Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-28T14:29:00.341Z Has data issue: false hasContentIssue false

10 - Ablation Properties of Polymer Nanocomposites

from Part Two - Multifunctional Properties and Applications

Published online by Cambridge University Press:  27 January 2017

Joseph H. Koo
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Koo, J. H., Ho, W. K., and Ezekoye, O. A. (2006). A Review of Numerical and Experimental Characterization of Thermal Protection Materials – Part I. Numerical Modeling, AIAA-2006-4936. Presented at the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Sacramento, CA, July 9–12.Google Scholar
Koo, J. H., Ho, W. K., Bruns, M., and Ezekoye, O. A. (2007). A Review of Numerical and Experimental Characterization of Thermal Protection Materials – Part II. Material Properties Characterization, AIAA-2007-2131. Presented at the 48th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, April 23–26.Google Scholar
Koo, J. H., Ho, W. K., Bruns, M., and Ezekoye, O. A. (2007). A Review of Numerical and Experimental Characterization of Thermal Protection Materials – Part III. Experimental Testing, AIAA-2007-5773. Presented at the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, July 8–11.CrossRefGoogle Scholar
Koo, J. H., Natali, M., Tate, J., and Allcorn, E. (2013). Polymer nanocomposites as advanced ablatives – a comprehensive review. International Journal of Energetic Materials and Chemical Propulsion 12(2), 119-162.CrossRefGoogle Scholar
Pinnavaia, T. J. and Beall, G. W. (Eds.) (2000). Polymer-Clay Nanocomposites. New York: Wiley & Sons.Google Scholar
Koo, J. H. (2006). Polymer Nanocomposites: Processing, Characterization, and Applications. New York: McGraw-Hill.Google Scholar
Morgan, A. B. and Wilkie, C. A. (Eds.) (2007). Flame Retardant Polymer Nanocomposites. Hoboken, NJ: Wiley & Sons.CrossRefGoogle Scholar
Gupta, R. A., Kennel, E., and Kim, K. J. (Eds.) (2010). Polymer Nanocomposites Handbook. Boca Raton, FL: CRC Press.Google Scholar
Mittal, V. (Ed.) (2010). Polymer Nanotube Nanocomposites: Synthesis, Properties, and Applications. Hoboken, NJ: Wiley & Sons.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2010). Optimization of Polymer Nanocomposites Properties. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2011). Thermally Stable and Flame Retardant Polymer Nanocomposites. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2012). Characterization Techniques for Polymer Nanocomposites. Weinhein, Germany: Wiley-VCH.CrossRefGoogle Scholar
Beall, G. W. and Powell, C. B. (2011). Polymer-Clay Nanocomposites. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Vaia, R. A., Price, G., Ruth, P. N., Nguyen, H. T., and Lichtenhan, J. L. (1999). Polymer/layer silicate nanocomposites as high performance ablative materials. Applied Clay Sciences 15, 6792.CrossRefGoogle Scholar
Laub, B. and Venkatathy, E. (2003). Thermal Protection System Technology and Facility Needs for Demanding Future Planetary Missions. Proceedings of the International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, Lisbon, Portugal.Google Scholar
Lombardi, M., Fino, P., Malicelli, G., and Montanaro, L. (2012). Exploring composites based on PPO blend as ablative thermal protection systems – Part I: The role of layered fillers. Composite Structures 94, 10671074.CrossRefGoogle Scholar
Lombardi, M., Fino, P., and Montanaro, L. (2014). Influence of ceramic particles features on the thermal behaviour of PPO-matrix composites. Science and Engineering of Composite Materials De Gruyter, 23-28, ISNN: 2191-0359.Google Scholar
Fino, P., Lombardi, M., Antonini, A., Malucelli, G., and Montanaro, L. (2012). Exploring composites based on PPO blend as ablative thermal protection systems – Part II: The role of equiaxial fillers. Composite Structures 94, 10601066.CrossRefGoogle Scholar
Lincoln, D. M., Vaia, R. A., Brown, J. M., and Benison Tolle, T. H. (2000). Revolutionary Nanocomposite Materials to Enable Space Systems. Proceedings of the 21st Century Aerospace Conference IEEE, Big Sky, MT, vol. 4, pp. 183–192.Google Scholar
Philip, S. H., Gonzales, R. I., Blanski, R. L., and Viers, B. D. (2002). Hybrid Inorganic/Organic Reactive Polymers for Severe Environment Protection. Proceedings of the 47th SAMPE ISSE, SAMPE, Covina, CA, May 12–16.Google Scholar
