Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T10:26:06.762Z Has data issue: false hasContentIssue false

8 - Rheology and Vascular Pathobiology in Sickle Cell Disease and Thalassemia

from SECTION TWO - PATHOPHYSIOLOGY OF HEMOGLOBIN AND ITS DISORDERS

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

INTRODUCTION

Oxygen delivery and metabolite transfer occur in the exchange compartment of the microcirculation, processes affected by erythrocyte abnormalities and alterations in components of the vascular wall, with the latter influencing flow regulation at the arteriolar level. In sickle cell disease and thalassemia, red cell rheology is abnormal; there is hemolysis, anemia, and red cell and tissue oxidative stress. Chronic hypoxia and hemolysis, common to both conditions, necessitate vascular tone and flow adaptations. In sickle cell disease, red cell deformability is sensitive to intravascular O2 tension as deoxygenation results in hemoglobin S (HbS) polymerization, erythrocyte sickling, and vasoocclusion. Vasoocclusive events in sickle cell disease result in reperfusion injury characterized by excessive oxidant generation, endothelial activation and dysfunction, and inflammation. Similarly, in thalassemia, red cell abnormalities caused by precipitation of excess globin chains and oxidative stress lead to hemolysis and reduced red cell deformability and contribute to vascular pathobiology. Therefore, the heterozygote advantage seen in carriers of both these diseases (Chapter 26) is balanced by the vasculopathy characteristic of the homozygote. This chapter addresses the role of blood components and other factors that contribute to the vascular pathobiology of sickle cell disease and thalassemia.

SICKLE CELL DISEASE

Red Cell Rheology

Red cell rheology is the study of the cellular deformation under shear forces as encountered in the blood circulation. Pliability, or deformability, is a prominent feature of normal red cells, which enables them to traverse the microcirculation. The average diameter of normal human erythrocytes is approximately 8 μm.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 139 - 157
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clegg, JB, Weatherall, DJ. Thalassemia and malaria: new insights into an old problem. Proc Assoc Am Physicians. 1999;111(4):278–282.CrossRefGoogle ScholarPubMed
Ham, TH, Castle, WB. Relationship of increased hyotonic fragility to rythrostasis in certain anemias. Trans Assoc Am Physicians. 1940;55:127–132.Google Scholar
Chien, S, Usami, S, Bertles, JF. Abnormal rheology of oxygenated blood in sickle cell anemia. J Clin Invest. 1970;49(4):623–634.CrossRefGoogle ScholarPubMed
Clark, MR, Mohandas, N, Shohet, SB. Deformability of oxygenated irreversibly sickled cells. J Clin Invest. 1980;65(1):189–196.CrossRefGoogle ScholarPubMed
Self, F, McIntire, LV, Zanger, B. Rheological evaluation of hemoglobin S and hemoglobin C hemoglobinopathies. J Lab Clin Med. 1977;89(3):488–497.Google ScholarPubMed
Kaul, DK, Baez, S, Nagel, RL. Flow properties of oxygenated HbS and HbC erythrocytes in the isolated microvasculature of the rat. A contribution to the hemorheology of hemoglobinopathies. Clin Hemorheol. 1981;1:73–86.Google Scholar
Evans, E, Mohandas, N, Leung, A. Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration. J Clin Invest. 1984;73(2):477–488.CrossRefGoogle ScholarPubMed
Usami, S, Chien, S, Scholtz, PM, Bertles, JF. Effect of deoxygenation on blood rheology in sickle cell disease. Microvasc Res. 1975;9(3):324–334.CrossRefGoogle ScholarPubMed
Nash, GB, Johnson, CS, Meiselman, HJ. Influence of oxygen tension on the viscoelastic behavior of red blood cells in sickle cell disease. Blood. 1986;67(1):110–118.Google ScholarPubMed
Lacelle, PL. Oxygen delivery to muscle cells during capillary vascular occlusion by sickle erythrocytes. Blood Cells. 1977;3:273–281.Google Scholar
Baez, S, Kaul, DK, Nagel, RL. Microvascular determinants of blood flow behavior and HbSS erythrocyte plugging in microcirculation. Blood Cells. 1982;8(1):127–137.Google ScholarPubMed
Kaul, DK, Nagel, RL, Baez, S. Pressure effects on the flow behavior of sickle (HbSS) red cells in isolated (ex-vivo) microvascular system. Microvasc Res. 1983;26(2):170–181.CrossRefGoogle ScholarPubMed
Lipowsky, HH, Usami, S, Chien, S. Human SS red cell rheological behavior in the microcirculation of cremaster muscle. Blood Cells. 1982;8(1):113–126.Google ScholarPubMed
Kaul, DK, Xue, H. Rate of deoxygenation and rheologic behavior of blood in sickle cell anemia. Blood. 1991;77(6):1353–1361.Google ScholarPubMed
