Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-07-06T16:40:38.559Z Has data issue: false hasContentIssue false

8 - Recent trends in superstring phenomenology

Published online by Cambridge University Press:  05 August 2012

Massimo Bianchi
Affiliation:
Universitá di Roma “Tor Vergata”
Jeff Murugan
Affiliation:
University of Cape Town
Amanda Weltman
Affiliation:
University of Cape Town
George F. R. Ellis
Affiliation:
University of Cape Town
Get access

Summary

We briefly review basic aspects of string theory and broadly discuss possible phenomenological scenario. We then focus on vacuum configurations with intersecting and/or magnetized unoriented D-branes. We show how a TeV-scale string tension may be compatible with the existence of large extra dimensions and how anomalous U(1)s can give rise to interesting signatures at LHC or in cosmic rays. Finally, we discuss unoriented D-brane instantons as a source of non-perturbative effects that can contribute to moduli stabilization and SUSY breaking in combination with fluxes. We conclude with an outlook on holography and directions for future work.

Foreword

More than 40 years after its original proposal, there is no experimental evidence for string theory or, else, a satisfactory – possibly holographic – description of the QCD string is not yet available.

Still, the Veneziano model predicts a massless vector boson in the open string spectrum and the Shapiro-Virasoro model a massless tensor boson in the closed string spectrum. These two particles can naturally be associated with the two best known forces in Nature: gravity and electromagnetism. After GSO projection, supersymmetry then guarantees the presence of massless fermions.

Moreover, string theory makes a definite – albeit incorrect – prediction for the number of space-time dimensions: 26 for bosonic strings, 10 for superstrings. This basic fact led to many so-far unsuccessful attempts to get rid of the undesired extra dimensions. Calabi-Yau and orbifold compactifications, non-geometric Gepner models are the most famous examples.

