Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-27T21:39:07.242Z Has data issue: false hasContentIssue false

11 - Electrical Properties of Polymer Nanocomposites

from Part Two - Multifunctional Properties and Applications

Published online by Cambridge University Press:  27 January 2017

Joseph H. Koo
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lew, C. Y. and Luizi, C. M. (2013). The Influence of Processing Conditions on the Electrical Properties of Polypropylene Nanocomposites Incorporating Multiwall Carbon Nanotube. Published on November 18 at http://www.nanocyl.com.Google Scholar
Krause, B., Pötschke, P., and Häußler, L. (2009). Influence of small scale melt mixing conditions on electrical resistivity of carbon nanotube-polyamide composites. Composites Science and Technology 69, 15051515.CrossRefGoogle Scholar
Pujari, S., Ramanathan, T., Kasimatis, K., Masuda, J. I., Andrews, R., et al. (2009). Preparation and characterization of multiwalled carbon nanotube dispersions in polypropylene: Melt mixing versus solid-state shear pulverization. Journal of Polymer Science Part B: Polymer Physic 47, 14261436.CrossRefGoogle Scholar
Villmow, T., Pötschke, P., Pegel, S., Häussler, L., and Kretzschmar, B. (2008). Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer 49, 35003509.CrossRefGoogle Scholar
Logakis, E., Pandis, C., Peoglos, V., Pissis, P., Pionteck, J. (2009). Electrical/dielectric properties and conduction mechanism in melt processed polyamide/multi-walled carbon nanotubes composites. Polymer 50, 51035111.CrossRefGoogle Scholar
Meincke, O., Kaempfer, D., Weickmann, H., Friedrich, C., Vathauer, M., and Warth, H. (2004). Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45, 739748.CrossRefGoogle Scholar
Socher, R., Krause, B., Boldt, R., Hermasch, S., Wursche, R., and Pötschke, P. (2011). Melt mixed nano composites of PA12 with MWNTs: Influence of MWNT and matrix properties on macrodispersion and electrical properties. Composites Science and Technology 71, 306314.CrossRefGoogle Scholar
Carneiro, O. S., Covas, J. A., Bernardo, C. A., Caldeira, G., Van Hattum, F. W. J., et al. (1998). Production and assessment of polycarbonate composites reinforced with vapour-grown carbon fibres. Composites Science and Technology 58, 401407.CrossRefGoogle Scholar
Tibbetts, G. G., Lake, M. L., Strong, K. L., and Rice, B. P. (2007). A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology 67, 17091718.CrossRefGoogle Scholar
Jimenez, G. A. and Jana, S. C. (2007). Oxidized carbon nanofiber/polymer composites prepared by chaotic mixing. Carbon 45, 20792091.CrossRefGoogle Scholar
Jimenez, G. A. and Jana, S. C. (2007). Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Composites Part A: Applied Science and Manufacturing 38, 983993.CrossRefGoogle Scholar
Kalaitzidou, K., Fukushima, H., and Drzal, L. T. (2007). A new compounding method for exfoliated graphite–polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Composites Science and Technology 67, 20452051.CrossRefGoogle Scholar
Li, Y. and Shimizu, H. (2008). Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of co-continuous and nanodispersion structures. Macromolecules 41, 53395344.CrossRefGoogle Scholar
Kilbride, B. E., Coleman, J. N., Fraysse, J., Fournet, P., Cadek, M., et al. (2002). Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. Journal of Applied Physics 92, 40244030.CrossRefGoogle Scholar
Wang, W.-P., Liu, Y., Li, X.-X., and You, Y.-Z. (2006). Synthesis and characteristics of poly(methyl methacrylate)/expanded graphite nanocomposites. Journal of Applied Polymer Science 100, 14271431.CrossRefGoogle Scholar
Goyal, R. K., Samant, S. D., Thakar, A. K., and Kadam, A. (2010). Electrical properties of polymer/expanded graphite nanocomposites with low percolation. Journal of Physics D-Applied Physics, 43 (36), 365404(7 pp.).CrossRefGoogle Scholar
Zheng, W. and Wong, S.-C. (2003). Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Composites Science and Technology 63, 225235.CrossRefGoogle Scholar
Pan, Y.-X., Yu, Z.-Z., Ou, Y.-C., and Hu, G.-H. (2000). A new process of fabricating electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization. Journal of Polymer Science Part B: Polymer Physics 38, 16261633.3.0.CO;2-R>CrossRefGoogle Scholar