Yezzi, C. A. and Moore, B. B. (1986). Characterization of Kevlar/EPDM rubbers for use as rocket motor case insulators, AIAA-86-1489. Presented at the AIAA/ASME/SAE/ASEE 22nd Joint Propulsion Conference, Huntsville, AL, June 16-18.Google Scholar
Mathias, E. C. and Johnson, T. N., (1999). 20th JANNAF Rocket Nozzle Subcommittee Meeting, CPIA Pub. 694, pp. 237–266.Google Scholar
Koo, J. H., Polidan, J., et al. (2002). An Investigation of Polymer Nanocomposite Ablatives Characterization. Invited lecture at the 30th Annual Conference of the North American Thermal Analysis Society, Pittsburgh, PA, September 23–25.Google Scholar
Koo, J. H., Blanski, R., et al. (2003). Nanostructured Ablatives for Rocket Propulsion System–Recent Progress, AIAA-2003-1769. Presented at the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, April 7–10.Google Scholar
Koo, J. H. and Pilato, L. (2005). Polymer Nanostructured Materials for Propulsion Systems, AIAA-2005-3606. Presented at the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson, AZ, July 10–12.Google Scholar
Gao, G., Zhang, Z., Li, X., Meng, X. Q., Zheng, Y., and Jin, Z. (2010). Study on mechanical and ablative properties of EPDM/OMMT thermal insulating nanocomposites. Journal of Nanoscience and Nanotechnology 10, 70317035.CrossRefGoogle Scholar
ASTM E-285-80 (2008). Standard test method for oxy-acetylene ablation testing of thermal insulation materials. Annual Book of ASTM Standards.Google Scholar
Singh, S., Guchhait, P. K., Bandyopadhyay, G. G., and Chaki, T. K. (2013). Development of polyimide-nanosilica filled EPDM based light rocket motor insulator compound: Influence of polyimide-nanosilica loading on thermal, ablation, and mechanical properties. Composites: Part A 44, 815.CrossRefGoogle Scholar
Natali, M., Rallini, M., Puglia, D., Kenny, J., and Torre, L. (2013). EPDM based heat shielding materials for solid rocket motors: A comparative study of different fibrous reinforcements. Polymer Degradation and Stability 98, 21312139.CrossRefGoogle Scholar
Iqbal, N., Sagar, S., Khan, M. B., and Rafique, H. M. (2014). Elastomeric ablative nanocomposites used in hyperthermal environments. Polymer Engineering and Science 54, 255263.CrossRefGoogle Scholar
Khanlart, S. and Kokabi, M. (2010). Thermal stability, aging properties, and flame resistance of NR-based nanocomposites. Journal of Applied Polymer Science 119, 855862.CrossRefGoogle Scholar
Guan, Y., Zhang, L. X., Zhang, L. Q., and Lu, Y. L. (2011). Study on ablative properties and mechanisms of hydrogenated nitrile butadiene rubber (HNBR) composites containing different fillers. Polymer Degradation and Stability 96, 808817.CrossRefGoogle Scholar
Koo, J. H. (2006). Polymer Nanocomposites: Processing, Characterization, and Applications, New York: McGraw-Hill.Google Scholar
Koo, J. H., Pilato, L., and Wissler, G. (2007). Polymer nanostructured materials for propulsion systems. Journal of Spacecraft and Rockets 44(6), 12501262.CrossRefGoogle Scholar
Koo, J. H., Ezekoye, O. A., et al. (2009). Characterization of Polymer Nanocomposites for Solid Rocket Motor – Recent Progress. Proceedings of the SAMPE 2009 ISSE, SAMPE, Covina, CA.Google Scholar
Koo, J. H., et al. (2010). Flammability studies of a novel class of thermoplastic elastomer nanocomposites. Journal of Fire Sciences 28(1), 4985.CrossRefGoogle Scholar
Koo, J. H., Ezekoye, O. A., Lee, J. C., Ho, W. K., and Bruns, M. C. (2011). Rubber-Clay Nanocomposites Based on Thermoplastic Elastomers. In Rubber-Clay Nanocomposites, Galimberti, M. (Ed.). Hoboken, NJ: Wiley and Sons, pp. 489521.CrossRefGoogle Scholar
Ho, W. K., Koo, J. H., and Ezekoye, O. A. (2009). Kinetics and thermophysical properties of polymer nanocomposites for solid rocket motor insulation. Journal of Spacecraft and Rockets 46(3), 526544.CrossRefGoogle Scholar
Ho, W. K., Koo, J. H., and Ezekoye, O. A. (2010). Thermoplastic polyurethane elastomer nanocomposites: Morphology, thermophysical, and flammability properties. Journal of Nanomaterials 2010, Article ID 583234 (11pp). doi: 10.1155/2010/583234.Google Scholar
Bruns, M. C., Koo, J. H., and Ezekoye, O. A. (2009). Population-based models of thermoplastic degradation: Using optimization to determine model parameters. Polymers Degradation and Stability 94, 10131022.CrossRefGoogle Scholar
Lee, J. C., Koo, J. H., and Ezekoye, O. A. (2009). Flammability Studies of Thermoplastic Polyurethane Elastomer Nanocomposites, AIAA-2009-2544. Presented at the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Spring, CA, May 4–7.Google Scholar
