Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-27T19:12:40.408Z Has data issue: false hasContentIssue false

7 - Mechanical Properties of Polymer Nanocomposites

from Part Two - Multifunctional Properties and Applications

Published online by Cambridge University Press:  27 January 2017

Joseph H. Koo
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kord, B. (2012). Studies on mechanical characterization and water resistance of glass fiber/thermoplastic polymer bionanocomposites. Journal of Applied Polymer Science 123(4), 23912396.CrossRefGoogle Scholar
Aouada, F. A., Luiz, H., and Longo, E. (2011). New strategies in the preparation of exfoliated thermoplastic starch-montmorillonite nanocomposites. Industrial Crops and Products 34(3), 15021508.CrossRefGoogle Scholar
Majdzadeh-Ardakani, K., Navarchian, A. H., and Sadeghi, F. (2010). Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydrate Polymers 79(3), 547554.CrossRefGoogle Scholar
Ritter, U., Scharff, P., Dmytrenk, O., Kulish, N., Prylutsky, Y., Grabovskiy, Y., et al. (2010). Strength improvement of iPP/MWCNT nanocomposites. Polymer Composites 31(1), 179184.CrossRefGoogle Scholar
Fernandez-d’Arlas, B., Khan, U., Rueda, L., Martin, L., Ramos, J. A., et al. (2012). Study of the mechanical, electrical and morphological properties of PU/MWCNT composites obtained by two different processing routes. Composites Science and Technology 72(2), 235242.CrossRefGoogle Scholar
Eswaraiah, V., Balasubramania, K., and Ramaprabh, S. (2011). Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. Journal of Materials Chemistry 21(34), 1262612628.CrossRefGoogle Scholar
Zhang, X., Chen, Y., Yu, J., and Guo, Z. (2011). Thermoplastic polyurethane/silica nanocomposite fibers by electrospinning. Journal of Polymer Science Part B 49(23), 16831689.CrossRefGoogle Scholar
Karbushev, V., Semakov, A., and Kulichikhin, V. (2011). Structure and mechanical properties of thermoplastics modified with nanodiamonds. Polymer Science Series A 53(9), 765774.CrossRefGoogle Scholar
Lach, R., Michler, G. H., and Grellman, W. (2010). Microstructure and indentation behaviour of polyhedral oligomeric silsesquioxanes modified thermoplastic polyurethane nanocomposites. Macromolecular Materials and Engineering 295(5), 484491.CrossRefGoogle Scholar
Liff, S. M., Kumar, N., and McKinley, G. H. (2007). High-performance elastomeric nanocomposites via solvent-exchange processing. Natural Materials 6(1), 7683.CrossRefGoogle ScholarPubMed
Chavarria, F. and Paul, D. R. (2006). Morphology and properties of thermoplastic polyurethane nanocomposites: Effect of organoclay structure. Polymer 47(22), 77607773.CrossRefGoogle Scholar
Mishra, A., Purkayastha, B. P. D., Roy, J. K., Aswal, V. K., and Maiti, P. (2010). Tunable properties of self-assembled polyurethane using two-dimensional nanoparticles: Potential nano-biohybrid. Macromolecules 43(23), 99289936.CrossRefGoogle Scholar
Puskas, J. E., Foreman-Orlowski, E. A., Lim, G. T., Porosky, S. E., Evancho-Chapman, M. M., et al. (2010). A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer. Biomaterials 31(9), 24772488.CrossRefGoogle ScholarPubMed
Chen, W., Tao, X., and Liu, Y. (2006). Carbon nanotube-reinforced polyurethane composite fibers. Composites Science and Technology 66(15), 30293034.CrossRefGoogle Scholar
Cantournet, S., Boyce, M. C., and Tsou, A. H. (2007). Micromechanics and macromechanics of carbon nanotube-enhanced elastomers. Journal of the Mechanics and Physics of Solids 55(6), 13211339.CrossRefGoogle Scholar
Li, Y., and Shimizu, H. (2007). High-shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer 48(8), 22032207.CrossRefGoogle Scholar
Liao, C. Z., and Tjong, S. C. (2010). Mechanical and fracture behaviors of elastomer-rich thermoplastic polyolefin/SiC nanocomposites. Journal of Nanomaterials 2010, article ID 327973, 9 pages.Google Scholar
Aso, O., Eguiazábal, J. I., and Nazábal, J. (2007). The influence of surface modification on the structure and properties of a nanosilica filled thermoplastic elastomer. Composites Science and Technology 67(13), 28542863.CrossRefGoogle Scholar
Zhou, R.-J. and Burkhart, T. (2011). Thermal and mechanical properties of poly(ether ester)-based thermoplastic elastomer composites filled with TiO nanoparticles. Journal of Materials Science 46(7), 22812287.CrossRefGoogle Scholar
Kinloch, A. J. and Taylor, A. C. (2006). The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites. Journal of Materials Science 41, 32713297.CrossRefGoogle Scholar
Gojny, F. H., et al. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology 65, 23002313.CrossRefGoogle Scholar
Zheng, Y., et al. (2006). Functionalized effect on carbon nanotube/epoxy nano-composites. Materials Science and Engineering A 435–436, 145149.Google Scholar