Eaton, WA, Hofrichter, J. Hemoglobin S gelation and sickle cell disease. Blood. 1987;70(5):1245–1266.Google ScholarPubMed
Hiruma, H, Noguchi, CT, Uyesaka, N, et al. Sickle cell rheology is determined by polymer fraction – not cell morphology. Am J Hematol. 1995;48(1):19–28.CrossRefGoogle Scholar
Kaul, DK, Fabry, ME, Windisch, P, Baez, S, Nagel, RL. Erythrocytes in sickle cell anemia are heterogeneous in their rheological and hemodynamic characteristics. J Clin Invest. 1983;72(1):22–31.CrossRefGoogle ScholarPubMed
Hoover, R, Rubin, R, Wise, G, Warren, R. Adhesion of normal and sickle erythrocytes to endothelial monolayer cultures. Blood. 1979;54(4):872–876.Google ScholarPubMed
Hebbel, RP, Boogaerts, MA, Eaton, JW, Steinberg, MH. Erythrocyte adherence to endothelium in sickle-cell anemia. A possible determinant of disease severity. N Engl J Med. 1980;302(18):992–995.CrossRefGoogle ScholarPubMed
Ferrone, FA. Kinetic models and the pathophysiology of sickle cell disease. Ann NY Acad Sci. 1989;565:63–74.CrossRefGoogle ScholarPubMed
Griendling, KK, Sorescu, D, Ushio-Fukai, M. NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res. 2000;86(5):494–501.CrossRefGoogle ScholarPubMed
Wood, KC, Hebbel, RP, Granger, DN. Endothelial cell NADPH oxidase mediates the cerebral microvascular dysfunction in sickle cell transgenic mice. FASEB J. 2005;19(8):989–991.CrossRefGoogle ScholarPubMed
Hsu, LL, Champion, HC, Campbell-Lee, SA, et al. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood. 2007;109(7):3088–3098.Google ScholarPubMed
Vasquez-Vivar, J, Kalyanaraman, B, Martasek, P, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci USA. 1998;95(16):9220–9225.CrossRefGoogle ScholarPubMed
Osarogiagbon, UR, Choong, S, Belcher, JD, Vercellotti, GM, Paller, MS, Hebbel, RP. Reperfusion injury pathophysiology in sickle transgenic mice. Blood. 2000;96:314–320.Google ScholarPubMed
Kaul, DK, Hebbel, RP. Hypoxia/reoxygenation causes inflammatory response in transgenic sickle mice but not in normal mice [see comments]. J Clin Invest. 2000;106(3):411–420.CrossRefGoogle Scholar
Hebbel, RP, Osarogiagbon, R, Kaul, D. The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation. 2004;11(2):129–151.CrossRefGoogle Scholar
Aslan, M, Ryan, TM, Adler, B, et al. Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease. Proc Natl Acad Sci USA. 2001;98(26):15215–15220.CrossRefGoogle ScholarPubMed
Kaul, DK, Liu, XD, Choong, S, Belcher, JD, Vercellotti, GM, Hebbel, RP. Anti-inflammatory therapy ameliorates leukocyte adhesion and microvascular flow abnormalities in transgenic sickle mice. Am J Physiol Heart Circ Physiol. 2004;287(1):H293–H301.CrossRefGoogle ScholarPubMed
Kalambur, VS, Mahaseth, H, Bischof, JC, et al. Microvascular blood flow and stasis in transgenic sickle mice: utility of a dorsal skin fold chamber for intravital microscopy. Am J Hematol. 2004;77(2):117–125.CrossRefGoogle ScholarPubMed
Dasgupta, T, Hebbel, RP, Kaul, DK. Protective effect of arginine on oxidative stress in transgenic sickle mouse models. Free Rad Biol Med. 2006;41(12):1771–1780.CrossRefGoogle ScholarPubMed
Chiu, D, Lubin, B. Abnormal vitamin E and glutathione peroxidase levels in sickle cell anemia: evidence for increased susceptibility to lipid peroxidation in vivo. J Lab Clin Med. 1979;94(4):542–548.Google ScholarPubMed
Das, SK, Nair, RC. Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation of normal and sickled erythrocytes. Br J Haematol. 1980;44(1):87–92.CrossRefGoogle ScholarPubMed
Nita, DA, Nita, V, Spulber, S, et al. Oxidative damage following cerebral ischemia depends on reperfusion – a biochemical study in rat. J Cell Mol Med. 2001;5(2):163–170.CrossRefGoogle ScholarPubMed
Kaul, DK, Liu, XD, Chang, HY, Nagel, RL, Fabry, ME. Effect of fetal hemoglobin on microvascular regulation in sickle transgenic-knockout mice. J Clin Invest. 2004;114(8):1136–1145.CrossRefGoogle ScholarPubMed
Kurozumi, R, Takahashi, M, Kojima, S. Involvement of mitochondrial peroxynitrite in nitric oxide-induced glutathione synthesis. Biol Pharm Bull. 2005;28(5):779–785.CrossRefGoogle ScholarPubMed
Morris, CR, Kuypers, FA, Larkin, S, et al. Arginine therapy: a novel strategy to induce nitric oxide production in sickle cell disease. Br J Haematol. 2000;111(2):498–500.CrossRefGoogle ScholarPubMed
Reiter, CD, Wang, X, Tanus-Santos, JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8(12):1383–1389.CrossRefGoogle ScholarPubMed
Kaneko, FT, Arroliga, AC, Dweik, RA, et al. Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am J Respir Crit Care Med. 1998;158(3):917–923.CrossRefGoogle ScholarPubMed
