M., and Koo, J. H. (2013). Conductive Poly(3,4 ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS)/Nickel Nanostrands Nanocomposites. Proceedings of the SAMPE 2013 ISSE, SAMPE, Covina, CA, May.Google Scholar
Hansen, N., Adams, D. O., and Fullwood, D. T. (2012). Quantitative methods for correlating dispersion and electrical conductivity in conductor-polymer nanostrand composites. Composites: Part A 43, 19391946.CrossRefGoogle Scholar
Lagaly, G. (1999). Introduction: From clay mineral-polymer interactions to clay mineral-polymer nanocomposites. Applied Clay Science 15, 19.Google Scholar
Eastman, M. P., Bain, E., Porter, T. L., Manygoats, K., Whitehorse, R., et al. (1999). The formation of poly(methyl-methacylate) on transition metal-exchanged hectorite. Applied Clay Science 15, 173185.CrossRefGoogle Scholar
Fukushima, Y., Okada, A., Kawasumi, M., Kurauchi, T., and Kamigaito, O. (1988). Swelling behavior of montmorillonite by poly-6-amide. Clay Mineral 23, 2734.CrossRefGoogle Scholar
Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., et al. (1993). Synthesis of nylon-6-clay hybrid. Journal of Material Research 8, 11791183.CrossRefGoogle Scholar
Usuki, A., Kawasumi, M., Kojima, Y., Okada, A., Kurauchi, T., and Kamigaito, O. (1993). Swelling behavior of montmorillonite cation exchanged for ω-amino acid by ε-caprolatam. Journal of Material Research 8, 11741178.CrossRefGoogle Scholar
Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., and Kamigaito, O. (1993). Synthesis of nylon-6-clay hybrid by montmorillonite intercalated with ε-caprolatam. Journal of Polymer Science Part A: Polymer Chemistry 31, 983986.CrossRefGoogle Scholar
Maneshi, A., Soares, J. B. P., and Simon, L. C.. (2011). An efficient in situ polymerization method for the production of polyethylene/clay nanocomposites: Effect of polymerization conditions on particle morphology. Macromolecular Chemistry and Physics 212(18), 2017–2028.CrossRefGoogle Scholar
Namazi, H., Mosadegh, M., and Dadkhah, A. (2009). New intercalated layer silicate nanocomposites based on synthesized starch-g-pcl prepared via solution intercalation and in situ polymerization methods: A comparative study. Carbohydrate Polymers 75(4), 665669.CrossRefGoogle Scholar
Messersmith, P. B. and Giannelis, E. P. (1994). Synthesis and characterization of layered silicate-epoxy nanocomposites. Chemistry of Materials 6, 17191725.CrossRefGoogle Scholar
Lan, T. and Pinnavaia, T. J. (1994). Clay-reinforced epoxy nanocomposites. Chemistry of Materials 6, 22162219.CrossRefGoogle Scholar
Lan, T., Kaviratna, P. D., and Pinnavaia, T. J. (1995). Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chemistry of Materials 7, 21442150.CrossRefGoogle Scholar
Lee, D. C. and Jang, L. W. (1996). Preparation and characterization of PMMA-clay hybrid composite by emulsion polymerization. Journal of Applied Polymer Science 62, 11171122.3.0.CO;2-P>CrossRefGoogle Scholar
Lee, D. C. and Jang, L. W. (1998). Characterization of epoxy-clay hybrid composite prepared by emulsion polymerization. Journal of Applied Polymer Science 68, 19972005.3.0.CO;2-P>CrossRefGoogle Scholar
Noh, M. W. and Lee, D. C. (1999). Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization. Polymer Bulletin 42, 619626.CrossRefGoogle Scholar
Zhang, K., Wu, W., Meng, H., Guo, K., and Chen, J. F. (2009). Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure. Powder Technology 190(3), 393400.CrossRefGoogle Scholar
Meneghetti, P. and Qutubuddin, S. (2006). Synthesis, thermal properties and applications of polymer-clay nanocomposites. Thermochimica Acta 442(1), 7477.CrossRefGoogle Scholar
Frohlich, J., Thomann, R., Gryshchuk, O., Karger-Kocsis, J., and Mulhaupt, R. (2004). High-performance epoxy hybrid nanocomposites containing organophilic layered silicates and compatibilized liquid rubber. Journal of Applied Polymer Science 92, 30883096.CrossRefGoogle Scholar