Rafiee, M. A. and Rafiee, J. (2009). Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12), 38843890.CrossRefGoogle ScholarPubMed
Blackman, B. R. K., et al. (2007). The fracture and fatigue behavior of nano-modified epoxy polymers. Journal of Materials Science 42, 70497051.CrossRefGoogle Scholar
Al-Turaif, H. A. (2010). Effect of nano TiO2 particle size on mechanical properties of cured epoxy resin. Organic Coatings 69, 241246.CrossRefGoogle Scholar
Cheema, T. A., et al. (2011). Fabrication of transparent polymer-matrix nanocomposites with enhanced mechanical properties from chemically modified ZrO2 nanoparticles. Journal of Materials Science 47, 26652674.CrossRefGoogle Scholar
Zeng, J. (2009). An Experimental Study on Tensile Properties of Cellulose Nanocrystal Reinforced Epoxy Nanocomposite Material. MS thesis. Oregon State University, Corvallis, OR.Google Scholar
Beheshty, M. H., Vafayan, M., and Poorabdollah, M. (2008). Low profile unsaturated polyester resin-clay nanocomposite properties. Polymer Composites 30(5), 629638.CrossRefGoogle Scholar
Irwin, P. C., Cao, Y., and Schadler, L. S. (2003). Thermal and mechanical properties of polyimide nanocomposites. 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 120–123.CrossRefGoogle Scholar
Chou, T.-W., Gao, L., Thostenson, E. T., Zhang, Z., and Byun, J.-H. (2010). An assessment of the science and technology of carbon nanotube-based fibers and composites. Composites Science and Technology 70, 119.CrossRefGoogle Scholar
Garcia, E. J., Wardle, B. L., and Hart, A. J. (2008). Joining prepreg composite interfaces with aligned carbon nanotubes. Composites: Part A 39(6), 10651070.CrossRefGoogle Scholar
Garcia, E. J., Wardle, B. L., Hart, A. J., and Yamamoto, N. (2008). Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown in situ. Composites Science and Technology 68, 20342041.CrossRefGoogle Scholar
Garcia, E. J., Hart, A. J., and Wardle, B. L. (2008). Long carbon nanotubes grown on the surface of fibers for hybrid composites. AIAA Journal 46(6), 14051412.CrossRefGoogle Scholar
Blanco, J., Garcia, E. J., Guzman, R., Villoria, D., and Wardle, B. L. (2009). Limiting mechanisms of mode I interlaminar toughening of composites reinforced with aligned carbon nanotubes. Journal of Composite Materials 43(8), 825841.CrossRefGoogle Scholar
Yamamoto, N., Hart, A. J., Garcia, E. J., Wicks, S. S., Duong, H. M., et al. (2009). High-yield growth and morphology control of aligned carbon nanotubes on ceramic fibers for multifunctional enhancement of structural composites. Carbon 47, 551560.CrossRefGoogle Scholar
Ray, M. C., Guzman de Villoria, R., and Wardle, B. L. (2009). Load transfer analysis in short carbon fibers with radially-aligned carbon nanotubes embedded in a polymer matrix. Journal of Advanced Materials 41(4), 8294.Google Scholar
Wicks, S. S., Guzman de Villoria, R., and Wardle, B. L. (2010). Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Composites Science and Technology 70, 2028.CrossRefGoogle Scholar
Lachman, N., Wiesel, E., Guzman de Villoria, R., Wardle, B. L., and Wagner, H. D. (2012). Interfacial load transfer in carbon nanotube/ceramic microfiber hybrid polymer composites. Composites Science and Technology 72, 14161422.CrossRefGoogle Scholar
Yamamoto, N., Garcia, E. J., Wardle, B. L., and Hart, A. J. (2008). Thermal and electrical properties of hybrid woven composites reinforced with aligned carbon nanotubes. Proceedings of the 49th AIAA Structures, Dynamics, and Materials Conference, Schaumburg, IL, April 7–10.CrossRefGoogle Scholar
Vaddiraju, S., Cebeci, H., Gleason, K. K., and Wardle, B. L. (2009). Hierachical multifunction composites by conformally coating aligned carbon nanotube arrays with conducting polymer. Applied Materials & Interfaces 1(11), 25652572.CrossRefGoogle Scholar
Marconnet, A. M., Yamamoto, H., Panzer, M. A., Wardle, B. L., and Goodson, K. E. (2011). Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5(6), 48184825.CrossRefGoogle ScholarPubMed
Bello, D. B., et al. (2009). Exposures to nanoscale particles and fibers during handling, processing, and machining of nanocomposites and nano-engineering composites reinforced with aligned carbon nanotubes. In 17th International Conference on Composite Materials (ICCM) proceedings, Edinburgh, Scotland, July 27–31.Google Scholar
Bello, D., Hart, A. J., Ahn, K., Hallock, M., Yamamoto, N., et al. (2008). Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon 46(6), 974977.CrossRefGoogle Scholar
Bello, D., Wardle, B. L., Yamamoto, N., Guzman de Villoria, R., Garcia, E. J., et al. (2009). Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. Journal of Nanoparticles Research 11(1), 231249.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×