Lee, J. C., Koo, J. H., Ezekoye, O. A., et al. (2009). Heating Rate and Nanoparticle Loading Effects on Thermoplastic Polyurethane Elastomer Nanocomposite Kinetics, AIAA-2009-4096. Presented at the AIAA Thermophysics Conference, San Antonio, TX, June 22–25.Google Scholar
Lee, J. C., Koo, J. H., and Ezekoye, O. A. (2009). Thermoplastic Polyurethane Elastomer Nanocomposites: Density, Hardness, and Flammability Properties Correlations, AIAA-2009-5273. Presented at the AIAA Joint Propulsion Conference, Denver, CO, August 2–5.Google Scholar
Lee, J. C. (2010). Characterization of Ablative Properties of Thermoplastic Polyurethane Elastomer Nanocomposites. Ph.D. Dissertation, The University of Texas at Austin, Department of Mechanical Engineering, Austin, TX.Google Scholar
Lee, J. C., Koo, J. H., and Ezekoye, O. A. (2011). Thermoplastic Polyurethane Elastomer Nanocomposite Ablatives: Characterization and Performance, AIAA-2011-6051. Presented at the 47th AIAA/ASME/SAE Joint Propulsion Conference, San Diego, CA, August 1–4.Google Scholar
Allcorn, E., Natali, M., and Koo, J. H. (2011). Ablation Performance and Characterization of Thermoplastic Elastomer Nanocomposites. Proceedings of the SAMPE 2011 ISTC, Fort Worth, TX, October 17–20.Google Scholar
Allcorn, E., Natali, M., and Koo, J. H. (2013). Ablation performance and characterization of thermoplastic elastomer nanocomposites. Composites: Part A 45, 109118.CrossRefGoogle Scholar
De Heer, W. A. (2004). Nanotubes and the pursuit of applications. Materials Research Society Bulletin 29(4), 281285.CrossRefGoogle Scholar
Bell, M. S. and Tam, W. (1992). ASRM Case Insulation Design and Development, NASA-CR-191947.Google Scholar
Bhuvaneswari, C. M., Kakade, S. D., Deuskar, V. D., Dange, A. B., and Gupta, M. (2008). Filled ethylene-propylene diene terpolymer elastomer as thermal insulator for case-bonded solid rocket motors. Defence Science Journal 58(1), 94102.CrossRefGoogle Scholar
Bhuvaneswari, C. M., Sureshkumar, M. S., Kakade, S. D., and Gupta, M. (2006). Ethylene-propylene diene rubber as a futuristic elastomer for insulation of solid rocket motors. Defence Science Journal 56(3), 309320.CrossRefGoogle Scholar
Jaramillo, M., Koo, J. H., Edd, A. E., and Wells, D. M. (2011). An Experimental Investigation of Char Strength of Polymer Nanocomposites for Propulsion Applications. Proceedings of the International SAMPE Technical Conference, Dallas, TX, October.Google Scholar
Moniruzzaman, M. and Winey, K. I. (2006). Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16), 51945205.CrossRefGoogle Scholar
George, J. J. and Bhowmick, A. K. (2008). Fabrication and properties of ethylene vinyl acetate-carbon nanofiber nanocomposites. Nanoscale Research Letters 3, 508515.CrossRefGoogle ScholarPubMed
Lee, S. H. et al. (2004). Thermal properties of maleated polyethylene/ layered silicates nanocomposites. International Journal of Thermophysics 25, 15851595.CrossRefGoogle Scholar
Schartel, B., Weib, A., Sturm, H., Kleemeier, M., Hartwig, A., et al. (2011). Layered silicate epoxy nanocomposites: Formation of the inorganic-carbonaceous fire protection layer. Polymers for Advanced Technologies 22(12), 1581-1592, doi: 10.1002/pat.1644.CrossRefGoogle Scholar
Natali, M., Monti, M., Puglia, D., Kenny, J. M., and Torre, L. (2011). Ablative properties of carbon black and MWNT/phenolic composites: A comparative study. Composites: Part A 43, 174182.CrossRefGoogle Scholar
Ambuken, P., Stretz, H., Koo, J. H., Lee, J., and Trejo, R. (2012). High Temperature Flammability and Mechanical Properties of Thermoplastic Polyurethane Nanocomposites. In Fire and Polymers VI: New Advances in Flame Retardant Chemistry and Science, A. Morgan and Wilkie, C. (Eds.). Washington, DC: ACS Books Series, pp. 344-360. doi: 10.1021/bk-2012-1118.ch023.Google Scholar
Yang, D., Zhang, W., Jiang, B. Z., and Guo, Y. (2013). Silicone rubber ablative composites improved with zirconium carbide or zirconia. Composites: Part A 44, 7077.CrossRefGoogle Scholar
Patton, R. D., Pittman, C. U., Jr., Wang, L., and Hill, J. R. (1999). Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites. Composites: Part A 30(9), 10811091.CrossRefGoogle Scholar
Patton, R. D., Pittman, C. U., Jr., Wang, L., and Hill, J. R. (1999). Vapor grown carbon fiber composites with epoxy and poly (phenylene fulfide) matrices. Composites: Part A 30, 10811091.CrossRefGoogle Scholar
