Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T18:46:59.755Z Has data issue: false hasContentIssue false

6 - Cosmological quantum billiards

Published online by Cambridge University Press:  05 August 2012

Axel Kleinschmidt
Affiliation:
Université Libre de Bruxelles
Hermann Nicolai
Affiliation:
Albert-Einstein-Institut
Jeff Murugan
Affiliation:
University of Cape Town
Amanda Weltman
Affiliation:
University of Cape Town
George F. R. Ellis
Affiliation:
University of Cape Town
Get access

Summary

The minisuperspace quantization of D =11 supergravity is equivalent to the quantization of an E10/K(E10) coset space sigma model, when the latter is restricted to the E10 Cartan subalgebra. As a consequence, the wavefunctions solving the relevant minisuperspace Wheeler-DeWitt equation involve automorphic (Maass wave) forms under the modular group W+(E10)≅ PSL2(0). Using Dirichlet boundary conditions on the billiard domain a general inequality for the Laplace eigenvalues of these automorphic forms is derived, entailing a wave function of the universe that is generically complex and always tends to zero when approaching the initial singularity. The significance of these properties for the nature of singularities in quantum cosmology in comparison with other approaches is discussed. The present approach also offers interesting new perspectives on some longstanding issues in canonical quantum gravity.

Introduction

The present chapter is based on [1], and elaborates on several issues and arguments that were not fully spelled out there. In that work, a first step was taken towards quantization of the one-dimensional “geodesic” E10/K(E10) coset model which had been proposed in [2] as a model of M-theory. Here, E10 denotes the hyperbolic Kac-Moody group E10 which is an infinite-dimensional extension of the exceptional Lie group E8, and plays a similarly distinguished role among the infinite-dimensional Lie algebras as E8 does among the finite-dimensional ones. The proposal of [2] had its roots both in the appearance of so-called “hidden symmetries” of exceptional type in the dimensional reduction of maximal supergravity to lower dimensions [3], as well as in the celebrated analysis of Belinskii, Khalatnikov and Lifshitz (BKL) [4] of the gravitational field equations in the vicinity of a generic space-like (cosmological) singularity.