Wetterstroem, N, Brewer, GJ, Warth, JA, Mitchinson, A, Near, K. Relationship of glutathione levels and Heinz body formation to irreversibly sickled cells in sickle cell anemia. J Lab Clin Med. 1984;103(4):589–596.Google ScholarPubMed
Reid, M, Badaloo, A, Forrester, T, Jahoor, F. In vivo rates of erythrocyte glutathione synthesis in adults with sickle cell disease. Am J Physiol Endocrinol Metab. 2006;291(1):E73–E79.CrossRefGoogle ScholarPubMed
Morris, CR, Suh, JH, Hagar, W, et al. Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood. 2008;111(1):402–410.CrossRefGoogle ScholarPubMed
Klug, PP, Kaye, N, Jensen, WN. Endothelial cell and vascular damage in the sickle cell disorders. Blood Cells. 1982;8(1):175–184.Google ScholarPubMed
Wood, KC, Hebbel, RP, Granger, DN. Endothelial cell P-selectin mediates a proinflammatory and prothrombogenic phenotype in cerebral venules of sickle cell transgenic mice. Am J Physiol Heart Circ Physiol. 2004;286(5):H1608–H1614.CrossRefGoogle ScholarPubMed
Turhan, A, Weiss, , Mohandas, N, Coller, BS, Frenette, PS. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci USA. 2002;99(5):3047–3051.CrossRefGoogle ScholarPubMed
Sultana, C, Shen, Y, Rattan, V, Johnson, C, Kalra, VK. Interaction of sickle erythrocytes with endothelial cells in the presence of endothelial cell conditioned medium induces oxidant stress leading to transendothelial migration of monocytes. Blood. 1998;92(10):3924–3935.Google ScholarPubMed
Belcher, JD, Bryant, CJ, Nguyen, J, et al. Transgenic sickle mice have vascular inflammation. Blood. 2003;101(10):3953–3959.CrossRefGoogle ScholarPubMed
Wood, K, Russell, J, Hebbel, RP, Granger, DN. Differential expression of E- and P-selectin in the microvasculature of sickle cell transgenic mice. Microcirculation. 2004;11(4):377–385.CrossRefGoogle Scholar
Hebbel, RP, Eaton, JW, Balasingam, M, Steinberg, MH. Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest. 1982;70(6):1253–1259.CrossRefGoogle ScholarPubMed
Das, KC, Lewis-Molock, Y, White, CW. Thiol modulation of TNF alpha and IL-1 induced MnSOD gene expression and activation of NF-kappa B. Mol Cell Biochem. 1995;148(1):45–57.CrossRefGoogle ScholarPubMed
Haddad, JJ. Science review: Redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: role for nuclear factor-kappaB. Crit Care. 2002;6(6):481–490.CrossRefGoogle ScholarPubMed
Sowemimo-Coker, SO, Meiselman, HJ, Francis, RBIncreased circulating endothelial cells in sickle cell crisis. Am J Hematol. 1989;31(4):263–265.CrossRefGoogle ScholarPubMed
Solovey, A, Lin, Y, Browne, P, Choong, S, Wayner, E, Hebbel, RP. Circulating activated endothelial cells in sickle cell anemia [see comments]. N Engl J Med. 1997;337(22):1584–1590.CrossRefGoogle Scholar
Conger, JD, Weil, JV. Abnormal vascular function following ischemia-reperfusion injury. J Invest Med. 1995;43(5):431–442.Google ScholarPubMed
Kaul, DK, Liu, XD, Zhang, X, Ma, L, Hsia, CJ, Nagel, RL. Inhibition of sickle red cell adhesion and vasoocclusion in the microcirculation by antioxidants. Am J Physiol Heart Circ Physiol. 2006;291(1):H167–H175.CrossRefGoogle ScholarPubMed
Hebbel, RP, Yamada, O, Moldow, CF, Jacob, HS, White, JG, Eaton, JW. Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: possible mechanism for microvascular occlusion in sickle cell disease. J Clin Invest. 1980;65(1):154–160.CrossRefGoogle ScholarPubMed
Barabino, GA, McIntire, LV, Eskin, SG, Sears, DA, Udden, M. Endothelial cell interactions with sickle cell, sickle trait, mechanically injured, and normal erythrocytes under controlled flow. Blood. 1987;70(1):152–157.Google ScholarPubMed
Mohandas, N, Evans, E. Sickle erythrocyte adherence to vascular endothelium. Morphologic correlates and the requirement for divalent cations and collagen-binding plasma proteins. J Clin Invest. 1985;76(4):1605–1612.CrossRefGoogle ScholarPubMed
Kaul, DK, Chen, D, Zhan, J. Adhesion of sickle cells to vascular endothelium is critically dependent on changes in density and shape of the cells. Blood. 1994;83(10):3006–3017.Google ScholarPubMed
Kaul, DK, Fabry, ME, Nagel, RL. Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications. Proc Natl Acad Sci USA. 1989;86(9):3356–3360.CrossRefGoogle ScholarPubMed
Kaul, DK, Liu, XD, Zhang, X, et al. Peptides based on {alpha}V-binding domains of erythrocyte ICAM-4 inhibit sickle red cell-endothelial interactions and vaso-occlusion in the microcirculation. Am J Physiol Cell Physiol. 2006;291(5):C922–C930.CrossRefGoogle ScholarPubMed