Koo, J. H., Kneer, M., et al. (1992). A cost-effective approach to evaluate high-temperature ablatives for military applications. Naval Engineers Journal 104(3), 166177.CrossRefGoogle Scholar
Koo, J. H., Lin, S, et al. (1992). Performance of High-Temperature Polymer Composite Ablatives under a Hostile Environment. Science of Advanced Materials and Process Engineering Series, 37, SAMPE, Covina, CA, pp. 506–520.Google Scholar
Koo, J. H., Miller, M., et al. (1993). Evaluation of Fiber-Reinforced Composites Ablatives for Thermal Protection. Science of Advanced Materials and Process Engineering Series, 38, SAMPE, Covina, CA, pp. 1085–1098.Google Scholar
Cheung, F. B., Koo, J. H., et al. (1993). Modeling of one-dimensional thermo-mechanical erosion of high-temperature ablatives. Journal of Applied Mechanics 60, 10271032.Google Scholar
Wilson, D., Beckley, D., and Koo, J. H. (1994). Development of silicone matrix-based advanced composites for thermal protection. High Performance Polymer 6(2), 165181.CrossRefGoogle Scholar
Shih, Y. C., Cheung, F. B., and Koo, J. H. (2003). Numerical study of transient thermal ablation of high-temperature insulation materials. Journal of Thermophysics and Heat Transfer 17(1), 5361.CrossRefGoogle Scholar
Koo, J. H., Miller, M. J., Weispfenning, J., and Blackmon, C. (2011). Silicone polymer composites for thermal protection system: Fiber reinforcements and microstructures. Journal of Composite Materials 45(13), 13631380.CrossRefGoogle Scholar
Koo, J. H., Miller, M. J., Weispfenning, J., and Blackmon, C. (2011). Silicone polymer composite for thermal protection of naval launching system. Journal of Spacecraft and Rockets 48(6), 904919.CrossRefGoogle Scholar
Koo, J. H., Stretz, H., Bray, A., and Wootan, W. (2001). Next Generation Nanostructured Ablatives for Rocket Propulsion System, AFOSR Contract No. F49620-00-C-0045, STTR Phase I Final Report, Submitted to AFOSR, Arlington, VA, September.Google Scholar
Koo, J. H., Stretz, H., Bray, A., Wootan, W., Mulich, S., et al. (2002). Phenolic-clay nanocomposite for rocket propulsion systems. Proceedings of the 2002 SAMPE ISSE, 47, SAMPE, Covina, CA, pp. 10851099.Google Scholar
Koo, J. H., Stretz, H., and Bray, A. (2002). Nanocomposite Rocket Ablative Materials, AFOSR Contract No. F49620-00-C-0045, STTR Phase II Annual Report, Submitted AFOSR, Arlington, VA, September.Google Scholar
Koo, J. H., Stretz, H., Bray, A., Weispfenning, J., Luo, Z. P., and Wootan, W. (2003). Nanocomposites Rocket Ablative Materials: Processing, Characterization, and Performance. Proceedings of the 2003 SAMPE ISSE, 48, SAMPE, Covina, CA, pp. 1156–1170.Google Scholar
Koo, J. H., Stretz, H., Bray, A., Weispfenning, J., Luo, Z. P., and Wootan, W. (2004). Nanocomposite Rocket Ablative Materials: Processing, Microstructure, and Performance, AIAA-2004-1996. Presented at the 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Palms Springs, CA, April 19–22.CrossRefGoogle Scholar
Koo, J. H., Stretz, H., Weispfenning, J., Luo, Z. P., and Wootan, W. (2004). Nanocomposite rocket ablative materials: Subscale ablation test. Proceedings of the 2004 SAMPE ISSE, 49, SAMPE, Covina, CA, pp. 10001014.Google Scholar
Koo, J. H., Chow, W. K., Stretz, H., Cheng, A. C.-K., Bray, A., and Weispfenning, J. (2003). Flammability properties of polymer nanostructured materials. Proceedings of the 2003 SAMPE ISSE, 48, SAMPE, Covina, CA, pp. 954963.Google Scholar
Koo, J. H., Pilato, L., and Wissler, G. E. (2005). Polymer nanostructured materials for high-temperature applications. SAMPE Journal 41(2), 719.Google Scholar
Koo, J. H. and Pilato, L. A. (2006). Thermal Properties and Microstructures of Polymer Nanostructured Materials. In Nanoengineering of Structural, Functional, and Smart Materials, Schulz, M. J., Kelkar, A., and Sundaresan, M. J. (Eds.). Boca Raton, FL: CCR Press, pp. 409441.Google Scholar
Miller, M. J., Koo, J. H, et al. (1993). Evaluation of Different Categories of Composite Ablative for Thermal Protection, AIAA-93-0839. Presented at the 31st AIAA Aerospace Sciences Meeting, Reno, NV, January.Google Scholar
Cheung, F. B., Koo, J. H., et al. (1995). Prediction of Thermo-Mechanical Erosion of High-Temperature Ablatives in the SSRM Facility, AIAA-95-0254. Presented at the 33rd Aerospace Sciences Meeting, Reno, NV, January.Google Scholar