Type
Chapter
Information
Foundations of Space and Time
Reflections on Quantum Gravity
, pp. 140 - 163
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M. B., Green, J.H., Schwarz and E., Witten, Superlisting Theory: I, II, Cambridge Monographs on Mathematical Physics. Cambridge, UK: Cambridge University Press (1987); 596 pp.
[2] E., Kiritsis, String Theory in a Nutshell. Princeton, NJ: Princeton University Press (2007); 588 pp.
[3] Z., Bern, L. J., Dixon, M., Perelstein, D. C., Dunbar and J. S., Rozowsky, Class. Quant. Grav. 17, 979 (2000) [arXiv:hep-th/9911194].
[4] M., Bianchi, H., Elvang and D. Z., Freedman, JHEP 0809, 063 (2008) [arXiv:0805.0757 [hep-th]].
[5] Z., Bern, J. J., Carrasco, L. J., Dixon, H., Johansson and R., Roiban, Phys. Rev. Lett. 103, 081301 (2009) [arXiv:0905.2326 [hep-th]].
[6] M., Bianchi, S., Ferrara and R., Kallosh, arXiv:0910.3674 [hep-th].
[7] A., Strominger and C., Vafa, Phys. Lett.B 379, 99 (1996) [arXiv:hep-th/9601029].
[8] M. B., Green and J.H., Schwarz, Phys. Lett.B 149, 117 (1984).
[9] D. J., Gross, J.A., Harvey, E. J., Martinec and R., Rohm, Phys. Rev. Lett. 54, 502 (1985).
[10] P., Candelas, G.T., Horowitz, A., Strominger and E., Witten, Nucl. Phys.B 258, 46 (1985).
[11] L. E., Ibanez, J., Mas, H. P., Nilles and F., Quevedo, Nucl. Phys.B 301, 157 (1988).
[12] A., Sagnotti (1987) [arXiv:hep-th/0208020].
[13] For a review see e.g. C., Angelantonj and A., Sagnotti, Phys. Rept. 371, 1 (2002) [Erratum Phys. Rept. 376, 339 (2003)] [arXiv:hep-th/0204089].
[14] M., Bianchi and A., Sagnotti, Phys. Lett.B 211, 407 (1988).
G., Pradisi and A., Sagnotti, Phys. Lett.B 216, 59 (1989).
M., Bianchi and A., Sagnotti, Phys. Lett.B 231, 389 (1989).
[15] M., Bianchi and A., Sagnotti, Phys. Lett.B 247, 517 (1990).
M., Bianchi and A., Sagnotti, Nucl. Phys.B 361, 519 (1991).
C., Angelantonj, M., Bianchi, G., Pradisi, A., Sagnotti and Y. S., Stanev, Phys. Lett.B 387, 743 (1996) [arXiv:hep-th/9607229].
[16] A., Sagnotti, Phys. Lett.B 294, 196 (1992) [arXiv:hep-th/9210127].
[17] M., Bianchi, G., Pradisi and A., Sagnotti, Nucl. Phys.B 376, 365 (1992).
[18] C., Angelantonj, M., Bianchi, G., Pradisi, A., Sagnotti and Y. S., Stanev, Phys. Lett.B 385, 96 (1996) [arXiv:hep-th/9606169].
[19] M., Bianchi and Y. S., Stanev, Nucl. Phys.B 523, 193 (1998) [arXiv:hep-th/9711069].
C., Angelantonj, I., Antoniadis, G., D'Appollonio, E., Dudas and A., Sagnotti, Nucl. Phys.B 572, 36 (2000) [arXiv:hep-th/9911081].
[20] M., Bianchi, G., Pradisi and A., Sagnotti, Phys. Lett.B 273, 389 (1991).
G., Pradisi, A., Sagnotti and Y. S., Stanev, Phys. Lett.B 381, 97 (1996) [arXiv:hep-th/9603097].
[21] J., Dai, R. G., Leigh and J., Polchinski, Mod. Phys. Lett.A 4, 2073 (1989).
[22] J., Polchinski, Phys. Rev. Lett. 75, 4724 (1995) [arXiv:hep-th/9510017].
[23] P. K., Townsend, arXiv:hep-th/9507048.
[24] A., Dabholkar, J. P., Gauntlett, J. A., Harvey and D., Waldram, Nucl. Phys.B 474, 85 (1996) [arXiv:hep-th/9511053].
D. S., Berman, Phys. Rept. 456, 89 (2008) [arXiv:0710.1707 [hep-th]].
[25] E., Witten, Nucl. Phys.B 460, 335 (1996) [arXiv:hep-th/9510135].
[26] C.M., Hull and P.K., Townsend, Nucl. Phys.B 438, 109 (1995) [arXiv:hep-th/9410167].
