Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-21T18:42:22.695Z Has data issue: false hasContentIssue false

13 - Checkpointing and rollback recovery

Published online by Cambridge University Press:  05 June 2012

Ajay D. Kshemkalyani
Affiliation:
University of Illinois, Chicago
Mukesh Singhal
Affiliation:
University of Kentucky
Get access

Summary

Introduction

Distributed systems today are ubiquitous and enable many applications, including client–server systems, transaction processing, the World Wide Web, and scientific computing, among many others. Distributed systems are not fault-tolerant and the vast computing potential of these systems is often hampered by their susceptibility to failures. Many techniques have been developed to add reliability and high availability to distributed systems. These techniques include transactions, group communication, and rollback recovery. These techniques have different tradeoffs and focus. This chapter covers the rollback recovery protocols, which restore the system back to a consistent state after a failure.

Rollback recovery treats a distributed system application as a collection of processes that communicate over a network. It achieves fault tolerance by periodically saving the state of a process during the failure-free execution, enabling it to restart from a saved state upon a failure to reduce the amount of lost work. The saved state is called a checkpoint, and the procedure of restarting from a previously checkpointed state is called rollback recovery. A checkpoint can be saved on either the stable storage or the volatile storage depending on the failure scenarios to be tolerated.

In distributed systems, rollback recovery is complicated because messages induce inter-process dependencies during failure-free operation. Upon a failure of one or more processes in a system, these dependencies may force some of the processes that did not fail to roll back, creating what is commonly called a rollback propagation.

Type
Chapter
Information
Distributed Computing
Principles, Algorithms, and Systems
, pp. 456 - 509
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×