VanMeter, M., Koo, J. H., et al. (1995). Mechanical Properties and Material Behavior of a Glass Silicone Polymer Composite. Proceedings of the 40th International SAMPE Symposium, SAMPE, Covina, CA.Google Scholar
Koo, J. H., et al. (1998). Effect of Major Constituents on the Performance of Silicone Polymer Composites. Proceedings of the 30th International SAMPE Technical Conference, SAMPE, Covina, CA.Google Scholar
Koo, J. H., et al. (1999). Thermal Protection of a Class of Polymer Composites. Proceedings of the 44th International SAMPE Symposium, SAMPE, Covina, CA.Google Scholar
MX-4926 Technical Data Sheet, Cytec Engineered Materials, Winona, MN.Google Scholar
Luehmann, W., Pratt & Whitney Space Propulsion/Chemical Systems Division, San Jose, CA, personal communication.Google Scholar
SC-1008 Technical Data Sheet, Borden Chemical, Louisville, KY.Google Scholar
Koo, J. H., Pittman, C. U., Jr., Liang, K., Cho, H., Pilato, L. A., et al. (2003). Nanomodified carbon/carbon composites for intermediate temperature: processing and characterization. Proceedings of the International SAMPE Technical Conference 35, 521534.Google Scholar
Koo, J. H., Pilato, L. A., Pittman, C. U., and Winzek, P. (2004). Nanomodified Carbon/Carbon Composites for Intermediate Temperature, AFOSR Contract No. F49620-02-C-0086, STTR Phase I Final Report, submitted to AFOSR, Arlington, VA, January.Google Scholar
Koo, J. H., Pilato, L. A., Winzek, P., Shivakumar, K., Pittman, C. U., Jr., and Luo, Z. P. (2004). Thermo-oxidative studies of nanomodified carbon/carbon composites. Proceedings of the International SAMPE Symposium and Exhibition 49, 12141228.Google Scholar
Blanski, R., Koo, J. H., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation – Ablation Performance. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Koo, J. H., Marchant, D., et al. (2004). Polymer Nanostructured Materials for Solid Rocket Motor Insulation – Processing, Microstructure, and Mechanical Properties. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Ruth, P., Blanski, R., and Koo, J. H. (2004). Preparation of Polymer Nanostructured Materials for Solid Rocket Motor Insulation. Proceedings of the 52nd JANNAF Propulsion Meeting, CPIAC, Columbia, MD, May.Google Scholar
Koo, J. H., Pilato, L., et al. (2005). Epoxy Nanocomposites for Carbon Fiber-Reinforced Composites. Proceedings of the SAMPE 2005 International Symposium, SAMPE, Covina, CA, May 1–5.Google Scholar
Koo, J. H., Pilato, L., et al. (2005). Nanocomposites for Carbon Fiber-Reinforced Polymer Matrix Composites, AIAA-2005-1928. Presented at the 46th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Austin, TX, April 18–21.CrossRefGoogle Scholar
Koo, J. H., Pilato, L., et al. (2004). Nanocomposite for Carbon Fiber Reinforced Polymer Matrix Composites, AFOSR STTR Phase I Final Report, submitted to AFOSR, Arlington, VA, October.Google Scholar
Koo, J.H., Pilato, L., Wissler, G.E. and Luo, Z.P. (2005) Flammability and Mechanical Properties of Nylon 11 Nanocomposites, Proceedings of the International SAMPE 2005 Symposium and Exhibition (ISSE), SAMPE, Covina, CA, May.Google Scholar
Koo, J. H., Pilato, L. A., and Wissler, G. E. (2005). Fire Retardant Polymer Nanocomposites for Selective Laser Sintering Processing, submitted USPO patent application on July 27.Google Scholar
Cheng, J., Lao, S., Nguyen, K., Ho, W., Cummings, A., and Koo, J. H. (2005). SLS Processing of Nylon 11 Nanocomposites. Proceedings of the 17th Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, TX, August.Google Scholar
Koo, J. H., Pilato, L., et al. (2005). Innovative Selective Laser Sintering Rapid Manufacturing Using Nanotechnology. Proceedings of the 2005 Solid Freeform Fabrication Symposium, The University of Texas at Austin, Austin, TX, August.Google Scholar
Lao, S., Ho, W., Nguyen, K., Cheng, J., and Koo, J. H. (2005). Microstructural Analyses of Nylon 11 Nanocomposites. Proceedings of the 37th International SAMPE Technical Conference (ISTC), Seattle, WA, October 31 – November 3.Google Scholar
Cummings, A., Shi, L., and Koo, J. H. (2005). Thermal Conductivity Measurements of Nylon 11-Carbon Nanofiber Nanocomposites. Proceedings of the IMECE2005 (2005 ASME International Mechanical Engineering Congress and Exposition), Orlando, FL, November 5–11.CrossRefGoogle Scholar