Zennadi, R, Moeller, BJ, Whalen, EJ, et al. Epinephrine-induced activation of LW-mediated sickle cell adhesion and vaso-occlusion in vivo. Blood. 2007;110(7):2708–2717.CrossRefGoogle ScholarPubMed
Brittain, HA, Eckman, JR, Swerlick, RA, Howard, RJ, Wick, TM. Thrombospondin from activated platelets promotes sickle erythrocyte adherence to human microvascular endothelium under physiologic flow: a potential role for platelet activation in sickle cell vaso-occlusion. Blood. 1993;81(8):2137–2143.Google ScholarPubMed
Wick, TM, Moake, JL, Udden, MM, Eskin, SG, Sears, DA, McIntire, LV. Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow. J Clin Invest. 1987;80(3):905–910.CrossRefGoogle ScholarPubMed
Kaul, DK, Fabry, ME, Costantini, F, Rubin, EM, Nagel, RL. In vivo demonstration of red cell-endothelial interaction, sickling and altered microvascular response to oxygen in the sickle transgenic mouse. J Clin Invest. 1995;96(6):2845–2853.CrossRefGoogle ScholarPubMed
Fabry, ME, Suzuka, SM, Weinberg, RS, et al. Second generation knockout sickle mice: the effect of HbF. Blood. 2001;97(2):410–418.CrossRefGoogle ScholarPubMed
Swerlick, RA, Eckman, JR, Kumar, A, Jeitler, M, Wick, TM. Alpha 4 beta 1-integrin expression on sickle reticulocytes: vascular cell adhesion molecule-1-dependent binding to endothelium. Blood. 1993;82(6):1891–1899.Google ScholarPubMed
Sugihara, K, Sugihara, T, Mohandas, N, Hebbel, RP. Thrombospondin mediates adherence of CD36+ sickle reticulocytes to endothelial cells. Blood. 1992;80(10):2634–2642.Google ScholarPubMed
Setty, BN, Stuart, MJ. Vascular cell adhesion molecule-1 is involved in mediating hypoxia-induced sickle red blood cell adherence to endothelium: potential role in sickle cell disease. Blood. 1996;88(6):2311–2320.Google ScholarPubMed
Stuart, MJ, Setty, BN. Acute chest syndrome of sickle cell disease: new light on an old problem. Curr Opin Hematol. 2001;8(2):111–122.CrossRefGoogle ScholarPubMed
Vichinsky, EP, Styles, , Colangelo, LH, Wright, EC, Castro, O, Nickerson, B. Acute chest syndrome in sickle cell disease: clinical presentation and course. Cooperative Study of Sickle Cell Disease. Blood. 1997;89(5):1787–1792.Google ScholarPubMed
Barabino, GA, Liu, XD, Ewenstein, BM, Kaul, DK. Anionic polysaccharides inhibit adhesion of sickle erythrocytes to the vascular endothelium and result in improved hemodynamic behavior. Blood. 1999;93(4):1422–1429.Google ScholarPubMed
Hillery, CA, Du, MC, Montgomery, RR, Scott, JP. Increased adhesion of erythrocytes to components of the extracellular matrix: isolation and characterization of a red blood cell lipid that binds thrombospondin and laminin. Blood. 1996;87(11):4879–4886.Google ScholarPubMed
Brittain, JE, Mlinar, KJ, Anderson, CS, Orringer, EP, Parise, LV. Activation of sickle red blood cell adhesion via integrin-associated protein/CD47-induced signal transduction. J Clin Invest. 2001;107(12):1555–1562.CrossRefGoogle ScholarPubMed
Zennadi, R, Hines, PC, Castro, LM, Cartron, JP, Parise, LV, Telen, MJ. Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothelium via LW-alphavbeta3 interactions. Blood. 2004;104(12):3774–3781.CrossRefGoogle ScholarPubMed
Hines, PC, Zen, Q, Burney, SN, et al. Novel epinephrine and cyclic AMP-mediated activation of BCAM/Lu-dependent sickle (SS) RBC adhesion. Blood. 2003;101(8):3281–3287.CrossRefGoogle ScholarPubMed
Hermand, P, Gane, P, Callebaut, I, Kieffer, N, Cartron, JP, Bailly, P. Integrin receptor specificity for human red cell ICAM-4 ligand. Critical residues for alphaIIbeta3 binding. Eur J Biochem. 2004;271(18):3729–3740.CrossRefGoogle ScholarPubMed
Spring, FA, Parsons, SF, Ortlepp, S, et al. Intercellular adhesion molecule-4 binds alpha(4)beta(1) and alpha(V)-family integrins through novel integrin-binding mechanisms. Blood. 2001;98(2):458–466.CrossRefGoogle ScholarPubMed
Setty, BN, Kulkarni, S, Stuart, MJ. Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood. 2002;99(5):1564–1571.CrossRefGoogle ScholarPubMed
Wick, TM, Moake, JL, Udden, MM, McIntire, LV. Unusually large von Willebrand factor multimers preferentially promote young sickle and nonsickle erythrocyte adhesion to endothelial cells. Am J Hematol. 1993;42(3):284–292.CrossRefGoogle ScholarPubMed
Kaul, DK, Nagel, RL, Chen, D, Tsai, HM. Sickle erythrocyte-endothelial interactions in microcirculation: the role of von Willebrand factor and implications for vasoocclusion. Blood. 1993;81(9):2429–2438.Google ScholarPubMed
Hillery, CA, Scott, JP, Ming, cD. The carboxy-terminal cell-binding domain of thrombospondin is essential for sickle red cell adhesion. Blood. 1999;94(1):302–309.Google Scholar