Koo, J. H., Stretz, H., Bray, A., Wootan, W., Mulich, S., et al. (2002). Phenolic-Clay Nanocomposites for Rocket Propulsion System. Proceedings of the SAMPE 2002 ISSE, SAMPE, Covina, CA.Google Scholar
Koo, J. H., Stretz, H., Bray, A., Weispfenning, J., Luo, Z. P., and Wootan, W. (2003). Nanocomposites Rocket Ablative Materials: Processing, Characterization, and Performance. Proceedings of the SAMPE 2003 ISSE, SAMPE, Covina, CA, pp. 1156–1170.Google Scholar
Koo, J. H., Chow, W. K., Stretz, H., Cheng, A. C-K., Bray, A., and Weispfenning, J., (2003). Flammability Properties of Polymer Nanostructured Materials. Proceedings of the SAMPE 2003 ISSE, SAMPE, Covina, CA, pp. 954–964.Google Scholar
Koo, J. H., Stretz, H., Weispfenning, J., Luo, Z. P., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Subscale Ablation Test. Proceedings of the SAMPE 2004 ISSE, SAMPE, Covina, CA.Google Scholar
Koo, J. H., Pittman, C. U., Jr., Liang, K., Cho, H., Pilato, L. A., et al. (2003). Nanomodified Carbon/Carbon Composites for Intermediate Temperature: Processing and Characterization. Proceedings of the SAMPE 2003 ISTC, SAMPE, Covina, CA.Google Scholar
Koo, J. H., Pilato, L. A., Winzek, P., Shivakumar, S., Pittman, C. U., Jr., and Luo, Z. P. (2004). Thermo-Oxidative Studies of Nanomodified Carbon/Carbon Composites. Proceedings of the SAMPE 2004 ISSE, SAMPE, Covina, CA.Google Scholar
Koo, J. H., Pilato, L. A., Wissler, G., Lee, A., Abusafieh, A., and Weispfenning, J., (2005). Epoxy Nanocomposites for Carbon Fiber Reinforced Polymer Matrix Composites. Proceedings of the SAMPE 2005 ISSE, SAMPE, Covina, CA.Google Scholar
Wang, G., Chen, X. Y., Huang, R., and Zhang, L. (2002). Nano-CaCO3/polypropylene composites made with ultra-high-speed mixer. Journal of Materials Science Letters 21(13), 985986.CrossRefGoogle Scholar
Zunjarrao, S. C., Sriraman, R., and Singh, R. P. (2006). Effect of processing parameters and clay volume fraction on the mechanical properties of epoxy-clay nanocomposites. Journal of Materials Science 41(8), 22192228.CrossRefGoogle Scholar
Halder, S., Ghosh, P. K., and Goyat, M. S. (2012). Influence of ultrasonic dual mode mixing on morphology and mechanical properties of ZrO2-epoxy nanocomposite. High Performance Polymers 24(4), 331341.CrossRefGoogle Scholar
Heidarian, M. and Shishesaz, M. R. (2012). Study on effect of duration of the ultrasonication process on solvent-free polyurethane/organoclay nanocomposite coatings: Structural characteristics and barrier performance analysis. Journal of Applied Polymer Science 126, 20352048.CrossRefGoogle Scholar
Zhang, K., Lim, J. Y., Choi, H. J., Lee, J. H., and Chio, W. J. (2013). Ultrasonically prepared polystyrene/multi-walled carbon nanotube nanocomposites. Journal of Materials Science 48, 30883096.CrossRefGoogle Scholar

References

Wang, Z. L. (Ed.) (2000). Characterization of Nanophase Materials. Weinheim, Germany: Wiley VCH, pp. 37–80.Google Scholar
Yan, N. and Wang, Z. L (Eds.) (2005). Handbook of Microscopy for Nanotechnology. Boston, MA: Kluwer Academic Publishers.Google Scholar
Wang, Z. L. (Ed.) (2000). Characterization of Nanophase Materials. Weinheim, Germany: Wiley VCH, pp. 13–36Google Scholar
Cao, G. (2004). Nanostructures and Nanomaterials: Synthesis. London: Properties & Applications, Imperial College Press, pp. 329–390.CrossRefGoogle Scholar
Hornyak, G. L., Tibbals, H. F., Dutta, J., and Moore, J. J. (2009). Introduction of Nanoscience & Nanotechnology. Baca Raton, FL: CRC Press, pp. 107–175.Google Scholar
Crewe, A. V. (1970). The current state of high resolution scanning electron microscopy. Quarterly Review of Biophysics 3(1), 137175.CrossRefGoogle ScholarPubMed
Buseck, P., Cowley, J. M., and Eyring, L. (Eds.) (1988). High Resolution Transmission Electron Microscopy and Associated Techniques. New York: Oxford University Press.Google Scholar
Browing, N. D., Chisholm, M. F., and Pennycook, S. J. (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143146.CrossRefGoogle Scholar
