Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-21T16:52:04.905Z Has data issue: false hasContentIssue false

14 - Consensus and agreement algorithms

Published online by Cambridge University Press:  05 June 2012

Ajay D. Kshemkalyani
Affiliation:
University of Illinois, Chicago
Mukesh Singhal
Affiliation:
University of Kentucky
Get access

Summary

Problem definition

Agreement among the processes in a distributed system is a fundamental requirement for a wide range of applications. Many forms of coordination require the processes to exchange information to negotiate with one another and eventually reach a common understanding or agreement, before taking application-specific actions. A classical example is that of the commit decision in database systems, wherein the processes collectively decide whether to commit or abort a transaction that they participate in. In this chapter, we study the feasibility of designing algorithms to reach agreement under various system models and failure models, and, where possible, examine some representative algorithms to reach agreement.

We first state some assumptions underlying our study of agreement algorithms:

  • Failure models Among the n processes in the system, at most f processes can be faulty. A faulty process can behave in any manner allowed by the failure model assumed. The various failure models – fail-stop, send omission and receive omission, and Byzantine failures – were discussed in Chapter 5. Recall that in the fail-stop model, a process may crash in the middle of a step, which could be the execution of a local operation or processing of a message for a send or receive event. In particular, it may send a message to only a subset of the destination set before crashing. In the Byzantine failure model, a process may behave arbitrarily.

  • […]

Type
Chapter
Information
Distributed Computing
Principles, Algorithms, and Systems
, pp. 510 - 566
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×