Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T13:19:31.980Z Has data issue: false hasContentIssue false

5 - Epigenetic mechanisms

Published online by Cambridge University Press:  08 August 2009

Emma Whitelaw
Affiliation:
University of Sydney
David Garrick
Affiliation:
Oxford University
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

There is a growing awareness that whether or not a gene is actively expressed within a particular cell is determined not only by the primary nucleotide sequence of the gene and its regulatory elements, but also by changes in the way the DNA is modified and packaged within the nucleus. This non-sequence-based information is termed epigenetic. Epigenetic changes include methylation of the DNA itself, and modifications of the histone proteins that package the DNA within chromosomes. The pattern of epigenetic information varies from cell type to cell type and is reflected by the cell-specific profile of gene expression. Once established in a differentiated cell type, these epigenetic signals are stably inherited through mitosis, and are essential to maintain the correct gene expression profile within cells of that type for the life of the organism. The acquisition and maintenance of the correct epigenetic profile is therefore essential for normal development. The past decade has witnessed an explosion in our understanding of so-called ‘epigenetic diseases’, where the disruption of an epigenetic signal results in the inappropriate expression or silencing of one or more genes, giving rise to the disease phenotype. The aims of this chapter are to introduce the chemical nature of the major epigenetic signals, to discuss epigenetic processes which take place during normal development, and to briefly review some of the important examples of human diseases arising due to breakdowns in epigenetic processes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amir, R. E., Veyver, I. B., Wan, M., Tran, C. Q., Francke, U. and Zoghbi, H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet., 23, 185–8.CrossRefGoogle ScholarPubMed
Bachman, K. E., Park, B. H., Rhee, I.et al. (2003). Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell, 3, 89–95.CrossRefGoogle ScholarPubMed
Ballestar, E. and Wolffe, A. P. (2001). Methyl-CpG-binding proteins: targeting specific gene repression. Eur. J. Biochem., 268, 1–6.CrossRefGoogle ScholarPubMed
Belyaev, N., Keohane, A. M. and Turner, B. M. (1996). Differential underacetylation of histones H2A, H3 and H4 on the inactive X chromosome in human female cells. Hum. Genet., 97, 573–8.CrossRefGoogle ScholarPubMed
Boggs, B. A., Cheung, P., Heard, E., Spector, D. L., Chinault, A. C. and Allis, C. D. (2002). Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat. Genet., 30, 73–6.CrossRefGoogle ScholarPubMed
Cooney, C. A., Dave, A. A. and Wolff, G. L. (2002). Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr., 132, 2393S–400S.CrossRefGoogle ScholarPubMed
Engel, J. R., Smallwood, A., Harper, A.et al. (2000). Epigenotype–phenotype correlations in Beckwith–Wiedemann syndrome. J. Med. Genet., 37, 921–6.CrossRefGoogle ScholarPubMed
Gama-Sosa, M. A., Slagel, V. A., Trewyn, R. W.et al. (1983). The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res., 11, 6883–94.CrossRefGoogle ScholarPubMed
Gibbons, R. J. and Higgs, D. R. (2000). Molecular-clinical spectrum of the ATR-X syndrome. Am. J. Med. Genet., 97, 204–12.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Grandjean, V., Neill, L., Sado, T., Turner, B. and Ferguson-Smith, A. (2001). Relationship between DNA methylation, histone H4 acetylation and gene expression in the mouse imprinted Igf2–H19 domain. FEBS Lett., 488, 165–9.CrossRefGoogle ScholarPubMed
Greger, V., Passarge, E., Hopping, W., Messmer, E. and Horsthemke, B. (1989). Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet., 83, 155–8.CrossRefGoogle ScholarPubMed
Hajkova, P., Erhardt, S., Lane, N.et al. (2002). Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev., 117, 15–23.CrossRefGoogle ScholarPubMed
Hake, S. B., Xiao, A. and Allis, C. D. (2004). Linking the epigenetic ‘language’ of covalent histone modifications to cancer. Br. J. Cancer, 90, 761–9.CrossRefGoogle Scholar
Hark, A. T., Schoenherr, C. J., Katz, D. J., Ingram, R. S., Levorse, J. M. and Tilghman, S. M. (2000). CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature, 405, 486–9.CrossRefGoogle ScholarPubMed
Hata, K., Okano, M., Lei, H. and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development, 129, 1983–93.Google ScholarPubMed
