Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-13T08:59:01.040Z Has data issue: false hasContentIssue false

6 - Two-dimensional photonic crystals

Published online by Cambridge University Press:  01 July 2009

Maksim Skorobogatiy
Affiliation:
Ecole Polytechnique, Montréal
Jianke Yang
Affiliation:
University of Vermont
Get access

Summary

In this section we investigate photonic bandgaps in two-dimensional photonic crystal lattices. We start by plotting a band diagram for a periodic lattice with negligible refractive-index-contrast. We then introduce a plane-wave expansion method for calculating the eigenmodes of a general 2D photonic crystal, and then develop a perturbation approach to describe bandgap formation in the case of photonic crystal lattices with small refractive index contrast. Next, we introduce a modified plane-wave expansion method to treat line and point defects in photonic crystal lattices. [1,2] Finally, we introduce perturbation formulation to describe bifurcation of the defect states from the bandgap edges in lattices with weak defects.

The two-dimensional dielectric profiles considered in this section exhibit discrete translational symmetry in the plane of a photonic crystal, and continuous translational symmetry perpendicular to the photonic crystal plane direction (Fig. 6.1). The mirror symmetry described in Section 2.4.7 suggests that the eigenmodes propagating strictly in the plane of a crystal can be classified as either TE or TM, depending on whether the vector of a modal magnetic or electric field is directed along the axis.

Two-dimensional photonic crystals with diminishingly small index contrast

In the case of a 2D discrete translational symmetry, the dielectric profile transforms into itself ε(r + δr) = ε(r) for any translation along the lattice vector δr defined as δr = ā1N1 + ā2N2,(N1, N2) ⊂ integer.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A Matlab implementation of a plane-wave expansion method that computes Bloch modes of the 2D uniform lattices and photonic crystal fibers, as well as eigenmodes of the line and point defects in a 2D periodic lattice can be found at: www.photonics.phys.polymtl.ca/fun_phot_cryst_guid/planewave2D.m
A description of a general implementation of a planewave method can be found at S. G. Johnson and J. D. Joannopoulos. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis, Opt. Express 8 (2001), 173–190.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×