[27] E., Witten, Nucl. Phys.B 443, 85 (1995) [arXiv:hep-th/9503124].
[28] J., Polchinski and E., Witten, Nucl. Phys.B 460, 525 (1996) [arXiv:hep-th/9510169].
[29] C. M., Hull, Phys. Lett.B 357, 545 (1995) [arXiv:hep-th/9506194].
[30] A., Dabholkar, Phys. Lett.B 357, 307 (1995) [arXiv:hep-th/9506160].
[31] C., Bachas, C., Fabre, E., Kiritsis, N. A., Obers and P., Vanhove, Nucl. Phys.B 509, 33 (1998) [arXiv:hep-th/9707126].
E., Gava, J. F., Morales, K. S., Narain and G., Thompson, Nucl. Phys.B 528, 95 (1998) [arXiv:hep-th/9801128].
M., Bianchi, E., Gava, F., Morales and K. S., Narain, Nucl. Phys.B 547, 96 (1999) [arXiv:hep-th/9811013].
[32] M., Frau, L., Gallot, A., Lerda and P., Strigazzi, Nucl. Phys.B 564, 60 (2000) [arXiv:hep-th/9903123].
[33] E., Kiritsis, N.A., Obers and B., Pioline, JHEP 0001, 029 (2000) [arXiv:hep-th/0001083].
[34] C., Vafa, Nucl. Phys.B 469, 403 (1996) [arXiv:hep-th/9602022].
[35] J.M., Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-th/9711200].
E., Witten, Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:hep-th/9802150].
S. S., Gubser, I. R., Klebanov and A.M., Polyakov, Phys. Lett.B 428, 105 (1998) [arXiv:hep-th/9802109].
[36] L., Randall and R., Sundrum, Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-th/9906064].
L., Randall and R., Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv:hep-ph/9905221].
[37] U., Gursoy, E., Kiritsis, L., Mazzanti and F., Nitti, Nucl. Phys.B 820, 148 (2009) [arXiv:0903.2859 [hep-th]].
[38] S. B., Giddings, S., Kachru and J., Polchinski, Phys. Rev.D 66, 106006 (2002) [arXiv:hep-th/0105097].
[39] G., Dall'Agata and S., Ferrara, Nucl. Phys.B 717, 223 (2005) [arXiv:hep-th/0502066].
B., de Wit, H., Nicolai and H., Samtleben, JHEP 0802, 044 (2008) [arXiv:0801.1294 [hep-th]].
M., Grana, J., Louis, A., Sim and D., Waldram, JHEP 0907, 104 (2009) [arXiv:0904.2333 [hep-th]].
[40] For a recent review see e.g. R., Blumenhagen, M., Cvetic, S., Kachru and T., Weigand, arXiv:0902.3251 [hep-th].
[41] L. J., Dixon, ‘Supersymmetry breaking in string theory’, 15th APS Division. of Particles and Fields General Meeting, Houston, TX, Jan 3–6, 1990. DPF Conf. 1990:811–822 (QCD161:A6:1990:V.2).
[42] H. P., Nilles, S., Ramos-Sanchez and P. K. S., Vaudrevange, arXiv:0909.3948 [hep-th].
[43] A., Strominger, Nucl. Phys.B 274, 253 (1986).
[44] C.M., Hull and R.A., Reid-Edwards, arXiv:hep-th/0503114.
[45] M., Bianchi, Nucl. Phys.B 805, 168 (2008) [arXiv:0805.3276 [hep-th]].
[46] R., Blumenhagen, B., Kors, D., Lust and S., Stieberger, Phys. Rept. 445, 1 (2007) [arXiv:hep-th/0610327].
A. M., Uranga, JHEP 0901, 048 (2009) [arXiv:0808.2918 [hep-th]].
[47] M., Bianchi and J. F., Morales, JHEP 0003, 030 (2000) [arXiv:hep-th/0002149].
[48] G., Aldazabal, D., Badagnani, L. E., Ibanez and A.M., Uranga, JHEP 9906, 031 (1999) [arXiv:hep-th/9904071].
[49] A., Sen, Phys. Rev.D 55, 7345 (1997) [arXiv:hep-th/9702165].
[50] N., Berkovits, arXiv:hep-th/0209059.
[51] N., Berkovits and B. C., Vallilo, Nucl. Phys.B 624, 45 (2002) [arXiv:hep-th/0110168].
[52] C., Candu, V., Mitev, T., Quella, H., Saleur and V., Schomerus, arXiv:0908.0878 [hep-th].
[53] D. E., Berenstein, J.M., Maldacena and H. S., Nastase, AIP Conf. Proc. 646, 3 (2003).