Lao, S. C., Moon, T., Koo, J. H., et al. (2009). Flame-retardant polyamide 11 and 12 nanocomposites: Thermal and flammability properties. Journal of Composite Materials 43(17), 18031816.CrossRefGoogle Scholar
Lao, S. C., Koo, J. H., et al. (2010). Flame-retardant polyamide 11 and 12 nanocomposites: Processing, morphology, and mechanical properties. Journal of Composite Materials 44(25), 29332951.CrossRefGoogle Scholar
Lao, S. C., Koo, J. H., et al. (2011). Flame-retardant polyamide 11 nanocomposites: Further thermal and flammability studies, Journal of Fire Sciences 29(6), 479498.CrossRefGoogle Scholar
Bray, A., Beal, G., and Stretz, H. (2004). Nanocomposite Rocket Ablative Materials, AFOSR STTR Phase II Contract F49620-02-0013, Final Report, submitted to AFOSR, Arlington, VA.Google Scholar
Liu, Y., Lu, Z., Chen, X., Wang, D., Liu, J., and Hu, L. (2009). Study on phenolic-resin/carbon-fiber ablation composites modified with polyhedral oligomeric silsesquioxanes. Proceedings of the 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Shenzhen, China, January 5–8.Google Scholar
Laine, R. M. (2005). Nanobuilding blocks based on the [OSiO] (x=6, 8, 10) octasilsesquioxanes. Journal of Materials Chemistry 15, 37253744.CrossRefGoogle Scholar
Hu, L., Zhang, X., and Sun, Y. (2005). Hardness and elastic modulus profiles of hybrid coating. Journal of Sol-Gel Science and Technology 34, 4146.CrossRefGoogle Scholar
Tanaka, K., Adachi, S., and Chujo, Y. (2009). Structure-property relationship of octa-substituted POSS in thermal and mechanical reinforcements of conventional polymers. Journal of Polymer Science: Part A: Polymer Chemistry 47, 56905697.CrossRefGoogle Scholar
Franchini, E., Galy, J., Gèrard, J. F., Tabuani, D., and Medici, A. (2009). Influence of POSS structure on the fire retardant properties of epoxy hybrid networks. Polymer Degradation and Stability 94, 17281736.CrossRefGoogle Scholar
Yu, Q-C. and Wan, H. (2012). Ablation capability of flake graphite reinforced barium-phenolic resin composite under long pulse laser irradiation. Journal of Inorganic Materials 27(2), 157161 (in Chinese).CrossRefGoogle Scholar
Si, J., Li, J., Wang, S., Li, Y., and Jing, X. (2013). Enhanced thermal resistance of phenolic resin composites at low loading of graphene oxide. Composites: Part A 54, 166172.CrossRefGoogle Scholar
Srikanth, I., Daniel, A., Kumar, S., Padmavathi, N., Singh, V., et al. (2010). Nano silica modified carbon–phenolic composites for enhanced ablation resistance. Scripta Materialia 63, 200203.CrossRefGoogle Scholar
ASTM E1225-09 (2008). Standard test method for thermal conductivity of solids by means of the guarded-comparative-longitudinal heat flow technique, Annual Book of ASTM Standards.Google Scholar
Kumar, S., Kumar, A., Shukla, A., Devi, G. R., and Gupta, A. K. (2005). Thermal-diffusivity measurement of 3D-stitched C–SiC composites. Journal of the European Ceramics Society 29(3), 489495.CrossRefGoogle Scholar
Knacke, O., Kubaschewski, O., and Hesselman, K. (1991). Thermo-Chemical Properties of Inorganic Substances, 2nd ed. Berlin: Springer-Verlag.Google Scholar
Xiao, J., Chen, J.-M., Zhou, H.-D., and Zhang, Q. (2007). Study of several organic resin coatings as anti-ablation coatings for supersonic craft control actuator. Materials Science and Engineering: Part A 452–453, 2330.CrossRefGoogle Scholar
Lee, Y. J. and Joo, H. (2004). Ablation characteristics of carbon fiber reinforced carbon (CFRC) composites in the presence of silicon carbide. Surface Coating Technologies 180–181, 286289.CrossRefGoogle Scholar
Srikanth, I., Padmavathi, N., Kumar, S., Ghosal, P., Kumar, A., and Subrahmanyam, C. (2013). Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Composites Science and Technology 80, 17.CrossRefGoogle Scholar
Bahramian, A. R., Kokabi, M., Navid Famili, M. H., and Beheshty, M. H. (2006). Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: Process modelling and experiment. Polymer 47, 36613673.CrossRefGoogle Scholar
Bahramian, A. R., Kokabi, M., Navid Famili, M. H., and Beheshty, M. H. (2007). Thermal degradation process of resol type phenolic resin matrix/kaolinite layered silicate nanocomposite. Iranian Polymer Journal 16(6), 375387.Google Scholar
Bahramian, A. R., Kokabi, M., Navid Famili, M. H., and Beheshty, M. H. (2008). High temperature ablation of kaolinite layered silicate/phenolic resin/asbestos cloth nanocomposite. Journal of Hazardous Materials 150, 136145.CrossRefGoogle ScholarPubMed
