Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-07T02:43:34.043Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  01 July 2009

Maksim Skorobogatiy
Affiliation:
Ecole Polytechnique, Montréal
Jianke Yang
Affiliation:
University of Vermont
Get access

Summary

When thinking about traditional optical materials one invokes a notion of homogeneous media, where imperfections or variations in the material properties are minimal on the length scale of the wavelength of light λ (Fig. 1.1 (a)). Although built from discrete scatterers, such as atoms, material domains, etc., the optical response of discrete materials is typically “homogenized” or “averaged out” as long as scatterer sizes are significantly smaller than the wavelength of propagating light. Optical properties of such homogeneous isotropic materials can be simply characterized by the complex dielectric constant ε. Electromagnetic radiation of frequency ω in such a medium propagates in the form of plane waves E,H ̴ ei(k·r− ωt) with the vectors of electric field E(r,t), magnetic field H(r,t), and a wave vector k forming an orthogonal triplet. In such materials, the dispersion relation connecting wave vector and frequency is given by εω2 = c2k2, where c is the speed of light. In the case of a complex-valued dielectric constant ε, one typically considers frequency to be purely real, while allowing the wave vector to be complex. In this case, the complex dielectric constant defines an electromagnetic wave decaying in space, |E|, |H| ̴ e−Im(k)·r, thus accounting for various radiation loss mechanisms, such as material absorption, radiation scattering, etc.

Another common scattering regime is a regime of geometrical optics. In this case, radiation is incoherently scattered by the structural features with sizes considerably larger than the wavelength of light λ (Fig. 1.1(b)).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bykov, V. P.. Spontaneous emission in a periodic structure, Sov. Phys. JETP 35 (1972), 269–273.Google Scholar
Yablonovitch, E.. Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58 (1987), 2059–2062.CrossRefGoogle ScholarPubMed
John, S.. Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58 (1987), 2486–2489.CrossRefGoogle ScholarPubMed
Yablonovitch, E., Gmitter, T. J., Meade, R. D.et al. Donor and acceptor modes in photonic band-structure, Phys. Rev. Lett. 67 (1991), 3380.CrossRefGoogle ScholarPubMed
Welch, V. L. and Vigneron, J.-P.. Beyond butterflies – the diversity of biological photonic crystals, Opt. Quant. Electr. 39 (2007), 295–303.CrossRefGoogle Scholar
Xia, Y., Gates, B., Yin, Y., and Lu, Y.. Monodispersed colloidal spheres: old materials with new applications, Adv. Mater. 12 (2000), 693–713.3.0.CO;2-J>CrossRefGoogle Scholar
Lopez, C.. Materials aspects of photonic crystals, Adv. Mater. 15 (2003), 1679–1704.CrossRefGoogle Scholar
Escuti, M. J. and Crawford, G. P.. Holographic photonic crystals, Opt. Eng. 43 (2004), 1973–1987.Google Scholar
Moon, J. H., Ford, J., and Yang, S.. Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography, Polym. Adv. Technol. 17 (2006), 83–93.CrossRefGoogle Scholar
Braun, P. V., Rinne, S. A., and Santamaría, F. G.. Introducing defects in 3D photonic crystals: state of the art, Adv. Mater. 18 (2006), 2665–2678.CrossRefGoogle Scholar
Prather, D. W., Shi, S., Murakowski, J.et al. Photonic crystal structures and applications: perspective, overview, and development, IEEE J. Sel. Topics Quant. Electr. 12 (2006), 1416–1437.CrossRefGoogle Scholar
Benisty, H., Lourtioz, J. M., Chelnokov, A., Combrié, S., and Checoury, X.. Recent advances toward optical devices in semiconductor-based photonic crystals, Proc. IEEE 94 (2006), 997–1023.CrossRefGoogle Scholar
Noda, S., Imada, M., Okano, M.et al. Semiconductor three-dimensional and two-dimensional photonic crystals and devices, IEEE J. Quant. Electr. 38 (2002), 726–735.CrossRefGoogle Scholar
