Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T14:01:34.131Z Has data issue: false hasContentIssue false

4 - The small-scale structure of spacetime

Published online by Cambridge University Press:  05 August 2012

Steven Carlip
Affiliation:
University of California
Jeff Murugan
Affiliation:
University of Cape Town
Amanda Weltman
Affiliation:
University of Cape Town
George F. R. Ellis
Affiliation:
University of Cape Town
Get access

Summary

Several lines of evidence hint that quantum gravity at very small distances may be effectively two-dimensional. I summarize the evidence for such “spontaneous dimensional reduction,” and suggest an additional argument coming from the strong-coupling limit of the Wheeler-DeWitt equation. If this description proves to be correct, it suggests a fascinating relationship between small-scale quantum spacetime and the behavior of cosmologies near an asymptotically silent singularity.

Introduction

Stephen Hawking and George Ellis prefaced their seminal book, The Large Scale Structure of Space-Time, with the explanation that their aim was to understand spacetime “on length-scales from 10−13 cm, the radius of an elementary particle, up to 1028 cm, the radius of the universe” [24]. While many deep questions remain, ranging from cosmic censorship to the actual topology of our universe, we now understand the basic structure of spacetime at these scales: to the best of our ability to measure such a thing, it behaves as a smooth (3+1)-dimensional Riemannian manifold.

At much smaller scales, on the other hand, the proper description is far less obvious. While clever experimentalists have managed to probe some features down to distances close to the Planck scale [43], for the most part we have neither direct observations nor a generally accepted theoretical framework for describing the very small-scale structure of spacetime. Indeed, it is not completely clear that “space” and “time” are even the appropriate categories for such a description.