Hobbs, S. Y. and Watkins, V. H. (2000). Morphology Characterization by Microscopy Techniques. In Polymer Blends, vol. 1: Formulation. Paul, D. R. and Bucknall, C. B. (Eds.). New York: John Wiley & Sons, pp. 239289.Google Scholar
Koo, J. H., Stretz, H., Bray, A., Weispfenning, J., Luo, Z. P., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Processing, Microstructure, and Performance. AIAA-2004-1996 paper, 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, April 19–22.CrossRefGoogle Scholar
Guinier, A. and Fournet, G. (1955). Small-Angle Scattering of X-Rays. New York: Wiley.Google Scholar
Glatter, O. and Kratky, O. (1982). Small-Angle X-Ray Scattering. London: Academic Press.Google Scholar
Levine, A. (1991). Quantum Chemistry, 4th ed. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Jalili, N. and Laxminarayana, K. (2004). A review of atomic microscopy imaging systems: application to molecular metrology and biological sciences. Mechatronics 14, 907945.CrossRefGoogle Scholar
Nakajima, K., Wang, D., and Nishi, T. (2012). AFM Characterization of Polymer Nanocomposites. In Characterization Techniques for Polymer Nanocomposites, Mittal, V. (Ed.). Weinheim, Germany: Wiley-VCH, pp. 185228.CrossRefGoogle Scholar
Garea, S. A., and Iovu, H. (2012). Following the Nanocomposites Synthesis by Raman Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS). In Characterization Techniques for Polymer Nanocomposites, Mittal, V. (Ed.). Weinheim, Germany: Wiley-VCH, pp. 115142.CrossRefGoogle Scholar
Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 17–93.CrossRefGoogle Scholar
Lao, S. C., Koo, J. H., et al. (2010). Flame-retardant Polyamide 11 and 12 nanocomposites: Processing, morphology, and mechanical properties. Journal of Composite Materials 44(25), 29332951.CrossRefGoogle Scholar
Vaia, R. A., Teukolsky, R. K., and Giannelis, E. P. (1994). Interlayer structure and molecular environment of alkylammonium layered silicates. Chemistry of Materials 6(7), 10171033.CrossRefGoogle Scholar
Osman, M. A., Ploetze, M., and Skrabal, P. (2004). Structure and Properties of Alkylammonium Monolayers Self-Assembled on Montmorillonite Platelets. Journal Physical Chemistry B 108(8), 25802588.CrossRefGoogle Scholar
Eslami, H., Grmela, M., and Bousmina, M. (2009). A mesoscopic tube model of polymer/layered silicate nanocomposites. Rheological Acta 48(3), 317331.CrossRefGoogle Scholar
Eslami, H., Grmela, M., and Bousmina, M. (2009). Structure Build-Up at Rest in Polymer Nanocomposites: Flow Reversal Experiments. Journal of Polymers Science Part B 47(17), 17281741.CrossRefGoogle Scholar
Ray, S. S. (2006). Rheology of Polymer/Layered Silicate Nanocomposites. Journal of Industrial and Engineering Chemistry 12(6), 811842.Google Scholar
Song, M. and Jin, J. (2012). Characterization of Rheological Properties of Polymer Nanocomposites. In Characterization Techniques for Polymer Nanocomposites, Mittal, V. (Ed.). Weinheim, Germany: Wiley-VCH, pp. 251281.CrossRefGoogle Scholar
Krishnamoorti, R., Vaia, R. A., and Giannelis, E. P. (1996). Structure and dynamics of polymer-layered silicate nanocomposites. Chemistry of Materials 8(8), 17281734.CrossRefGoogle Scholar
Standard Test Method for Thermal Diffusivity by the Flash Method (ASTM E1461-11). American Society for Testing and Materials. Philadelphia, PA.Google Scholar
Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 94–116.CrossRefGoogle Scholar
Troitzsch, J. (Ed.) (2004). Plastics Flammability Handbook, 3rd edition. Cincinnati, OH: Hanser.CrossRefGoogle Scholar
Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 218–250.CrossRefGoogle Scholar
Babrauskas, V. (1996). The Cone Calorimeter. In Heat Release in Fires, Babrauskas, V. and Grayson, S. J. (Eds.). London: E & FN Spon, pp. 6191.Google Scholar
Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter (ASTM E1354). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Fire Tests – Reaction to Fire – Part 1: Rate of Heat Release from Building Products. ISO DOS 5660. International Organization for Standardization, Geneva, Switzerland.Google Scholar