Russell, P. St. J.. Photonic crystal fibers, J. Lightwave. Technol., 24 (2006), 4729–4749.CrossRefGoogle Scholar
Bjarklev, A., Broeng, J., and Bjarklev, A. S.. Photonic Crystal Fibres (Boston, MA: Kluwer Academic Publishers, 2003).CrossRefGoogle Scholar
Large, M., Poladin, L., Barton, G., and Eijkelenborg, M. A.. Microstructured Polymer Optical Fibres (New York: Springer, 2007).Google Scholar
Ranka, J. K., Windeler, R. S., and Stentz, A. J.. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett. 25 (2000), 25–27.CrossRefGoogle ScholarPubMed
Dudley, J. M., Genty, G., and Coen, S.. Supercontinuum generation in photonic crystal fiber, Rev. Modern Phys. 78 (2006), 1135–1184.CrossRefGoogle Scholar
Yeh, P., Yariv, A., and Marom, E.. Theory of Bragg fiber, J. Opt. Soc. Am. 68 (1978), 1196–1201.CrossRefGoogle Scholar
Johnson, S. G., Ibanescu, M., Skorobogatiy, M.et al. Low-loss asymptotically single-mode propagation in large core OmniGuide fibers, Opt. Express 9 (2001), 748–779.CrossRefGoogle ScholarPubMed
Temelkuran, B., Hart, S. D., Benoit, G., Joannopoulos, J. D., and Fink, Y.. Wavelength scalable optical fibers for CO2 laser transmission, Nature 420 (2002), 650–653.CrossRefGoogle Scholar
Knight, J. C., Broeng, J., Birks, T. A., and Russell, P. St. J.. Photonic band gap guidance in optical fibers, Science 282 (1998), 1476–1478.CrossRefGoogle ScholarPubMed
Smith, C. M., Venkataraman, N., Gallagher, M. T.et al. Low-loss hollow-core silica/air photonic bandgap fibre, Nature 424 (2003), 657–659.CrossRefGoogle ScholarPubMed
Hassani, A., Dupuis, A., and Skorobogatiy, M.. Low loss porous terahertz fibers containing multiple subwave length holes, Appl. Phys. Lett. 92(2008), 071101.CrossRefGoogle Scholar
Fink, Y., Winn, J. N., Fan, S. H.et al. A dielectric omnidirectional reflector, Science 282 (1998), 1679–1682.CrossRefGoogle ScholarPubMed
Yin, D., Schmidt, H., Barber, J., and Hawkins, A.. Integrated ARROW waveguides with hollow cores, Opt. Express 12 (2004), 2710–2715.CrossRefGoogle ScholarPubMed
Lo, S.-S., Wang, M.-S., and Chen, C.-C.. Semiconductor hollow optical waveguides formed by omni-directional reflectors, Opt. Express 12 (2004), 6589–6593.CrossRefGoogle ScholarPubMed
Skorobogatiy, M.. Efficient anti-guiding of TE and TM polarizations in low index core waveguides without the need of omnidirectional reflector, Opt. Lett. 30 (2005), 2991–2993.CrossRefGoogle Scholar
Argyros, A., Birks, T. A., Leon-Saval, S. G.et al. Photonic bandgap with an index step of one percent, Opt. Express 13 (2005), 309–314.CrossRefGoogle ScholarPubMed
Likhachev, M. E., Semjonov, S. L., Bubnov, M. M.et al. Development and study of Bragg fibres with a large mode field and low optical losses, Quant. Electr. 36 (2006), 581–586.CrossRefGoogle Scholar
Dupuis, A., Guo, N., Gauvreau, B.et al. Guiding in the visible with “colorful” solid-core Bragg fibers, Opt. Lett. 32 (2007), 2882–2884.CrossRefGoogle ScholarPubMed
Fleischer, J. W., Segev, M., Efremidis, N. K., and Christodoulides, D. N.. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature 422 (2003), 147–150.CrossRefGoogle ScholarPubMed
Makasyuk, I., Chen, Z., and Yang, J.. Bandgap guidance in optically-induced photonic lattices with a negative defect, Phys. Rev. Lett. 96 (2006), 223903.CrossRefGoogle Scholar
Fischer, R., Träger, D., Neshev, D. N.et al. Reduced-symmetry two-dimensional solitons in photonic lattices, Phys. Rev. Lett. 96 (2006), 023905.CrossRefGoogle ScholarPubMed
Christodoulides, D. N. and Eugenieva, E. D.. Blocking and routing discrete solitons in two-dimensional networks of nonlinear waveguide arrays, Phys. Rev. Lett. 87 (2001), 233901.CrossRefGoogle ScholarPubMed
Mekis, A., Chen, J. C., Kurland, I.et al. High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett. 77 (1996), 3787–3790.CrossRefGoogle ScholarPubMed