Holliday, R. and Pugh, J. E. (1975). DNA modification mechanisms and gene activity during development. Science, 187, 226–32.CrossRefGoogle ScholarPubMed
Hong, L., Schroth, G. P., Matthews, H. R., Yau, P. and Bradbury, E. M. (1993). Studies of the DNA binding properties of histone H4 amino terminus: thermal denaturation studies reveal that acetylation markedly reduces the binding constant of the H4 ‘tail’ to DNA. J. Biol. Chem., 268, 305–14.Google Scholar
Huang, C., Sloan, E. A. and Boerkoel, C. F. (2003). Chromatin remodeling and human disease. Curr. Opin. Genet. Dev., 13, 246–52.CrossRefGoogle ScholarPubMed
Issa, J. P., Garcia-Manero, G., Giles, F. J.et al. (2004). Phase 1 study of low-dose prolonged exposure schedules of the hypomethylating agent 5-aza-2'-deoxycytidine (decitabine) in hematopoietic malignancies. Blood, 103, 1635–40.CrossRefGoogle Scholar
Kaneda, M., Okano, M., Hata, K.et al. (2004). Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature, 429, 900–3.CrossRefGoogle Scholar
Kang, Y. K., Koo, D. B., Park, J. S.et al. (2001). Aberrant methylation of donor genome in cloned bovine embryos. Nat. Genet., 28, 173–7.CrossRefGoogle ScholarPubMed
Kelly, W. K., Richon, V. M., Connor, O.et al. (2003). Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin. Cancer. Res., 9, 3578–88.Google ScholarPubMed
Kirmizis, A., Bartley, S. M., Kuzmichev, A.et al. (2004). Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev., 18, 1592–1605.CrossRefGoogle Scholar
Knudson, A. G. Jr. (1971). Mutation and cancer: statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA, 68, 820–3.CrossRefGoogle ScholarPubMed
Lachner, M. and Jenuwein, T. (2002). The many faces of histone lysine methylation. Curr. Opin. Cell. Biol., 14, 286–98.CrossRefGoogle ScholarPubMed
Li, E., Bestor, T. H. and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell, 69, 915–26.CrossRefGoogle ScholarPubMed
Lusser, A. and Kadonaga, J. T. (2003). Chromatin remodeling by ATP-dependent molecular machines. Bioessays, 25, 1192–1200.CrossRefGoogle ScholarPubMed
Mann, M. R., Chung, Y. G., Nolen, L. D., Verona, R. I., Latham, K. E. and Bartolomei, M. S. (2003). Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod., 69, 902–14.CrossRefGoogle ScholarPubMed
McDowell, T. L., Gibbons, R. J., Sutherland, H.et al. (1999). Localization of a putative transcriptional regulator (ATRX) at pericentromeric heterochromatin and the short arms of acrocentric chromosomes. Proc. Natl. Acad. Sci. USA, 96, 13983–8.CrossRefGoogle ScholarPubMed
McGrath, J. and Solter, D. (1984). Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 37, 179–83.CrossRefGoogle ScholarPubMed
Meaney, M. J. (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci., 24, 1161–92.CrossRefGoogle Scholar
Monk, M., Boubelik, M. and Lehnert, S. (1987). Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development, 99, 371–82.Google ScholarPubMed
Morgan, H. D., Sutherland, H. G., Martin, D. I. and Whitelaw, E. (1999). Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet., 23, 314–18.CrossRefGoogle ScholarPubMed
Morison, I. M. and Reeve, A. E. (1998). A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum. Mol. Genet., 7, 1599–1609.CrossRefGoogle ScholarPubMed
Murata, T., Kurokawa, R., Krones, A.et al. (2001). Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubinstein–Taybi syndrome. Hum. Mol. Genet., 10, 1071–6.CrossRefGoogle ScholarPubMed
Narlikar, G. J., Fan, H. Y. and Kingston, R. E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell, 108, 475–87.CrossRefGoogle ScholarPubMed
Nicholls, R. D., Saitoh, S. and Horsthemke, B. (1998). Imprinting in Prader–Willi and Angelman syndromes. Trends Genet., 14, 194–200.CrossRefGoogle ScholarPubMed
Nowak, S. J. and Corces, V. G. (2004). Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet., 20, 214–20.CrossRefGoogle ScholarPubMed
Ogonuki, N., Inoue, K., Yamamoto, Y.et al. (2002). Early death of mice cloned from somatic cells. Nat. Genet., 30, 253–4.CrossRefGoogle ScholarPubMed
Okano, M., Bell, D. W., Haber, D. A. and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99, 247–57.CrossRefGoogle Scholar
Oswald, J., Engemann, S., Lane, N.et al. (2000). Active demethylation of the paternal genome in the mouse zygote. Curr. Biol., 10, 475–8.CrossRefGoogle ScholarPubMed
Plath, K., Fang, J., Mlynarczyk-Evans, S. K.et al. (2003). Role of histone H3 lysine 27 methylation in X inactivation. Science, 300, 131–5.CrossRefGoogle ScholarPubMed