[54] G., Arutyunov and S., Frolov, J. Phys. A42, 254003 (2009) [arXiv:0901.4937 [hep-th]].
[55] M., Bianchi, S., Kovacs, G., Rossi and Y. S., Stanev, JHEP 0105, 042 (2001) [arXiv:hep-th/0104016].
[56] N., Gromov, V., Kazakov and P., Vieira, arXiv:0906.4240 [hep-th].
[57] B. S., Acharya and E., Witten, arXiv:hep-th/0109152.
[58] B. S., Acharya, K., Bobkov, G. L., Kane, J., Shao and P., Kumar, Phys. Rev.D 78, 065038 (2008) [arXiv:0801.0478 [hep-ph]].
[59] J., Bagger and N., Lambert, Phys. Rev.D 75, 045020 (2007) [arXiv:hep-th/0611108].
A., Gustavsson, Nucl. Phys.B 811, 66 (2009) [arXiv:0709.1260 [hep-th]].
O., Aharony, O., Bergman, D. L., Jafferis and J., Maldacena, JHEP 0810, 091 (2008) [arXiv:0806.1218 [hep-th]].
[60] J. J., Heckman, A., Tavanfar and C., Vafa, arXiv:0906.0581 [hep-th].
[61] R., Blumenhagen, T.W., Grimm, B., Jurke and T., Weigand, arXiv:0908.1784 [hep-th].
[62] A., Abouelsaood, C. G., Callan, C. R., Nappi and S. A., Yost, Nucl. Phys.B 280, 599 (1987).
C., Bachas, arXiv:hep-th/9503030.
I., Antoniadis and T., Maillard, Nucl. Phys.B 716, 3 (2005) [arXiv:hep-th/0412008].
[63] M., Bianchi and E., Trevigne, JHEP 0601, 092 (2006) [arXiv:hep-th/0506080].
M., Bianchi and E., Trevigne, JHEP 0508, 034 (2005) [arXiv:hep-th/0502147].
I., Antoniadis, A., Kumar and T., Maillard, Nucl. Phys.B 767, 139 (2007) [arXiv:hep-th/0610246].
[64] V., Balasubramanian and R. G., Leigh, Phys. Rev.D 55, 6415 (1997) [arXiv:hep-th/9611165].
[65] I., Antoniadis, N., Arkani-Hamed, S., Dimopoulos and G. R., Dvali, Phys. Lett.B 436, 257 (1998) [arXiv:hep-ph/9804398].
[66] S., Cullen, M., Perelstein and M. E., Peskin, Phys. Rev.D 62, 055012 (2000) [arXiv:hep-ph/0001166].
[67] E., Dudas and C., Timirgaziu, Nucl. Phys.B 716, 65 (2005) [arXiv:hep-th/0502085].
[68] D., Chialva, R., Iengo and J. G., Russo, Phys. Rev.D 71, 106009 (2005) [arXiv:hep-ph/0503125].
[69] M., Bianchi and A. V., Santini, JHEP 0612, 010 (2006) [arXiv:hep-th/0607224].
[70] L. A., Anchordoqui, H., Goldberg, D., Lust, S., Nawata, S., Stieberger and T. R., Taylor, Nucl. Phys.B 821, 181 (2009) [arXiv:0904.3547 [hep-ph]].
[71] I., Antoniadis, E., Kiritsis, J., Rizos and T. N., Tomaras, Nucl. Phys.B 660, 81 (2003) [arXiv:hep-th/0210263].
[72] G., Aldazabal, S., Franco, L. E., Ibanez, R., Rabadan and A. M., Uranga, JHEP 0102, 047 (2001) [arXiv:hep-ph/0011132].
[73] P., Anastasopoulos, T. P. T., Dijkstra, E., Kiritsis and A. N., Schellekens, Nucl. Phys.B 759, 83 (2006) [arXiv:hep-th/0605226].
[74] P., Anastasopoulos, M., Bianchi, E., Dudas and E., Kiritsis, JHEP 0611, 057 (2006) [arXiv:hep-th/0605225].
[75] P., Anastasopoulos, JHEP 0308, 005 (2003) [arXiv:hep-th/0306042].
[76] P., Anastasopoulos, F., Fucito, A., Lionetto, G., Pradisi, A., Racioppi and Y. S., Stanev, Phys. Rev.D 78, 085014 (2008) [arXiv:0804.1156 [hep-th]].
F., Fucito, A., Lionetto, A., Mammarella and A., Racioppi, arXiv:0811.1953 [hep-ph].
[77] R., Armillis, C., Coriano', M., Guzzi and S., Morelli, Nucl. Phys.B 814, 15679 (2009) [arXiv:0809.3772 [hep-ph]].
[78] E., Dudas, Y., Mambrini, S., Pokorski, A., Romagnoni and M., Trapletti, JHEP 0903, 011 (2009) [arXiv:0809.5064 [hep-th]].
