Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T07:37:01.291Z Has data issue: false hasContentIssue false

23 - Turing patterns

Published online by Cambridge University Press:  10 February 2010

Rashmi C. Desai
Affiliation:
University of Toronto
Raymond Kapral
Affiliation:
University of Toronto
Get access

Summary

A Turing pattern forms when a spatially homogeneous steady state, which is stable to small spatially homogeneous perturbations, loses its stability to small spatially inhomogeneous perturbations. The mechanism responsible for such instabilities was first described by Turing (1952), in his paper The chemical basis of morphogenesis, as a model for pattern formation in biology. The appearance ofTuring patterns relies on the interplay between autocatalytic chemical kinetics and diffusion. The basic Turing mechanism can be described in terms of the kinetics of two chemical species termed the activator and the inhibitor. The activator tends to increase the production of chemical species while the inhibitor tends to inhibit such concentration growth. A Turing pattern can form if the diffusion coefficient of the inhibitor is much greater than that of the activator. While there is still controversy over the role of Turing patterns in morphogenesis, these patterns have been unambiguously identified in chemically reacting media.

The formation of a chemicalTuring pattern in a continuously fed unstirred reactor was reported by Castets et al. (1990). The chlorite–iodide–malonic acid system was studied in a thin gel reactor schematically depicted in Fig. 23.1. The top and bottom sides of the thin hydrogel in which the reaction takes place are in contact with reservoirs containing chemical reagents. The chemical species diffuse into the gel, and reaction takes place in a thin layer within the gel shown in the center panel of the figure. Within this reaction zone a stationary inhomogeneous periodic pattern of chemical concentrations develops, as seen in the right panel of the figure.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Turing patterns
  • Rashmi C. Desai, University of Toronto, Raymond Kapral, University of Toronto
  • Book: Dynamics of Self-Organized and Self-Assembled Structures
  • Online publication: 10 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511609725.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Turing patterns
  • Rashmi C. Desai, University of Toronto, Raymond Kapral, University of Toronto
  • Book: Dynamics of Self-Organized and Self-Assembled Structures
  • Online publication: 10 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511609725.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Turing patterns
  • Rashmi C. Desai, University of Toronto, Raymond Kapral, University of Toronto
  • Book: Dynamics of Self-Organized and Self-Assembled Structures
  • Online publication: 10 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511609725.024
Available formats
×