Bahramian, A. R. and Kokabi, M. (2009). Ablation mechanism of polymer layered silicate nanocomposite heat shield. Journal of Hazardous Materials 166, 445454.CrossRefGoogle ScholarPubMed
Bahramian, A. R. and Kokabi, M. (2011). Numerical and experimental evaluations of the flammability and pyrolysis of a resole-based nanocomposite by cone calorimeter. Iranian Polymer Journal 20(5), 399411.Google Scholar
Paydeyesh, A., Kokabi, M., and Bahramian, A. R. (2013). High temperature ablation of highly filled polymer-layered silicate nanocomposites. Journal of Applied Polymer Science 127, 2776-2785, doi: 10.1002/app.377588.CrossRefGoogle Scholar
ASTM E1269-11 (2008). Standard test method for determining specific heat capacity by differential scanning calorimetry. Annual Book of ASTM Standards.Google Scholar
Bartholmai, M. and Schartel, B. (2004). Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polymer for Advanced Technologies 15, 355364.CrossRefGoogle Scholar
Zanetti, M., Camino, G., and Mülhaupt, R. (2001). Combustion behavior of EVA/flourohectorite nanocomposites. Polymer Degradation and Stability 74, 413417.CrossRefGoogle Scholar
Duquesne, S., Jama, C., Bras, M. L., Delobel, R., Recourt, P., and Gloaguen, J. M. (2003). Elaboration of EVA-nanoclay systems-characterization, thermal behaviour and fire performance. Composites Science and Technologies 63, 11411148.CrossRefGoogle Scholar
Gilman, J. W., Jackson, C. L., Morgan, A. B., Harris, R., Manias, E., et al. (2000). Flammability properties of polymer layered silicate nanocomposites polypropylene and polystyrene nanocomposites. Chemistry of Materials 12, 18661873.CrossRefGoogle Scholar
Bahramian, A. R. (2013). Pyrolysis and flammability properties of novolac/graphite nanocomposites. Fire Safety Journal 61, 265273.CrossRefGoogle Scholar
Bahramian, A. R. and Astaneh, R. A. (2014). Improvement of ablation and heat shielding performance of carbon fiber reinforced composite using graphite and kaolinite nanopowders. Iranian Polymer Journal 23, 979985.CrossRefGoogle Scholar
Mirzapour, A., Asadollahi, M. H., Baghshaei, S., and Akbari, M. (2014). Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite. Composites: Part A 63, 159167.CrossRefGoogle Scholar
Torre, L., Kenny, J. M., and Maffezzoli, A. M. (1998). Degradation behaviour of a composite material for thermal protection systems, Part I–Experimental characterization. Journal of Materials Science 33(12), 31373143.CrossRefGoogle Scholar
Torre, L., Kenny, J. M., and Maffezzoli, A. M., (1998) Degradation behaviour of a composite material for thermal protection systems, Part II – Process simulation. Journal of Materials Science 33(12), 31453149.CrossRefGoogle Scholar
Torre, L., Kenny, J. M., Boghetich, G., and Maffezzoli, A. M. (2000). Degradation behaviour of a composite material for thermal protection systems, Part III – Char characterization. Journal of Materials Science 35(18), 45634566.CrossRefGoogle Scholar
Natali, M., Monti, M., Kenny, J., and Torre, L. (2011). Synthesis and thermal characterization of phenolic resin/silica nanocomposites prepared with high shear rate-mixing technique. Journal of Applied Polymer Science 120, 26322640.CrossRefGoogle Scholar
Natali, M., Monti, M., Kenny, J., and Torre, L. (2011). A nanostructured ablative bulk moulding compound: Development and characterization. Composite: Part A 42, 1197-1204. doi:10.1016/j.compositesa.2011.04.022.CrossRefGoogle Scholar
Natali, M., Monti, M., Puglia, D., Kenny, J., and Torre, L. (2012). Ablative properties of carbon black and MWNT/phenolic composites: a comparative study. Composites: Part A 43(1), 174182.CrossRefGoogle Scholar
Pavli, A. J. (1968). Experimental evaluation of several advanced ablative materials as nozzle sections of a storable propellant rocket engine, NASA TM X-1559.Google Scholar
Warga, J. J. (1979). Low Cost Fabrication Techniques for Solid Rocket Nozzles. Proceedings of the National Aeronautics and Space Engineering and Manufacturing Meeting, Los Angeles, CA, October 5–9, pp. 700–796.Google Scholar
D’Aelio, G. F. and Parker, J. A. (1971). Ablative Plastics. New York: Marcel Dekker.Google Scholar
Sutton, P. and Biblarz, O. (2000). Rocket Propulsion Elements. New York: Wiley-IEEE.Google Scholar
Peterson, D. A., Winter, J. M., and Shinn, A. M., Jr. (1969). Rocket engine evaluation of erosion and char as functions of fabric orientation for silica-reinforced nozzle materials, NASA TM X-1721.Google Scholar