Kaul, DK, Tsai, HM, Liu, XD, Nakada, MT, Nagel, RL, Coller, BS. Monoclonal antibodies to alphaVbeta3 (7E3 and LM609) inhibit sickle red blood cell-endothelium interactions induced by platelet-activating factor [see comments]. Blood. 2000;95(2):368–374.Google Scholar
Richardson, SG, Matthews, KB, Stuart, J, Geddes, AM, Wilcox, RM. Serial changes in coagulation and viscosity during sickle-cell crisis. Br J Haematol. 1979;41(1):95–103.CrossRefGoogle ScholarPubMed
Felding-Habermann, B, Cheresh, DA. Vitronectin and its receptors. Curr Opin Cell Biol. 1993;5(5):864–868.CrossRefGoogle ScholarPubMed
Barabino, GA, Wise, RJ, Woodbury, VA, et al. Inhibition of sickle erythrocyte adhesion to immobilized thrombospondin by von Willebrand factor under dynamic flow conditions. Blood. 1997;89(7):2560–2567.Google ScholarPubMed
Matsui, NM, Borsig, L, Rosen, SD, Yaghmai, M, Varki, A, Embury, SH. P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood. 2001;98(6):1955–1962.CrossRefGoogle ScholarPubMed
Matsui, NM, Varki, A, Embury, SH. Heparin inhibits the flow adhesion of sickle red blood cells to P-selectin. Blood. 2002;100(10):3790–3796.CrossRefGoogle ScholarPubMed
Embury, SH, Matsui, NM, Ramanujam, S, et al. The contribution of endothelial cell P-selectin to the microvascular flow of mouse sickle erythrocytes in vivo. Blood. 2004;104(10):3378–3385.CrossRefGoogle ScholarPubMed
Swerlick, RA, Lee, KH, Wick, TM, Lawley, TJ. Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J Immunol. 1992;148(1):78–83.Google Scholar
Cheresh, DA. Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor. Proc Natl Acad Sci USA. 1987;84(18):6471–6475.CrossRefGoogle ScholarPubMed
Kramer, RH, Cheng, YF, Clyman, R. Human microvascular endothelial cells use beta 1 and beta 3 integrin receptor complexes to attach to laminin. J Cell Biol. 1990;111(3):1233–1243.CrossRefGoogle Scholar
Oh, SO, Ibe, BO, Johnson, C, Kurantsin-Mills, J, Raj, JU. Platelet-activating factor in plasma of patients with sickle cell disease in steady state. J Lab Clin Med. 1997;130(2):191–196.CrossRefGoogle ScholarPubMed
Finnegan, EM, Barabino, GA, Liu, XD, Chang, HY, Jonczyk, A, Kaul, DK. Small-molecule cyclic {alpha}Vbeta3 antagonists inhibit sickle red cell adhesion to vascular endothelium and vasoocclusion. Am J Physiol Heart Circ Physiol. 2007; 293(2):H1038–H1045.CrossRefGoogle Scholar
Hebbel, RP. Blockade of adhesion of sickle cells to endothelium by monoclonal antibodies. N Engl J Med. 2000;342(25):1910–1912.CrossRefGoogle ScholarPubMed
Charache, S, Barton, FB, Moore, RD, et al. Hydroxyurea and sickle cell anemia. Clinical utility of a myelosuppressive “switching” agent. The Multicenter Study of Hydroxyurea in Sickle Cell Anemia. Medicine. 1996;75(6):300–326.CrossRefGoogle ScholarPubMed
Steinberg, MH, Lu, ZH, Barton, FB, Terrin, ML, Charache, S, Dover, GJ. Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea. Multicenter Study of Hydroxyurea. Blood. 1997;89(3):1078–1088.Google ScholarPubMed
Setty, BN, Kulkarni, S, Dampier, CD, Stuart, MJ. Fetal hemoglobin in sickle cell anemia: relationship to erythrocyte adhesion markers and adhesion. Blood. 2001;97(9):2568–2573.CrossRefGoogle ScholarPubMed
Saleh, AW, Duits, AJ, Gerbers, A, Vries, C, Hillen, HF. Cytokines and soluble adhesion molecules in sickle cell anemia patients during hydroxyurea therapy. Acta Haematol. 1998;100(1):26–31.CrossRefGoogle ScholarPubMed
Bridges, KR, Barabino, GD, Brugnara, C, et al. A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy. Blood. 1996;88(12):4701–4710.Google ScholarPubMed
Cokic, VP, Smith, RD, Beleslin-Cokic, BB, et al. Hydroxyurea induces fetal hemoglobin by the nitric oxide-dependent activation of soluble guanylyl cyclase. J Clin Invest. 2003;111(2):231–239.CrossRefGoogle ScholarPubMed
Space, SL, Lane, PA, Pickett, CK, Weil, JV. Nitric oxide attenuates normal and sickle red blood cell adherence to pulmonary endothelium. Am J Hematol. 2000;63(4):200–204.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Kaul, DK, Fabry, ME, Nagel, RL. Erythrocytic and vascular factors influencing the microcirculatory behavior of blood in sickle cell anemia. Ann NY Acad Sci. 1989;565:316–326.CrossRefGoogle ScholarPubMed
Kaul, DK, Fabry, ME, Nagel, RL. The pathophysiology of vascular obstruction in the sickle syndromes. Blood Rev. 1996;10(1):29–44.CrossRefGoogle ScholarPubMed
Kaul, DK. Flow properties and endothelial adhesion of sickle erythrocytes in an ex vivo microvascular preparation. In: Ohnishi, ST, Ohnishi, T, eds. Membrane Abnormalities in Sickle Cell Disease and in Other Red Blood Cell Disorders. Boca Raton, FL: CRC Press; 1994:217–241.Google Scholar