Via, M. D., King, J. A., Keith, J. M., and Bogucki, G. R. (2012). Electrical conductivity modeling of carbon black/polycarbonate, carbon nanotube/polycarbonate, and exfoliated graphite nanoplatelet/polycarbonate composites. Journal of Applied Polymer Science 124, 182189.CrossRefGoogle Scholar
Zhang, S. M., Lin, H., Deng, H., Gao, X., Bilotti, E., et al. (2012). Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. eXPRESS Polymer Letters 6, 159168.CrossRefGoogle Scholar
Sun, Y., Bao, H.-D., Guo, Z.-X., and Yu, J. (2008). Modeling of the electrical percolation of mixed carbon fillers in polymer-based composites. Macromolecules 42, 459463.CrossRefGoogle Scholar
Puglia, D., Valentini, L., and Kenny, J. M. (2003). Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. Journal of Applied Polymer Science 88, 452458.CrossRefGoogle Scholar
Christodoulou, L. and Venables, J. D. (2006). Multifunctional material systems: The first generation. Journal of Materials 55, 3945.Google Scholar
Battisti, A., Skordos, A. A., and Partridge, I. K. (2010). Percolation threshold of carbon nanotubes filled unsaturated polyesters. Composites Science and Technology 70, 633637.CrossRefGoogle Scholar
Vera-Agullo, J., Glória-Pereira, A., Varela-Rizo, H., Gonzalez, J. L., and Martin-Gullon, I. (2009). Comparative study of the dispersion and functional properties of multiwall carbon nanotubes and helical-ribbon carbon nanofibers in polyester nanocomposites. Composites Science and Technology 69, 15211532.CrossRefGoogle Scholar
Martin, C. A., Sandler, J. K. W., Shaffer, M. S. P., Schwarz, M. K., Bauhofer, W., et al. (2004). Formation of percolating networks in multi-wall carbon nanotube–epoxy composites. Composites Science and Technology 64, 23092316.CrossRefGoogle Scholar
Thostenson, E. T., Ziaee, S., and Chou, T.-W. (2009). Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites. Composites Science and Technology 69, 801804.CrossRefGoogle Scholar
Sandler, J. K. W., Kirk, J. E., Kinloch, I. A., Shaffer, M. S. P., and Windle, A. H. (2003). Ultra-low electrical percolation threshold in carbon nanotube–epoxy composites. Polymer 44, 58935899.CrossRefGoogle Scholar
Gojny, F. H., Wichmann, M. H. G., Fiedler, B., Kinloch, I. A., Bauhofer, W., et al. (2006). Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47, 20362045.CrossRefGoogle Scholar
Moisala, A., Li, Q., Kinloch, I. A., and Windle, A. H. (2006). Thermal and electrical conductivity of single- and multi-walled carbon nanotube–epoxy composites. Composites Science and Technology 66, 12851288.CrossRefGoogle Scholar
Gojny, F. H., Wichmann, M. H. G.,Kopke, U., Fiedler, B., &Schulte (2004), K.. Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Composites Science and Technology 64, 23632371.CrossRefGoogle Scholar
Gojny, F. H., Wichmann, M. H. G.,Kopke, U., Fiedler, B., &Schulte, K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Composites Science and Technology 65, 23002313.CrossRefGoogle Scholar
Moniruzzaman, M. and Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules 39, 51945205.CrossRefGoogle Scholar
Lao (2013)., S. C. Multifunctional Cyanate Ester/MWNT Nanocomposites: Processing and Characterization. Ph.D. dissertation, The University of Texas at Austin, Austin, TX, Dec.Google Scholar
Liang, K., Li, G., Toghiani, H., Koo, J. H., Pittman, C. U. Jr., andDave, C. (2006). Cyanate ester/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: Synthesis and characterization. Chemistry of Materials 18(2), 301312.CrossRefGoogle Scholar
Cho, H. S., Liang, K., Chatterjee, S., andPittman, C. U. Jr. (2005). Synthesis, morphology, and viscoelastic properties of polyhedral oligomeric silsesquioxane nanocomposites with epoxy and cyanate ester matrices. Journal of Inorganic and Organometallic Polymers and Materials 15(4), 541553.CrossRefGoogle Scholar
Liang, K., Toghiani, H., Li, G., Pittman, C. U. Jr., and Dave, C. (2005). Synthesis, morphology, and viscoelastic properties of cyanate ester/polyhedral oligomeric silsesquioxane nanocomposites. Journal of Polymer Science, Part A: Polymer Chemistry 43(17), 38873898.CrossRefGoogle Scholar
Fundamentals of Electrostatic Discharge, Part One – An Introduction to ESD (2010), ESD Association, Rome, NY.Google Scholar
Hu, N., Masuda, Z., and Fukunaga, H. (2009). Carbon Nanotubes: New Research, Nova Science Publishers, Inc., New York, NY, pp. 175222.Google Scholar