[79] P., Anastasopoulos, E., Kiritsis and A., Lionetto, JHEP 0908, 026 (2009) [arXiv:0905.3044 [hep-th]].
[80] F., Fucito, A., Lionetto, A., Mammarella and A., Racioppi, arXiv:0811.1953 [hep-ph].
[81] M., Dine, N., Seiberg, X. G., Wen and E., Witten, Nucl. Phys.B 278, 769 (1986).
[82] K., Becker, M., Becker and A., Strominger, Nucl. Phys.B 456, 130 (1995) [arXiv:hep-th/9507158].
[83] E., Witten, Nucl. Phys.B 460, 541 (1996) [arXiv:hep-th/9511030].
M. R., Douglas, arXiv:hep-th/9512077.
[84] M., Billo, L., Ferro, M., Frau, L., Gallot, A., Lerda and I., Pesando, JHEP 0907, 092 (2009) [arXiv:0905.4586 [hep-th]].
[85] M., Billo, M., Frau, I., Pesando, F., Fucito, A., Lerda and A., Liccardo, JHEP 0302, 045 (2003) [arXiv:hep-th/0211250].
M., Billo', L., Ferro, M., Frau, F., Fucito, A., Lerda and J. F., Morales, JHEP 0810, 112 (2008) [arXiv:0807.1666 [hep-th]].
[86] R., Blumenhagen, M., Cvetic and T., Weigand, Nucl. Phys.B 771, 113 (2007) [arXiv:hep-th/0609191].
M., Cvetic, R., Richter 2. and T., Weigand, AIP Conf. Proc. 957, 30 (2007).
[87] L. E., Ibanez and A.M., Uranga, JHEP 0703, 052 (2007) [arXiv:hep-th/0609213].
L. E., Ibanez, A.N., Schellekens and A.M., Uranga, JHEP 0706, 011 (2007) [arXiv:0704.1079 [hep-th]].
[88] M., Bianchi and E., Kiritsis, Nucl. Phys.B 782, 26 (2007) [arXiv:hep-th/0702015].
M., Bianchi, F., Fucito and J. F., Morales, JHEP 0707, 038 (2007) [arXiv:0704.0784 [hep-th]].
[89] B., Florea, S., Kachru, J., McGreevy and N., Saulina, JHEP 0705, 024 (2007) [arXiv:hep-th/0610003].
[90] M., Bianchi, F., Fucito and J. F., Morales, JHEP 0908, 040 (2009) [arXiv:0904.2156 [hep-th]].
[91] I., Garcia-Etxebarria, F., Saad and A.M., Uranga, JHEP 0705, 047 (2007) [arXiv:0704.0166 [hep-th]].
[92] R., Argurio, M., Bertolini, S. F., Franco and S., Kachru, Fortsch. Phys. 55, 644 (2007).
[93] R., Blumenhagen and M., Schmidt-Sommerfeld, JHEP 0807, 027 (2008) [arXiv:0803.1562 [hep-th]].
[94] M., Bianchi and J. F., Morales, JHEP 0802, 073 (2008) [arXiv:0712.1895 [hep-th]].
[95] P. G., Camara, E., Dudas, T., Maillard and G., Pradisi, Nucl. Phys.B 795, 453 (2008) [arXiv:0710.3080 [hep-th]].
[96] C., Caviezel, P., Koerber, S., Kors, D., Lust, D., Tsimpis and M., Zagermann, Class. Quant. Grav. 26, 025014 (2009) [arXiv:0806.3458 [hep-th]].
[97] S., Ferrara, R., Kallosh and A., Strominger, Phys. Rev.D 52, 5412 (1995) [arXiv:hep-th/9508072].
[98] S., Kachru, R., Kallosh, A., Linde and S. P., Trivedi, Phys. Rev.D 68, 046005 (2003) [arXiv:hep-th/0301240].
[99] J. P., Conlon, C.H., Kom, K., Suruliz, B. C., Allanach and F., Quevedo, JHEP 0708, 061 (2007) [arXiv:0704.3403 [hep-ph]].
[100] S. S., Gubser and A., Karch, arXiv:0901.0935 [hep-th].
[101] S.A., Hartnoll, arXiv:0903.3246 [hep-th].
[102] S., Bhattacharyya, S., Minwalla and S. R., Wadia, JHEP 0908, 059 (2009) [arXiv:0810.1545 [hep-th]].
[103] T., Hartman, W., Song and A., Strominger, arXiv:0908.3909 [hep-th].
J., de Boer, K., Papadodimas and E., Verlinde, arXiv:0907.2695 [hep-th].
[104] P., Horava, Phys. Rev.D 79, 084008 (2009) [arXiv:0901.3775 [hep-th]].
[105] G., Orwell, 1984, First Edition (Secker & Warburg, 1949).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×