Standard Test Method for Screening Test for Mass Loss and Ignitability of Materials (ASTM E2102). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry (ASTM D7309-11). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Standard Test Method for Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index) (ASTM D2863-12e1). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
UL 94, the Standard for Safety of Flammability of Plastic Materials for Parts in Devices and Appliances testing, Underwriters Laboratories, Northbrook, IL.Google Scholar
Standard Test Method for Surface Burning Characteristics of Building Materials (ASTM E84-13a). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Schmidt, D. L. and Schwartz, H. S. (1963). Evaluation methods for ablative plastics. SPE Transactions 3, 238–250.Google Scholar
Botton, B., Chazot, O, Carbonaro, M, Van Der Haegen, V, and Paris, S. (1999). The VKI Plasmatron characteristics and performance. DTIC Compilation Part Notice ADP010745. Rhode-Saint-Genese, Belgium, October.Google Scholar
Koo, J. H., Kneer, M., and Schneider, M., (1992). A cost-effective approach to evaluate high-temperature ablatives for military applications. Naval Engineers Journal 104, 166177.CrossRefGoogle Scholar
Miller, M. J., Koo, J. H., and Lin, S. (1993). Evaluation of Different Categories of Composites Ablative for Thermal Protection. AIAA-93–0839, 31st AIAA Aerospace Sciences Meeting, Reno, NV, January.Google Scholar
Cheung, F., Koo, J. H., et al. (1995). Prediction of Thermo-Mechanical Erosion of High-Temperature Ablatives in the SSRM Facility. AIAA-95–0254, 33rd Aerospace Sciences Meeting, Reno, NV, January.Google Scholar
VanMeter, M., Koo, J. H., et al. (1995). Mechanical Properties and Material Behavior of a Glass Silicone Polymer Composite. Proceedings of the 40th International SAMPE Symposium, Covina, CA, SAMPE, pp.1425–1434.Google Scholar
Koo, J. H. et al. (1998). Effect of Major Constituents on the Performance of Silicone Polymer Composites. Proceedings of the 30th International SAMPE Technical Conference, Covina, CA: SAMPE.Google Scholar
Koo, J. H. et al. (1999). Thermal Protection of a Class of Polymer Composites. Proceedings of the 44th International SAMPE Symposium. Covina, CA: SAMPE, pp.1431–1441.Google Scholar
Koo, J. H., Stretz, H., Weispfenning, J., Luo, Z., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Subscale Ablation Test. Proceedings International SAMPE 2004 Symposium on Disc [CD-ROM]. Covina, CA: SAMPE.Google Scholar
Koo, J. H., Stretz, H., Weispfenning, J., Luo, Z., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Processing, Microstructures, and Performance. AIAA-2004-1996, AIAA, Reston, VA, April.CrossRefGoogle Scholar
Koo, J. H., Pilato, L., and Wissler, G. (2007). Polymer nanostructured materials for propulsion systems. Journal of Spacecraft and Rockets 44(6), 12501262.CrossRefGoogle Scholar
Koo, J. H., Miller, M. J., Weispfenning, J., and Blackmon, C. (2011). Silicone polymer composite for thermal protection of naval launching system. Journal of Spacecraft and Rockets 48(6), 904919.CrossRefGoogle Scholar
Koo, J. H., Miller, M. J., Weispfenning, J., and Blackmon, C. (2011). Silicone polymer composites for thermal protection system: Fiber reinforcements and microstructures. Journal of Composite Materials 45(13), 13631380.CrossRefGoogle Scholar
Blanski, R., Koo, J. H., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation-Ablation Performance. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Koo, J. H., Marchant, D., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation–Processing, Microstructure, and Mechanical Properties. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Ruth, P., Blanski, R., and Koo, J. H.. (2004). Preparation of Polymer Nanostructured Materials for Solid Rocket Motor Insulation. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Natali, M, Monti, M., Kenny, J. M., and Torre, L. (2011). A nanostructured ablative bulk moulding compound: Development and characterization. Composites: Part A 42(9), 11971204.CrossRefGoogle Scholar