Ma, P.-C., Siddiqui, N. A., Marom, G., andKim, J.-K. (2010). Dispersion and Functionalization of Carbon Nanotubes for Polymer-based Nanocomposites: A Review. Composites: Part A 41, 13451367.CrossRefGoogle Scholar
Smrutisikha, B. (2010). Experimental study of mechanical and electrical properties of carbon nanofiber/epoxy composites. Materials & Design 31, 24062413.Google Scholar
Ardanuy, M., Rodríguez-Perez, M. A., and Algaba, I. (2011). Electrical conductivity and mechanical properties of vapor-grown carbon nanofibers/trifunctional epoxy composites prepared by direct mixing. Composites Part B: Engineering 42, 675681.CrossRefGoogle Scholar
Cipriano, B. H., Kota, A. K., Gershon, A. L., Laskowski, C. J., Kashiwagi, T., et al. (2008). Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 49, 48464851.CrossRefGoogle Scholar
Knite, M., Teteris, V., Polyakov, B., and Erts, D. (2002). Electric and elastic properties of conductive polymeric nanocomposites on macro- and nanoscales. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 19, 1519.Google Scholar
Tkalya, E., Ghislandi, M., Alekseev, A., Koning, C., and Loos, J. (2010). Latex-based concept for the preparation of graphene-based polymer nanocomposites. Journal of Materials Chemistry 20, 30353039.CrossRefGoogle Scholar
Chen, G.-H., Wu, D.-J., Weng, W.-G., He, B., and Yan, W.-L. (2001). Preparation of polystyrene-graphite conducting nanocomposites via intercalation polymerization. Polymer International 50, 980985.CrossRefGoogle Scholar
Zhao, Y. F., Xiao, M., Wang, S. J., Ge, X. C., and Meng, Y. Z. (2007). Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Composites Science and Technology 67, 25282534.CrossRefGoogle Scholar
Kim, S. and Drzal, L. T. (2009). Comparison of exfoliated graphite nanoplatelets (xGnP) and CNTs for reinforcement of EVA nanocomposites fabricated by solution compounding method and three screw rotating systems. Journal of Adhesion Science and Technology 23, 16231638.CrossRefGoogle Scholar
Kalaitzidou, K., Fukushima, H., and Drzal, L. T. (2007). Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Composites: Part A 38, 16751682.CrossRefGoogle Scholar
Tlili, R., Boudenne, A., Cecen, V., Ibos, L., Krupa, I., and Candau, Y. (2010). Thermophysical and electrical properties of nanocomposites based on ethylene-vinylacetate copolymer (EVA) filled with expanded and unexpanded graphite. International Journal of Thermophysics 31, 936948.CrossRefGoogle Scholar
Sumfleth, J., Adroher, X., and Schulte, K. (2009). Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black. Journal of Materials Science 44, 32413247.CrossRefGoogle Scholar
Zhang, S. M., Lin, L., Deng, H., Gao, X., Bilotti, E., et al. (2012). Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions. Express Polymer Letters 6, 159168.CrossRefGoogle Scholar
Ma, P.-C., Liu, M.-Y., Zhang, H., Wang, S.-Q., Wang, R., et al. (2009). Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Applied Materials & Interfaces 1, 10901096.CrossRefGoogle ScholarPubMed
Karttunen, M., Ruuskanen, P., Pitkanen, V., and Albers, W. M., (2008). Electrically conductive metal polymer nanocomposites for electronics applications. Journal of Electronic Materials 37, 951954.CrossRefGoogle Scholar
Li, Y. J. and Shimizu, H. (2009). Toward a stretchable, elastic, and electrically conductive nanocomposite: Morphology and properties of poly[styrene-b-(ethylene-co-butylene)-b-styrene]/multiwalled carbon nanotube composites fabricated by high-shear processing. Macromolecules 42, 25872593.CrossRefGoogle Scholar
Koerner, H., Price, G., Pearce, N. A., Alexander, M., and Vaia, R. A. (2004). Remotely actuated polymer nanocomposites – stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nature Materials 3, 115120.CrossRefGoogle ScholarPubMed
Koerner, H., Liu, W. D., Alexander, M., Mirau, P., Dowty, H., and Vaia, R. A. (2005). Deformation-morphology correlations in electrically conductive carbon nanotube thermoplastic polyurethane nanocomposites. Polymer 46, 44054420.CrossRefGoogle Scholar
Sekitani, T., Noguchi, Y., Hata, K., Fukushima, T., Aida, T., and Someya, T. (2008). A rubberlike stretchable active matrix using elastic conductors. Science 321, 14681472.CrossRefGoogle ScholarPubMed
Chen, G.-X., Li, Y., and Shimizu, H. (2007). Ultrahigh-shear processing for the preparation of polymer/carbon nanotube composites. Carbon 45, 23342340.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×