Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T09:37:09.975Z Has data issue: false hasContentIssue false

16 - Diffusively rough interfaces

Published online by Cambridge University Press:  10 February 2010

Rashmi C. Desai
Affiliation:
University of Toronto
Raymond Kapral
Affiliation:
University of Toronto
Get access

Summary

The existence and dynamics of interfaces played a central role in the description of the domain-coarsening phenomena considered in the previous chapters. In the late stages of domain growth the random forces in the order parameter kinetic equations were suppressed and the interface dynamics was treated deterministically. In this chapter we provide a more detailed treatment of the effects of noise and diffusion on the structure of the interface. One may capture the essential physics of diffusively rough interfaces in a general model often called the Kardar–Parisi–Zhang (KPZ) equation (Kardar et al., 1986).

KPZ equation

Consider a front in a (d + 1)-dimensional system extended along x and moving, on average, in the x1 direction (see Fig. 16.1). The system is assumed to be infinitely extended along x1 and has linear dimension L along x. In contrast to the description in Chapter 7, we neglect the intrinsic thickness of the interface and investigate the effects of diffusion and noise on the dynamics of the interfacial profile. Referring to Fig. 16.1, let h(x, t) be the position of the interface as a function of x at time t, relative to an arbitrarily selected origin. Its mean position at time t is. We assume that the front propagates with velocity v in a direction normal to its interface; noise provides a destabilizing influence on the front while diffusion tends to remove any surface roughness.

A sketch of a portion of the interface profile h(x, t) as a function of x at time t is shown in Fig. 16.2.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×