ASTM E457-08 (2008). Standard test method for measuring heat-transfer rate using a thermal capacitance (slug) calorimeter. Annual Book of ASTM Standards.Google Scholar
Wu, C. S., Liu, Y. L., and Chiu, Y. S. (2002). Epoxy resins possessing flame retardant elements from silicon incorporated epoxy compounds cured with phosphorus or nitrogen containing curing agents. Polymer 43(15), 42774284.CrossRefGoogle Scholar
Wang, W. J., Perng, L. H., Hsiue, G. H., and Chang, F. C. (2000). Characterization and properties of new silicone-containing epoxy resin. Polymer 41(16), 61136122.CrossRefGoogle Scholar
Zheng, S., Wang, H., Dai, Q., Kuo, X., Ma, D., and Wang, K. (1995). Morphology and structure of organosilicon polymer-modified epoxy resins. Macromolecular Chemistry and Physics 196(1), 269278.CrossRefGoogle Scholar
Monti, M., Natali, M., Petrucci, R., Puglia, D., Terenzi, A., et al. (2011). Advanced Fiber Reinforced Composites Based on Nanocomposite Matrices. In Wiley Encyclopaedia of Composites, 2nd ed., Nicolais, L. and Borzacchiello, A. (Eds.). doi:10.1002/9781118097298.weoc025.Google Scholar
Kashiwagi, T., Du, F., Winey, K. I., Groth, K. M., Shields, J. R., et al. (2005). Flammability properties of polymer nanocomposites with single-walled carbon nanotubes: Effects of nanotube dispersion and concentration. Polymer 46, 471481.CrossRefGoogle Scholar
Kashiwagi, T., Du, F., Douglas, J. F., Winey, K. I., Harris, R. H., and Shields, J. R. (2005). Nanoparticle networks reduced the flammability of polymer nanocomposites. Nature Materials 4, 928933.CrossRefGoogle ScholarPubMed
Cipiriano, B. H., Kashiwagi, T., Raghavan, S. R., Yang, Y., Grulke, E. A., et al. (2007). Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48, 60866096.CrossRefGoogle Scholar
Zhao, Z. and Gou, J. (2009). Improved fire retardancy of thermoset composites modified with carbon nanofibers. Science and Technologies of Advanced Materials 10 (1), 015005 (6pp). doi: 10.1088/1468-6996/10/1/015005.CrossRefGoogle ScholarPubMed
Rahatekara, S. S., Zammarano, M., Matko, S., Koziol, K. K., Windle, A. H., et al. (2010). Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polymers Degradation and Stability 95, 870879.CrossRefGoogle Scholar
Park, J. M., Kwon, D. J., Wang, Z. J., Roh, J. U., Lee, W. I., et al. (2014). Effects of carbon nanotubes and carbon fiber reinforcements on thermal conductivity and ablation properties of carbon/phenolic composites. Composites: Part B 67, 2229.CrossRefGoogle Scholar
Tate, J. S., Jacobs, C. J., and Koo, J. H. (2011). Dispersion of MWCNT in phenolic resin using different dispersion techniques and evaluation of thermal properties. Proceedings of the 2011 SAMPE ISSE, Long Beach, CA, May 23–26.Google Scholar
Tate, J. S., Gaikwad, S., Theodoropoulou, N., Trevino, E., and Koo, J. H. (2013). Carbon/phenolic nanocomposites as advanced thermal protection material in aerospace applications. Journal of Composites 2013, ID 403656 (9pp). doi: 10.1155/2013/403656.CrossRefGoogle Scholar
Thostenson, E. T., Li, C., and Chou, T. W. (2005). Nanocomposites in context. Composites Science and Technology 65, 491516.CrossRefGoogle Scholar
Cheng, J. (2006). Polysyanate ester/small diameter carbon nanotubes nanocomposite. Master’s thesis, The University of Texas at Austin, Dept. of Mechanical Engineering, Austin, TX.Google Scholar
Safadi, R. A. (2002). Multiwalled carbon nanotube polymer composites: Synethis and characterization of thin films. Journal of Applied Polymer Science 84, 26602669.CrossRefGoogle Scholar
Pulci, G., Tirillo, J., Marra, F., Fossati, F., Bartuli, C., and Valente, T. (2010). Carbon-phenolic ablative materials for re-entry space vehicles: Manufacturing and properties. Composites: Part A 41, 14831490.CrossRefGoogle Scholar
Marra, F., Pulci, G., Tirillo, J., Bartuli, C., and Valente, T. (2011). Numerical simulation of oxy-acetylene testing procedure of ablative materials for re-entry space vehicles. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 225, pp. 3240. doi: 10.1177/14644207JMDA335.CrossRefGoogle Scholar
Pulci, G., Tirillo, J., and Valente, T. (2012). Ablative Materials for Thermal Protection Systems. Unpublished data, University of Rome, Rome, Italy.Google Scholar
Duffa, G. (2013). Ablative Thermal Protection System Modeling. Reston, VA: AIAA.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×