Pradhan, S., Bacolla, A., Wells, R. D. and Roberts, R. J. (1999). Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem., 274, 33002–10.CrossRefGoogle ScholarPubMed
Qu, G. Z., Grundy, P. E., Narayan, A. and Ehrlich, M. (1999). Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet. Cytogenet., 109, 34–9.CrossRefGoogle ScholarPubMed
Rakyan, V. K., Blewitt, M. E., Druker, R., Preis, J. I. and Whitelaw, E. (2002). Metastable epialleles in mammals. Trends Genet., 18, 348–51.CrossRefGoogle ScholarPubMed
Rhind, S. M., Taylor, J. E., Sousa, P. A., King, T. J., McGarry, M. and Wilmut, I. (2003). Human cloning: can it be made safe? Nat. Rev. Genet., 4, 855–64.CrossRefGoogle ScholarPubMed
Roberts, C. W. and Orkin, S. H. (2004). The SWI/SNF complex: chromatin and cancer. Nat. Rev. Cancer, 4, 133–42.CrossRefGoogle ScholarPubMed
Sado, T., Fenner, M. H., Tan, S. S., Tam, P., Shioda, T. and Li, E. (2000). X inactivation in the mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted and random X inactivation. Dev. Biol., 225, 294–303.CrossRefGoogle ScholarPubMed
Santos, F., Hendrich, B., Reik, W. and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol., 241, 172–82.CrossRefGoogle ScholarPubMed
Santos, F., Zakhartchenko, V., Stojkovic, M.et al. (2003). Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol., 13, 1116–21.CrossRefGoogle ScholarPubMed
Santos-Rosa, H., Schneider, R., Bannister, A. J.et al. (2002). Active genes are tri-methylated at K4 of histone H3. Nature, 419, 407–11.CrossRefGoogle ScholarPubMed
Sassone-Corsi, P., Mizzen, C. A., Cheung, P.et al. (1999). Requirement of Rsk-2 for epidermal growth factor- activated phosphorylation of histone H3. Science, 285, 886–91.CrossRefGoogle ScholarPubMed
Shaker, S., Bernstein, M., Momparler, L. F. and Momparler, R. L. (2003). Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2'-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk. Res., 27, 437–44.CrossRefGoogle ScholarPubMed
Shiio, Y. and Eisenman, R. N. (2003). Histone sumoylation is associated with transcriptional repression. Proc. Natl. Acad. Sci. USA, 100, 13225–30.CrossRefGoogle ScholarPubMed
Silva, J., Mak, W., Zvetkova, I.et al. (2003). Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed–Enx1 polycomb group complexes. Dev. Cell, 4, 481–95.CrossRefGoogle ScholarPubMed
Strahl, B. D. and Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403, 41–5.CrossRefGoogle ScholarPubMed
Tamashiro, K. L., Wakayama, T., Akutsu, H.et al. (2002). Cloned mice have an obese phenotype not transmitted to their offspring. Nat. Med., 8, 262–7.CrossRefGoogle Scholar
Thorvaldsen, J. L., Duran, K. L. and Bartolomei, M. S. (1998). Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H19 and Igf2. Genes Dev., 12, 3693–702.CrossRefGoogle ScholarPubMed
Vasques, L. R., Klockner, M. N. and Pereira, L. V. (2002). X chromosome inactivation: how human are mice? Cytogenet. Genome Res., 99, 30–5.CrossRefGoogle ScholarPubMed
Walsh, C. P. and Bestor, T. H. (1999). Cytosine methylation and mammalian development. Genes Dev., 13, 26–34.CrossRefGoogle ScholarPubMed
Waterland, R. A. and Jirtle, R. L. (2003). Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol., 23, 5293–5300.CrossRefGoogle ScholarPubMed
Weaver, I. C., Cervoni, N., Champagne, F. A.et al. (2004). Epigenetic programming by maternal behavior. Nat. Neurosci., 7, 847–54.CrossRefGoogle ScholarPubMed
Wolff, G. L., Kodell, R. L., Moore, S. R. and Cooney, C. A. (1998). Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. Faseb. J., 12, 949–57.CrossRefGoogle ScholarPubMed
Wrenzycki, C., Lucas-Hahn, A., Herrmann, D., Lemme, E., Korsawe, K. and Niemann, H. (2002). In vitro production and nuclear transfer affect dosage compensation of the X-linked gene transcripts G6PD, PGK, and Xist in preimplantation bovine embryos. Biol. Reprod., 66, 127–34.CrossRefGoogle ScholarPubMed
Xu, G. L., Bestor, T. H., Bourc'his, D.et al. (1999). Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature, 402, 187–91.CrossRefGoogle Scholar
Xue, Y., Gibbons, R., Yan, Z.et al. (2003). The ATRX syndrome protein forms a chromatin-remodeling complex with Daxx and localizes in promyelocytic leukemia nuclear bodies. Proc. Natl. Acad. Sci. USA, 100, 10635–40.CrossRefGoogle ScholarPubMed
Yoder, J. A., Walsh, C. P. and Bestor, T. H. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends Genet., 13, 335–40.CrossRefGoogle ScholarPubMed
Zhang, Y. (2003). Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev., 17, 2733–40.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×