Johnson, S. G., Manolatou, C., Fan, S.et al. Elimination of cross talk in waveguide intersections, Opt. Lett. 23 (1998), 1855–1857.CrossRefGoogle ScholarPubMed
Borel, P. I., Harp⊘th, A., Frandsen, L. H.et al. Topology optimization and fabrication of photonic crystal structures, Opt. Express 12 (2004), 1996–2001.CrossRefGoogle ScholarPubMed
Moll, N., Mahrt, R. F., Bauer, C.et al. Evidence for bandedge lasing in a two-dimensional photonic bandgap polymer laser, Appl. Phys. Lett. 80 (2002), 734–736.CrossRefGoogle Scholar
Akahane, Y., Asano, T., Song, B. S., and Noda, S.. High-Q photonic nanocavity in a two-dimensional photonic crystal, Nature 425 (2003), 944–947.CrossRefGoogle Scholar
Srinivasan, K., Barclay, P. E., Painter, O.et al. Experimental demonstration of a high quality factor photonic crystal microcavity, Appl. Phys. Lett. 83 (2003), 1915–1917.CrossRefGoogle Scholar
Painter, O., Lee, R. K., Scherer, A.et al. Two-dimensional photonic bandgap defect mode laser, Science 284 (1999), 1819–1821.CrossRefGoogle Scholar
Park, H.-G., Kim, S.-H., Kwon, S.-H.et al. Electrically driven single-cell photonic crystal laser, Science 305 (2004), 1444–1446.CrossRefGoogle ScholarPubMed
Noda, S., Chutinan, A., and Imada, M.. Trapping and emission of photons by a single defect in a photonic bandgap structure, Nature 407 (2000), 608–610.CrossRefGoogle Scholar
Notomi, M., Shinya, A., Mitsugi, S.et al. Optical bistable switching action of Si high-Q photonic crystal nanocavities, Opt. Express 13 (2005), 2678–2687.CrossRefGoogle ScholarPubMed
Fan, S., Villeneuve, P. R., Joannopoulos, J. D., and Haus, H. A.. Channel drop tunneling through localized states, Phys. Rev. Lett. 80 (1998), 960–963.CrossRefGoogle Scholar
Stefanou, N. and Modinos, A.. Impurity bands in photonic insulator, Phys. Rev. B 57 (1998), 127–133.CrossRefGoogle Scholar
Yariv, A., Xu, Y., Lee, R. K., and Scherer, A.. Coupled-resonator optical waveguide: a proposal and analysis, Opt. Lett. 24 (1999), 711–713.CrossRefGoogle ScholarPubMed
Meier, M., Mekis, A., Dodabalapur, A.et al. Laser action from two-dimensional distributed feedback in photonic crystals, Appl. Phys. Lett. 74 (1999), 7–9.CrossRefGoogle Scholar
Sakoda, K., Ohtaka, K., and Ueta, T.. Low threshold laser oscillation due to group velocity anomaly peculiar to two- and three dimensional photonic crystals, Opt. Express 4 (1999), 481–489.CrossRefGoogle ScholarPubMed
Lin, S.-Y., Hietala, V. M., Wang, L., and Jones, E. D.. Highly dispersive photonic bandgap prism, Opt. Lett. 21 (1996), 1771–1773.CrossRefGoogle Scholar
Kosaka, H., Kawashima, T., Tomita, A.et al. Superprism phenomena in photonic crystals, Phys. Rev. B 58 (1998), R10096.CrossRefGoogle Scholar
Kosaka, H., Kawashima, T., Tomita, A.et al. Self-collimating phenomena in photonic crystals, Appl. Phys. Lett. 74 (1999), 1212–1214.CrossRefGoogle Scholar
Chigrin, D. N., Enoch, S., Torres, S. C. M., and Tayeb, G.. Self-guiding in two-dimensional photonic crystals, Opt. Express 11 (2003), 1203–1211.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Maksim Skorobogatiy, Ecole Polytechnique, Montréal, Jianke Yang, University of Vermont
  • Book: Fundamentals of Photonic Crystal Guiding
  • Online publication: 01 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511575228.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Maksim Skorobogatiy, Ecole Polytechnique, Montréal, Jianke Yang, University of Vermont
  • Book: Fundamentals of Photonic Crystal Guiding
  • Online publication: 01 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511575228.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Maksim Skorobogatiy, Ecole Polytechnique, Montréal, Jianke Yang, University of Vermont
  • Book: Fundamentals of Photonic Crystal Guiding
  • Online publication: 01 July 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511575228.002
Available formats
×