Pulci, G, Tirillo, J, Marra, F, Fossati, F, Bartuli, C, and Valente, T. (2010). Carbon-phenolic ablative materials for re-entry space vehicles: manufacturing and properties. Composites: Part A 41(10), 14831490.CrossRefGoogle Scholar
Allcorn, E, Robinson, S, Tschoepe, D, Koo, J. H., Natali, M. (2011). Development of an experimental apparatus for ablative nanocomposites testing. AIAA-20116050, 47th AIAA/ASME/SAE Joint Propulsion Conference, San Diego, CA, August 1–4.CrossRefGoogle Scholar
Gutierrez, L., Koo, J. H., et al. (2015). Design of Small-scale Ablative Testing Apparatus with Sample Position and Velocity Control. AIAA-2015-1584, AIAA SciTech 2015, Kissimmee, FL, January 5–9.CrossRefGoogle Scholar
Standard Test Method for Measuring Heat-Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter (ASTM E457-08). American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Lee, J. C. (2010). Characterization of Ablative Properties of Thermoplastic Polyurethane Elastomer Nanocomposites. Ph.D. dissertation, The University of Texas at Austin, Austin, TX, December.Google Scholar
Lee, J. C., Koo, J. H., and Ezekoye, O. A. (2011). Thermoplastic Polyurethane Elastomer Nanocomposite Ablatives: Characterization and Performance. AIAA-2011–6051, 47th AIAA/ASME/SAE Joint Propulsion Conference, San Diego, CA, August 1–4.CrossRefGoogle Scholar
Lee, J. C., Koo, J. H., et al. (2009). Thermoplastic Polyurethane Elastomer Nanocomposites: Density, Hardness, and Flammability Properties Correlations. AIAA-2009–5273, AIAA Joint Propulsion Conference, Denver, CO, August 2–5.CrossRefGoogle Scholar
Lee, J. C., Koo, J. H., et al. (2009). Heating Rate and Nanoparticle Loading Effects on Thermoplastic Polyurethane Elastomer Nanocomposite Kinetics. AIAA-2009–4096, AIAA Thermophysics Conference, San Antonio, TX, June 22–25.CrossRefGoogle Scholar
Allcorn, E., Natali, M., and Koo, J. H. (2011). Ablation Performance and Characterization of Thermoplastic Elastomer Nanocomposites. Proceedings of the SAMPE 2011 ISTC, Fort Worth, TX, October 17–20.Google Scholar
Allcorn, E. K., Natali, M., and Koo, J. H. (2013). Ablation performance and characterization of thermoplastic polyurethane elastomer nanocomposites. Composites: Part A 45, 109118.CrossRefGoogle Scholar
Wong, D., Koo, J. H., et al. (2013). Thermoplastic Polyurethane Elastomer Nanocomposites: Ablation and Charring Characteristics. Proceedings of the SAMPE 2013 ISSE, Long Beach, CA, May 6–9.Google Scholar
Wong, D., Pinero, D., Jaramillo, M., Koo, J. H., Ambuken, P., and Stretz, H. (2013). Ablation and Combustion Characteristics of Thermoplastic Polyurethane Nanocomposites. AIAA-2013–3862, 49th AIAA/ASEM/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 14–17.Google Scholar
Donskoy, A. (1996). Elastomeric heat shielding materials for internal surfaces of missile engines. International Journal of Polymer Materials 31(1), 215236.CrossRefGoogle Scholar
Solid Rocket Motor Internal Insulation, NASA Space Vehicle Design Criteria. NASA-SP-8093, 1976.Google Scholar
Bell, M. S. and Tam, W. (1992). ASRM Case Insulation Design and Development. NASA-CR-191947.Google Scholar
Bhuvaneswari, C. M., Kakade, S. D., Deuskar, V. D., Dange, A. B., and Gupta, M. (2008). Filled ethylene-propylene dieneterpolymer elastomer as thermal insulator for case-bonded solid rocket motors. Defence Science Journal 58(1), 94102.CrossRefGoogle Scholar
Bhuvaneswari, C. M., Sureshkumar, M. S., Kakade, S. D., and Gupta, M. (2006). Ethylene-propylene diene rubber as a futuristic elastomer for insulation of solid rocket motors. Defence Science Journal 56(3), 309320.CrossRefGoogle Scholar
Redondo, H., Atreya, M., Kan, M., and Koo, J. H.. (2010). Evaluation of Char Strength of Polymer Nanocomposites for Propulsion Systems. Proceedings of the SAMPE 2010 ISSE [CD-ROM]. Covina, CA, May.Google Scholar