Embury, SH. The not-so-simple process of sickle cell vasoocclusion. Microcirculation. 2004;11(2):101–113.CrossRefGoogle ScholarPubMed
Fabry, ME, Fine, E, Rajanayagam, V, et al. Demonstration of endothelial adhesion of sickle cells in vivo: a distinct role for deformable sickle cell discocytes. Blood. 1992;79(6):1602–1611.Google ScholarPubMed
Fabry, ME, Rajanayagam, V, Fine, E, et al. Modeling sickle cell vasoocclusion in the rat leg: quantification of trapped sickle cells and correlation with 31P metabolic and 1H magnetic resonance imaging changes. Proc Natl Acad Sci USA. 1989;86(10):3808–3812.CrossRefGoogle ScholarPubMed
Kaul, DK, Fabry, ME, Nagel, RL. Vaso-occlusion by sickle cells: evidence for selective trapping of dense red cells. Blood. 1986;68(5):1162–1166.Google ScholarPubMed
Fabry, ME, Benjamin, L, Lawrence, C, Nagel, RL. An objective sign in painful crisis in sickle cell anemia: the concomitant reduction of high density red cells. Blood. 1984;64(2):559–563.Google ScholarPubMed
Ballas, SK, Smith, ED. Red blood cell changes during the evolution of the sickle cell painful crisis. Blood. 1992;79(8):2154–2163.Google ScholarPubMed
Graido-Gonzalez, E, Doherty, JC, Bergreen, EW, Organ, G, Telfer, M, McMillen, MA. Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis. Blood. 1998;92(7):2551–2555.Google ScholarPubMed
Weinstein, R, Zhou, MA, Bartlett-Pandite, A, Wenc, K. Sickle erythrocytes inhibit human endothelial cell DNA synthesis. Blood. 1990;76(10):2146–2152.Google ScholarPubMed
Phelan, M, Perrine, SP, Brauer, M, Faller, DV. Sickle erythrocytes, after sickling, regulate the expression of the endothelin-1 gene and protein in human endothelial cells in culture. J Clin Invest. 1995;96(2):1145–1151.CrossRefGoogle ScholarPubMed
Setty, BN, Chen, D, Stuart, MJ. Sickle red blood cells stimulate endothelial cell production of eicosanoids and diacylglycerol. J Lab Clin Med. 1996;128(3):313–321.CrossRefGoogle ScholarPubMed
Sowemimo-Coker, SO, Haywood, LJ, Meiselman, HJ, Francis, RBEffects of normal and sickle erythrocytes on prostacyclin release by perfused human umbilical cord veins. Am J Hematol. 1992;40(4):276–282.CrossRefGoogle ScholarPubMed
Hollopeter, G, Jantzen, HM, Vincent, D, et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature. 2001;409(6817):202–207.CrossRefGoogle ScholarPubMed
Hebbel, RP, Vercellotti, GM. The endothelial biology of sickle cell disease. J Lab Clin Med. 1997;129(3):288–293.CrossRefGoogle ScholarPubMed
Villagra, J, Shiva, S, Hunter, , Machado, RF, Gladwin, MT, Kato, GJ. Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension and nitric oxide scavenging by cell-free hemoglobin. Blood. 2007;110:2166–2172.CrossRefGoogle ScholarPubMed
Boggs, DR, Hyde, F, Srodes, C. An unusual pattern of neutrophil kinetics in sickle cell anemia. Blood. 1973;41(1):59–65.Google ScholarPubMed
Platt, OS. Sickle cell anemia as an inflammatory disease. J Clin Invest. 2000;106(3):337–338.CrossRefGoogle ScholarPubMed
Helmke, BP, Bremner, SN, Zweifach, BW, Skalak, R, Schmid-Schonbein, GW. Mechanisms for increased blood flow resistance due to leukocytes. Am J Physiol. 1997;273(6 Pt 2):H2884–H2890.Google ScholarPubMed
Lipowsky, HH, Scott, DA, Cartmell, JS. Leukocyte rolling velocity and its relation to leukocyte-endothelium adhesion and cell deformability. Am J Physiol. 1996;270(4 Pt 2):H1371–H1380.Google ScholarPubMed
Turhan, A, Jenab, P, Bruhns, P, Ravetch, JV, Coller, BS, Frenette, PS. Intravenous immune globulin prevents venular vaso-occlusion in sickle cell mice by inhibiting leukocyte adhesion and the interactions between sickle erythrocytes and adherent leukocytes. Blood. 2004;103(6):2397–2400.CrossRefGoogle ScholarPubMed
Chang, J, Shi, PA, Chiang, EY, Frenette, PS. Intravenous immunoglobulins reverse acute vaso-occlusive crises in sickle cell mice through rapid inhibition of neutrophil adhesion. Blood. 2008;111(2):915–923.CrossRefGoogle ScholarPubMed
Lonsdorfer, J, Bogui, P, Otayeck, A, Bursaux, E, Poyart, C, Cabannes, R. Cardiorespiratory adjustments in chronic sickle cell anemia. Bull Eur Physiopathol Respir. 1983;19(4):339–344.Google ScholarPubMed
Belhassen, L, Pelle, G, Sediame, S, et al. Endothelial dysfunction in patients with sickle cell disease is related to selective impairment of shear stress-mediated vasodilation. Blood. 2001;97(6):1584–1589.CrossRefGoogle ScholarPubMed
Johnson, CS, Giorgio, AJ. Arterial blood pressure in adults with sickle cell disease. Arch Intern Med. 1981;141(7):891–893.CrossRefGoogle ScholarPubMed
