Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-03T09:35:12.716Z Has data issue: false hasContentIssue false

5 - Droplet Behavior under Near-Critical, Transcritical, and Supercritical Conditions

Published online by Cambridge University Press:  05 June 2012

William A. Sirignano
Affiliation:
University of California, Irvine
Get access

Summary

High pressures and supercritical conditions in liquid-fueled diesel engines, jet engines, and liquid rocket engines present a challenge to the modelling and the fundamental understanding of the mechanisms controlling the mixing and combustion behavior of these devices. Accordingly, there has been a reemergence of investigations to provide a detailed description of the fundamental phenomena inherent in these conditions. Unresolved and controversial topics of interest include prediction of phase equilibria at high and supercritical pressures (Curtis and Farrell, 1988; Litchford and Jeng, 1990; Hsieh et al., 1991; Delplanque and Sirignano, 1993; Poplow, 1994; Yang and Lin, 1994; Delplanque and Potier, 1995; Haldenwang et al., 1996), including the choice of a proper equation of state, definition of the critical interface, importance of liquid diffusion, significance of transport-property singularities in the neighborhood of the critical mixing conditions, and influence of convection (including secondary atomization); d2-law behavior at supercritical conditions (Daou et al., 1995); droplet-lifetime predictions (Yang et al., 1992; Delplanque and Sirignano, 1993, 1994; Yang and Lin, 1994; Delplanque and Potier, 1995; Haldenwang et al., 1996); dense spray behavior (Delplanque and Sirignano, 1995; Jiang and Chiang, 1994a, 1994b, 1996); combustion-product condensation (Litchford and Jeng, 1990; Litchford et al., 1992; Delplanque and Sirignano, 1994; Daou et al., 1995); and flame structures at high and supercritical pressures (Daou et al., 1995). The actual combustion process is characterized by the supercritical combustion of relatively dense sprays in a highly convective environment.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×