Type
Chapter
Information
Foundations of Space and Time
Reflections on Quantum Gravity
, pp. 106 - 124
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., Kleinschmidt, M., Koehn, and H., Nicolai, Phys. Rev. D80 (2009) 061701(R) [arXiv:0907.3048 [gr-qc]].
[2] T., Damour, M., Henneaux, and H., Nicolai, Phys. Rev. Lett. 89 (2002) 221601 [arXiv:hep-th/0207267].
[3] E., Cremmer and B., Julia, Nucl. Phys. B 159 (1979) 141.
[4] V. A., Belinskii, I. M., Khalatnikov, and E. M., Lifshitz, Adv. Phys. 19 (1970) 525;
Adv. Phys. 31 (1982) 639.
[5] C.W., Misner, in Deterministic Chaos in General Relativity, edited by D., Hobill et al. (Plenum Press, New York, 1994).
[6] M. P., Ryan and L. C., Shepley, Homogeneous Relativistic Cosmologies (Princeton University Press, New Jersey, 1975).
[7] T., Damour, M., Henneaux, and H., Nicolai, Class. Quant. Grav. 20 (2003) R145 [arXiv:hep-th/0212256].
[8] M., Henneaux, D., Persson, and P., Spindel, Living Rev. Rel. 11 (2008) 1 [arXiv:0710.1818 [hep-th]].
[9] T., Damour and M., Henneaux, Phys. Rev. Lett. 86 (2001) 4749 [arXiv:hep-th/0012172].
[10] T., Damour, M., Henneaux, B., Julia, and H., Nicolai, Phys. Lett. B509 (2001) 323 [arXiv:hep-th/0103094].
[11] B., Julia, in Lectures in Applied Mathematics, Vol. 21, AMS-SIAM (1985) 335, LPTENS-82-22
[12] B. S., DeWitt, Phys. Rev. 160 (1967) 1113.
[13] C.W., Misner, Phys. Rev. Lett. 22 (1969) 1071.
[14] C.W., Misner, in Magic Without Magic, edited by J. R., Klauder (W.H. Freeman & Co, San Francisco, 1972) 441–473.
[15] A., Macias, O., Obregon, and M. P., Ryan, Class. Quant. Grav. 4 (1987) 1477.
[16] R., Graham and P., Szepfalusy, Phys. Rev. D42 (1990) 2483.
[17] V. D., Ivanchuk and V. N., Melnikov, Class. Quant. Grav. 12 (1995) 809, arXiv:gr-qc/9407028.
[18] P. V., Moniz, Int. J. Mod. Phys. A 11 (1996) 4321 [arXiv:gr-qc/9604025].CrossRef
[19] P. D., D'Eath, Supersymmetric Quantum Cosmology (Cambridge University Press, Cambridge, 1996).
[20] A., Csordas and R., Graham, Phys. Rev. Lett. 74 (1995) 4129 [arXiv:gr-qc/9502004].
[21] C., Kiefer, Quantum Gravity (Clarendon Press, Oxford, 2004).
[22] L. A., Forte, Class. Quant. Grav. 26 (2009) 045001 [arXiv:0812.4382 [gr-qc]].
[23] B., Pioline and A., Waldron, Phys. Rev. Lett. 90 (2003) 031302 [arXiv:hep-th/0209044].
[24] D., Giulini and C., Kiefer, Phys. Lett. A193 (1994) 21.
[25] H., Iwaniec, Spectral Methods of Automorphic Forms, American Mathematical Society Graduate Studies in Mathematics, Vol. 53 (2002).Google Scholar
[26] C., Isham, in Recent Aspects of Quantum Fields, edited by H., Mitter and H., Gausterer, Springer Lecture Notes in Physics396 (1991).
[27] J., Barbour, Phys. Rev. D 47 (1993) 5422.
[28] J., Barbour, The End of Time, Weidenfeld & Nicolson, Orion Publishing Group, London (1999).
[29] A. J., Feingold, A., Kleinschmidt, and H., Nicolai, J. Algebra 322 (2009) 1295 [arXiv:0805.3018 [math.RT]].
[30] H. M. S., Coxeter, Duke Math. J. 13 (1946) 561.
[31] J.H., Conway and D.A., Smith, On Quaternions and Octonions (A.K. Peters, Wellesley, MA, 2003).
[32] M., Eie and A., Krieg, Math. Z. 210 (1992) 113.
[33] A., Kleinschmidt, H., Niedai and J., Palmkvist, arXiv 1010.2212 [math.NT].
[34] G., Steil, DESY Preprint (1994) DESY 94-028.
[35] D. A., Hejhal, in Emerging Applications of Number Theory, edited by D. A., Hejhal et al., IMA Series No. 109 Springer (1999) 291–315.
[36] For a review of quantum and arithmetical chaos, see: E. Bogomolny, nlin/0312061.
[37] H., Then, Math. Comp. 74 (2004) 363 [math-ph/0305047].
[38] R., Aurich, F., Steiner, and H., Then, arXiv:gr-qc/0404020.
[39] M. V., Berry, J. Phys.A 10 (1977) 2083.
[40] M. V., Berry, Ann. Phys. 131 (1981) 163.
[41] M. C., Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).
[42] M., Sieber and F., Steiner, Phys.D 44 (1990) 248.
[43] E. J., Heller, Phys. Rev. Lett. 53 (1984) 1515.
[44] M., Berry and R.J., Mondragon, Proc. R. Soc. Lond. A412 (1987) 53.
[45] M. J., Davis and E. J., Heller, J. Chem. Phys. 75 (1981) 3916.
[46] T., Damour, A., Kleinschmidt, and H., Nicolai, Phys. Lett. B 634 (2006) 319 [arXiv:hep-th/0512163].
[47] S., de Buyl, M., Henneaux, and L., Paulot, JHEP 0602 (2006) 056 [arXiv: hep-th/0512292].
[48] T., Damour, A., Kleinschmidt, and H., Nicolai, JHEP 0608 (2006) 046 [arXiv:hep-th/0606105].
[49] T., Damour and C., Hillmann, JHEP 0908 (2009) 100 arXiv:0906.3116 [hep-th].
[50] A. A., Kirillov, JETP Lett. 62 (1995) 89
[Pisma Zh. Eksp. Teor. Fiz. 62 (1995) 81].
[51] T., Damour and H., Nicolai, Int. J. Mod. Phys. D 17 (2008) 525 [arXiv:0705.2643 [hep-th]].
[52] T., Damour, A., Kleinschmidt, and H., Nicolai, Class. Quant. Grav. 24 (2007) 6097 [arXiv:0709.2691 [hep-th]].
[53] T., Damour, A., Kleinschmidt, and H., Nicolai, arXiv:0912.3491 [hep-th].
[54] O., Ganor, arXiv:hep-th/9903110.
[55] J. B., Hartle and S.W., Hawking, Phys. Rev. D 28 (1983) 2960.
[56] M., Bojowald, Phys. Rev. Lett. 86 (2001) 5227 [arXiv:gr-qc/0102069].
[57] A., Ashtekar, A., Corichi, and P., Singh, Phys. Rev. D 77 (2008) 024046 [arXiv:0710.3565 [gr-qc]].
[58] M., Bojowald, Phys. Rev. Lett. 100 (2008) 221301 [arXiv:0805.1192 [gr-qc]].

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×