Rodgers, GP, Schechter, AN, Noguchi, CT et al. Periodic microcirculatory flow in patients with sickle-cell disease. N Engl J Med. 1984;311(24):1534–1538.CrossRefGoogle ScholarPubMed
Lipowsky, HH, Sheikh, NU, Katz, DM. Intravital microscopy of capillary hemodynamics in sickle cell disease. J Clin Invest. 1987;80(1):117–127.CrossRefGoogle ScholarPubMed
Nath, KA, Katusic, ZS, Gladwin, MT. The perfusion paradox and vascular instability in sickle cell disease. Microcirculation. 2004;11(2):179–193.CrossRefGoogle ScholarPubMed
Gladwin, MT, Kato, GJ. Cardiopulmonary complications of sickle cell disease: role of nitric oxide and hemolytic anemia. Hematol Am Soc Hematol Educ Program. 2005;51–57.Google ScholarPubMed
Eberhardt, RT, McMahon, L, Duffy, SJ, et al. Sickle cell anemia is associated with reduced nitric oxide bioactivity in peripheral conduit and resistance vessels. Am J Hematol. 2003;74(2):104–111.CrossRefGoogle ScholarPubMed
Kubes, P, Suzuki, M, Granger, DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA. 1991;88(11):4651–4655.CrossRefGoogle ScholarPubMed
Moncada, S, Palmer, RM, Higgs, EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43(2):109–142.Google ScholarPubMed
Ogawa, T, Nussler, AK, Tuzuner, E, et al. Contribution of nitric oxide to the protective effects of ischemic preconditioning in ischemia-reperfused rat kidneys. J Lab Clin Med. 2001;138(1):50–58.CrossRefGoogle ScholarPubMed
Morris, CR, Morris, SM, Hagar, W, et al. Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease?Am J Respir Crit Care Med. 2003;168(1):63–69.CrossRefGoogle ScholarPubMed
Romero, JR, Suzuka, SM, Nagel, RL, Fabry, ME. Arginine supplementation of sickle transgenic mice reduces red cell density and Gardos channel activity. Blood. 2002;99(4):1103–1108.CrossRefGoogle ScholarPubMed
Enwonwu, CO. Increased metabolic demand for arginine in sickle cell anemia. Med Sci Res. 1989;17:997–998.Google Scholar
Morris, CR, Kato, GJ, Poljakovic, M, et al. Dysregulated arginine metabolism, hemolysis-associated pulmonary hypertension, and mortality in sickle cell disease. JAMA. 2005;294(1):81–90.CrossRefGoogle ScholarPubMed
Harrison, DG. Cellular and molecular mechanisms of endothelial cell dysfunction. J Clin Invest. 1997;100(9):2153–2157.CrossRefGoogle ScholarPubMed
Gladwin, MT, Lancaster, JR, Freeman, BA, Schechter, AN. Nitric oxide's reactions with hemoglobin: a view through the SNO-storm. Nat Med. 2003;9(5):496–500.CrossRefGoogle ScholarPubMed
Kaul, DK, Liu, XD, Fabry, ME, Nagel, RL. Impaired nitric oxide-mediated vasodilation in transgenic sickle mouse. Am J Physiol Heart Circ Physiol. 2000;278(6):H1799–H1806.CrossRefGoogle ScholarPubMed
Nath, KA, Shah, V, Haggard, JJ, et al. Mechanisms of vascular instability in a transgenic mouse model of sickle cell disease. Am J Physiol Regul Integr Comp Physiol. 2000;279(6):R1949–R1955.CrossRefGoogle Scholar
Gladwin, MT, Kato, GJ. Cardiopulmonary complications of sickle cell disease: role of nitric oxide and hemolytic anemia. Hematol. Am Soc Hematol Educ Program. 2005;51–57.Google ScholarPubMed
Gladwin, MT, Schechter, AN, Ognibene, FP, et al. Divergent nitric oxide bioavailability in men and women with sickle cell disease. Circulation. 2003;107(2):271–278.CrossRefGoogle ScholarPubMed
Landino, LM, Crews, BC, Timmons, MD, Morrow, JD, Marnett, LJ. Peroxynitrite, the coupling product of nitric oxide and superoxide, activates prostaglandin biosynthesis. Proc Natl Acad Sci USA. 1996;93(26):15069–15074.CrossRefGoogle ScholarPubMed
Alp, NJ, Channon, KM. Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler Thromb Vasc Biol. 2004;24(3):413–420.CrossRefGoogle ScholarPubMed
Landmesser, U, Dikalov, S, Price, SR, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111(8):1201–1209.CrossRefGoogle ScholarPubMed
Katusic, ZS, d'Uscio, LV. Tetrahydrobiopterin: mediator of endothelial protection. Arterioscler Thromb Vasc Biol. 2004;24(3):397–398.CrossRefGoogle ScholarPubMed
Wood, KC, Hebbel, RP, Lefer, DJ, Granger, DN. Critical role of endothelial cell-derived nitric oxide synthase in sickle cell disease-induced microvascular dysfunction. Free Rad Biol Med. 2006;40(8):1443–1453.CrossRefGoogle ScholarPubMed
Kooy, NW, Lewis, SJ. Nitrotyrosine attenuates the hemodynamic effects of adrenoceptor agonists in vivo: relevance to the pathophysiology of peroxynitrite. Eur J Pharmacol. 1996;310(2–3):155–161.CrossRefGoogle ScholarPubMed
Kooy, NW, Lewis, SJ. The peroxynitrite product 3-nitro-L-tyrosine attenuates the hemodynamic responses to angiotensin II in vivo. Eur J Pharmacol. 1996;315(2):165–170.CrossRefGoogle ScholarPubMed
