Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-21T21:50:20.486Z Has data issue: false hasContentIssue false

4 - Multicomponent-Liquid Droplets

Published online by Cambridge University Press:  05 June 2012

William A. Sirignano
Affiliation:
University of California, Irvine
Get access

Summary

There are various complications that occur when a multicomponent liquid is considered (Landis and Mills, 1974, and Sirignano and Law, 1978). Different components vaporize at different rates, creating concentration gradients in the liquid phase and causing liquid-phase mass diffusion. The theory requires the coupled solutions of liquid-phase species-continuity equations, multicomponent phase-equilibrium relations (typically Raoult's Law), and gas-phase multicomponent energy and species-continuity equations. Liquid-phase mass diffusion is commonly much slower than liquid-phase heat diffusion so that thin diffusion layers can occur near the surface, especially at high ambient temperatures at which the surface-regression rate is large. The more volatile substances tend to vaporize faster at first until their surface-concentration values are diminished and further vaporization of those quantities becomes liquid-phase mass diffusion controlled.

Mass diffusion in the liquid phase is very slow compared with heat diffusion in the liquid and extremely slow compared with momentum, heat, or mass diffusion in the gas film or compared with momentum diffusion in the liquid. In fact, the characteristic time for the liquid-phase mass diffusion based on droplet radius is typically longer than the droplet lifetime. Nevertheless, this mass diffusion is of primary importance in the vaporization process for a multicomponent fuel. At first, early in the droplet lifetime, the more volatile substances in the fuel at the droplet surface will vaporize, leaving only the less volatile material that vaporizes more slowly. More volatile material still exists in the droplet interior and will tend to diffuse toward the surface because of concentration gradients created by the prior vaporization.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×