Reshetnikov, S., Garashenko, A. N., and Strakhov, V. L. (2000). Experimental Investigation into Mechanical Destruction of Intumescent Chars. Polymers for Advanced Technologies 11, 392397.3.0.CO;2-K>CrossRefGoogle Scholar
Nguyen, H.. (2012). Air Force Research Laboratory, Edwards AFB, CA, private communication.Google Scholar
Jaramillo, M., Koo, J. H., Edd, A., and Wells, D. (2011). An Experimental Investigation of Char Strength of Polymer Nanocomposites for Propulsion Applications. Proceedings of the SAMPE 2011 ISTC [CD-ROM]. Covina, CA, October.Google Scholar
Jaramillo, M., Forinash, D., Wong, D., Natali, M., and Koo, J. H. (2013). An Investigation of Compressive and Shear Strength of Char from Polymer Nanocomposites for Propulsion Applications. AIAA-2013–3864, 49th AIAA/ASEM/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 14–17.CrossRefGoogle Scholar
Jaramillo, M., Koo, J. H., and Natali, M. (2014). Compressive char strength of polyurethane elastomer nanocomposites. Polymers for Advanced Technology 25(77), 742751.CrossRefGoogle Scholar
Forinash, D. M., Alter, R. J., Clatanoff, S. B., Newman, J. E., Jaramillo, M., and Koo, J. H.. (2012). Development of an Apparatus for Measuring the Shear Strength of Charred Ablatives. Proceedings of the SAMPE TECH 2012 [CD-ROM]. Covina, CA, October.Google Scholar
Natali, M., Koo, J. H., Allcorn, E., and Ezekoye, O. A.. (2013). In-situ Ablation Recession Sensor Based on Ultra-Miniature Thermocouples – Part A: 0.25mm Diameter Thermocouples. AIAA-2013–3660, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 15–17.Google Scholar
Natali, M., Koo, J. H., Allcorn, E., and Ezekoye, O. A. (2014). An in-situ ablation recession sensor for carbon/carbon ablatives based on commercial ultra-miniature thermocouples. Sensors and Actuators B: Chemical 196, 46–56.CrossRefGoogle Scholar
Yee, C., Ray, M., Tang, F., Wan, J., Koo, J. H., and Natali, M. (2013). In-situ Ablation Recession Sensor Based on Ultra-Miniature Thermocouples – Part B: 0.50mm Diameter Thermocouples. AIAA-2013–3659, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 15–17.Google Scholar
Yee, C., Ray, M., Tang, F., Wan, J., Koo, J. H., and Natali, M. (2014). In-situ ablation recession and thermal sensor based on ultra-fine thermocouples. Journal of Spacecraft and Rockets 51(6), 17891796.CrossRefGoogle Scholar
Lisco, B., Yao, E., Pinero, D., and Koo, J. H. (2014). In-situ Ablation Recession and Thermal Sensors for Low Density Ablators – Revisited. Proceedings of the CAMX 2014, Orlando, FL, October 13–16.Google Scholar
Cameron, S., Astley, A., Leggett, S., Sirgo, G., and Koo, J. H.. (2015). In-situ Ablation Recession and Thermal Sensor Based on Ultra-fine Thermocouples. Proceedings of the SAMPE 2015 ISTC, Baltimore, MD, May 18–21.Google Scholar
Koo, J. H., Natali, M., et al. (2015). A Versatile In-situ Ablation Recession and Thermal Sensor Adaptable for Different Ablatives. AIAA-2015-1122, AIAA SciTech 2015, Kissimmee, FL, January 5–9.CrossRefGoogle Scholar
Grantham, T., Koo, J. H., et al. (2015). Ablation, Thermal, and Morphological Properties of SiC Fibers Reinforced Glass Ceramic Matrix Composites. AIAA-2015-1581, AIAA SciTech 2015, Kissimmee, FL, January 5–9.Google Scholar
Koo, J. H. et al. (2015). A Versatile In-situ Ablation Recession and Thermal Sensor Based on Ultra-fine Gage Thermocouples for Ablative TPS Materials. Proceedings of the National Space & Missile Materials Symposium (NSMMS), Chantilly, VA, June 22–25.Google Scholar
ASTM D4935 – 10 Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. American Society for Testing and Materials, Philadelphia, PA.Google Scholar
Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons, pp. 157–175.CrossRefGoogle Scholar
Zhang, J. Z. (2009). Optical Properties and Spectroscopy of Nanomaterials. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
Shah, V. (2007). Handbook of Plastics Testing and Failure Analysis. Hoboken, NJ: Wiley & Sons.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×