Type
Chapter
Information
Foundations of Space and Time
Reflections on Quantum Gravity
, pp. 69 - 84
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] J., Ambjørn, J., Jurkiewicz, and R., Loll, Phys. Rev. Lett. 85, 924 (2000), eprint hep-th/0002050.
[2] J., Ambjørn, J., Jurkiewicz, and R., Loll, Phys. Rev. Lett. 93, 131301 (2004), eprint hep-th/0404156.
[3] J., Ambjørn, J., Jurkiewicz, and R., Loll, Phys. Rev. D72, 0640141 (2005), eprint hep-th/0505154.
[4] J., Ambjørn, J., Jurkiewicz, and R., Loll, Phys. Lett. B607, 205 (2005), eprint hep-th/0411152.
[5] J., Ambjørn, J., Jurkiewicz, and R., Loll, Phys. Rev. Lett. 95, 171301 (2005), eprint hep-th/0505113.
[6] J. J., Atick and E., Witten, Nucl. Phys. B310, 291 (1988).
[7] S., Basu and D., Mattingly, Class. Quant. Grav. 22, 3029 (2005), eprint astro-ph/0501425.
[8] V. A., Belinskii, I.M., Khalatnikov, and E.M., Lifshitz, Adv. Phys. 19, 525 (1970)
[9] V. A., Belinskii, I.M., Khalatnikov, and E.M., Lifshitz, Adv. Phys. 31, 639 (1982).
[10] D., Benedetti and J., Henson, “Spectral geometry as a probe of quantum spacetime,” eprint arXiv:0911.0401v1 [hep-th].
[11] A. L., Berkin, Phys. Rev. D46, 1551 (1992).
[12] D., Blas, O., Pujolas, and S., Sibiryakov, JHEP 0910, 029 (2009), eprint arXiv:0906.3046[hep-th].
[13] P., Candelas and D.W., Sciama, Phys. Rev. Lett. 38, 1372 (1977).
[14] S., Carlip, Rept. Prog. Phys. 64, 885 (2001), eprint gr-qc/0108040.
[15] D. F., Chernoff and J. D., Barrow, Phys. Rev. Lett. 50, 134 (1983).
[16] A., Connes, “Noncommutative geometry year 2000,” in Highlights of Mathematical Physics, edited by A., Fokas et al., American Mathematical Society, 2002, eprint math.QA/0011193.
[17] L., Crane and L., Smolin, Nucl. Phys. B267, 714 (1986).
[18] B. S., DeWitt, Phys. Rev. 160, 1113 (1967).
[19] B. S., DeWitt, “Dynamical theory of groups and fields,” in Relativity, Groups and Topology, edited by C., DeWitt and B., DeWitt, Gordon and Breach, New York, 1964, pp. 587–820.
[20] R., Epp, “The symplectic structure of general relativity in the double null (2+2) formalism,” eprint gr-qc/9511060.
[21] G., Francisco and M., Pilati, Phys. Rev. D31, 241 (1985).
[22] T., Futamase, Phys. Rev. D29, 2783 (1984).
[23] G. W., Gibbons, “Quantum field theory in curved spacetime,” in General Relativity: An Einstein Centenary Survey, edited by S. W., Hawking and W., Israel, Cambridge University Press, Cambridge, 1979, pp. 639–79.
[24] S.W., Hawking and G. F. R., Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, 1973.
[25] J. M., Heinzle, C., Uggla, and N., Röhr, Adv. Theor. Math. Phys. 13, 293 (2009), eprint gr-qc/0702141.
[26] A., Helfer et al., Gen. Rel. Grav. 20, 875 (1988).
[27] M., Henneaux, Bull. Math. Soc. Belg. 31, 47 (1979).
[28] M., Henneaux, M., Pilati, and C., Teitelboim, Phys. Lett. 110B, 123 (1982).
[29] P., Hořava, Phys. Rev. D79, 084008 (2009), eprint arXiv:0901.3775 [hep-th].
[30] P., Hořava, Phys. Rev. Lett. 102, 161301 (2009), eprint arXiv:0902.3657 [hep-th].
[31] B. L., Hu and D. J., O'Connor, Phys. Rev. D34, 2535 (1986).
[32] V., Husain, Class. Quant. Grav. 5, 575 (1988).
[33] C. J., Isham, Proc. R. Soc. London A351, 209 (1976).
[34] D., Kabat and M., Ortiz, Nucl. Phys. B388, 570 (1992), eprint hep-th/9203082.
[35] A. A., Kirillov, Int. J. Mod. Phys D3, 431 (1994).
[36] A. A., Kirillov and G., Montani, Phys. Rev. D56, 6225 (1997).
[37] R., Kommu, in preparation.
[38] O., Lauscher and M., Reuter, JHEP 0510, 050 (2005), eprint hep-th/0508202.
[39] D. F., Litim, Phys. Rev. Lett. 92, 201301 (2004), eprint hep-th/0312114.
[40] D. F., Litim, AIP Conf. Proc. 841, 322 (2006), eprint hep-th/0606044.
[41] R., Loll, Living Rev. Relativity 1, 13 (1998), eprint gr-qc/9805049.
[42] K., Maeda and M., Sakamoto, Phys. Rev. D54, 1500 (1996), eprint hep-th/9604150.
[43] D., Mattingly, Living Rev. Relativity 8, 5 (2005), eprint gr-qc/0502097.
[44] C.W., Misner, Phys. Rev. Lett. 22, 1071 (1969).
[45] L., Modesto, “Fractal structure of loop quantum gravity,” eprint arXiv:0812.221 [gr-qc].
[46] G., Montani, Class. Quant. Grav. 12, 2505 (1990).
[47] M., Niedermaier, Class. Quant. Grav. 24, R171 (2007), eprint gr-qc/0610018.
[48] M., Pilati, “Strong coupling quantum gravity: an introduction,” in Quantum Structure of Space and Time, edited by M. J., Duff and C. J., Isham, Cambridge University Press, Cambridge, 1982, pp. 53–69.
[49] M., Pilati, Phys. Rev. D26, 2645 (1982).
[50] M., Pilati, Phys. Rev. D28, 729 (1983).
[51] T., Regge, Nuovo Cimento A 19, 558 (1961).
[52] M., Reuter and F., Saueressig, Phys. Rev. D65, 065016 (2002), eprint hep-th/0110054.
[53] D., Rideout, “Dynamics of causal sets,” eprint arXiv:gr-qc/0212064.
[54] M., Rocek and R. M., Williams, Phys. Lett. B104, 31 (1981).
[55] C., Rovelli, Phys. Rev. D35, 2987 (1987).
[56] D. S., Salopek, Class. Quant. Grav. 15, 1185 (1998), eprint gr-qc/9802025.
[57] R., Sorkin, personal communication.
[58] J. L., Synge, Relativity: The General Theory, North-Holland, Amsterdam, 1960.
[59] G., 't Hooft, Phys. Lett. 198B, 61 (1987).
[60] C., Teitelboim, Phys. Rev. D25, 3159 (1982).
[61] D. V., Vassilevich, Phys. Rept. 388, 279 (2003), eprint hep-th/0306138.
[62] H. L., Verlinde and E. P., Verlinde, Nucl. Phys. B371, 246 (1992), eprint hep-th/9110017.
[63] A., Wall, “Proving the achronal averaged null energy condition from the generalized second law,” eprint arXiv:0910.5751.
[64] S., Weinberg, “Ultraviolet divergences in quantum theories of gravitation,” in General Relativity: An Einstein Centenary Survey, edited by S. W., Hawking and W., Israel, Cambridge University Press, Cambridge, 1979, pp. 790–831.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×