Hatch, FE, Crowe, LR, Miles, , Young, JP, Portner, ME. Altered vascular reactivity in sickle hemoglobinopathy. A possible protective factor from hypertension. Am J Hyperten. 1989;2(1):2–8.CrossRefGoogle ScholarPubMed
Setty, BNY, Rao, AK, Stuart, MJ. Thrombophilia in sickle cell disease: the red cell connection. Blood. 2001;98(12):3228–3233.CrossRefGoogle ScholarPubMed
Ataga, KI, Orringer, EP. Hypercoagulability in sickle cell disease: a curious paradox. Am J Med. 2003;115(9):721–728.CrossRefGoogle ScholarPubMed
Weatherall, DJ. The thalassemias. In: Stamatoyannopoulos, G, ed. Molecular Basis of Blood Diseases. Philadelphia: WB Saunders; 1994:157–205.Google Scholar
Urbinati, F, Madigan, C, Malik, P. Pathophysiology and therapy for haemoglobinopathies. Part II: thalassaemias. Expert Rev Mol Med. 2006;8(10):1–26.CrossRefGoogle ScholarPubMed
Lacelle, PL. Behavior of abnormal erythrocytes in capillaries. In: Cokelet, GR, Meiselman, HJ, Brooks, DF, eds. Erythrocyte Mechanics and Blood Flow. New York: Alan R. Liss; 1980:195–211.Google Scholar
Schrier, SL, Rachmilewitz, E, Mohandas, N. Cellular and membrane properties of alpha and beta thalassemic erythrocytes are different: implication for differences in clinical manifestations. Blood. 1989;74(6):2194–2202.Google ScholarPubMed
Waugh, SM, Low, PS. Hemichrome binding to band 3: nucleation of Heinz bodies on the erythrocyte membrane. Biochemistry. 1985;24(1):34–39.CrossRefGoogle ScholarPubMed
Shinar, E, Rachmilewitz, EA, Lux, SE. Differing erythrocyte membrane skeletal protein defects in alpha and beta thalassemia. J Clin Invest. 1989;83(2):404–410.CrossRefGoogle ScholarPubMed
Noguchi, CT, Dover, GJ, Rodgers, GP, et al. Alpha thalassemia changes erythrocyte heterogeneity in sickle cell disease. J Clin Invest. 1985;75(5):1632–1637.CrossRefGoogle ScholarPubMed
Embury, SH, Clark, MR, Monroy, G, Mohandas, N. Concurrent sickle cell anemia and alpha-thalassemia. Effect on pathological properties of sickle erythrocytes. J Clin Invest. 1984;73(1):116–123.CrossRefGoogle ScholarPubMed
Rubin, EM, Kan, YW, Mohandas, N. Effect of human beta (s)-globin chains on cellular properties of red cells from beta-thalassemic mice. J Clin Invest. 1988;82(3):1129–1133.CrossRefGoogle ScholarPubMed
Eldor, A, Rachmilewitz, EA. The hypercoagulable state in thalassemia. Blood. 2002;99(1):36–43.CrossRefGoogle ScholarPubMed
Borenstain-Ben, Y, Barenholz, Y, Hy-Am, E, Rachmilewitz, EA, Eldor, A. Phosphatidylserine in the outer leaflet of red blood cells from beta-thalassemia patients may explain the chronic hypercoagulable state and thrombotic episodes. Am J Hematol. 1993;44(1):63–65.Google Scholar
Singer, ST, Kuypers, FA, Styles, L, Vichinsky, EP, Foote, D, Rosenfeld, H. Pulmonary hypertension in thalassemia: association with platelet activation and hypercoagulable state. Am J Hematol. 2006;81(9):670–675.CrossRefGoogle Scholar
Morris, CR, Kuypers, FA, Kato, GJ, et al. Hemolysis-associated pulmonary hypertension in thalassemia. Ann NY Acad Sci. 2005;1054:481–485.CrossRefGoogle ScholarPubMed
Aessopos, A, Farmakis, D. Pulmonary hypertension in beta-thalassemia. Ann NY Acad Sci. 2005;1054:342–349.CrossRefGoogle ScholarPubMed
Factor, JM, Pottipati, SR, Rappoport, I, Rosner, IK, Lesser, ML, Giardina, PJ. Pulmonary function abnormalities in thalassemia major and the role of iron overload. Am J Respir Crit Care Med. 1994;149(6):1570–1574.CrossRefGoogle ScholarPubMed
Zakynthinos, E, Vassilakopoulos, T, Kaltsas, P, et al. Pulmonary hypertension, interstitial lung fibrosis, and lung iron deposition in thalassaemia major. Thorax. 2001;56(9):737–739.CrossRefGoogle ScholarPubMed
Link, G, Pinson, A, Hershko, C. Heart cells in culture: a model of myocardial iron overload and chelation. J Lab Clin Med. 1985;106(2):147–153.Google Scholar
Aessopos, A, Kati, M, Farmakis, D. Heart disease in thalassemia intermedia: a review of the underlying pathophysiology. Haematologica. 2007;92(5):658–665.CrossRefGoogle ScholarPubMed
Cheung, YF, Chan, GC, Ha, SY. Arterial stiffness and endothelial function in patients with beta-thalassemia major. Circulation. 2002;106(20):2561–2566.CrossRefGoogle ScholarPubMed
Aessopos, A, Farmakis, D, Karagiorga, M, et al. Cardiac involvement in thalassemia intermedia: a multicenter study. Blood. 2001;97(11):3411–3416.CrossRefGoogle ScholarPubMed
Stoyanova, E, Trudel, M, Felfly, H, Garcia, D, Cloutier, G. Characterization of circulatory disorders in beta-thalassemic mice by noninvasive ultrasound biomicroscopy. Physiol Genom. 2007;29(1):84–90.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×