Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T03:18:24.090Z Has data issue: false hasContentIssue false

23 - The developmental environment, renal function and disease

Published online by Cambridge University Press:  08 August 2009

Karen M. Moritz
Affiliation:
Monash University
E. Marelyn Wintour
Affiliation:
Monash University
Miodrag Dodic
Affiliation:
Monash University
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

Chronic renal disease is a major health problem in many societies. In some populations, including the Australian Aborigine, the Pima Indians of the USA, and certain populations of African-Americans, diseased kidneys due to chronic hypertension progress into end-stage renal disease, with a particularly high incidence (Hoy et al. 1999, Kett and Bertram 2004). The American Kidney Foundation estimates that as many as 20 million Americans, or approximately 10% of adults in the population, have some form of renal disease. Not only is it the ninth leading cause of death in Americans, but treatment for patients with chronic renal failure is amongst the most expensive for any chronic disease. The causes of kidney disease are numerous, including inherited and congenital renal defects, but by far the greatest risk factors are diabetes and hypertension. Similar to other adult-onset diseases, such as hypertension and diabetes mellitus, lifestyle factors such as a high-fat/high-salt diet, smoking and lack of exercise can contribute significantly to the development of renal disease. Epidemiological and experimental evidence is accumulating to suggest that, as with hypertension and diabetes, the susceptibility of an individual to develop renal disease may be increased if that person has been exposed to a poor or suboptimal intrauterine environment. If a substantive link can be proven between abnormal kidney development and the later development of hypertension and renal disease, then measures can be recommended which could decrease significantly the incidence of adult hypertension.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alebiosu, C. O. (2003). An update on ‘progression promoters’ in renal diseases. J. Natl. Med. Assoc., 95, 30–42.Google ScholarPubMed
Amri, K., Freund, N., Vilar, J., Merlet-Benichou, C. and Lelievre-Pegorier, M. (1999). Adverse effects of hyperglycemia on kidney development in rats: in vivo and in vitro studies. Diabetes, 48, 2240–5.CrossRefGoogle ScholarPubMed
Amri, K., Freund, N., Huyen, J. P., Merlet-Benichou, C. and Lelievre-Pegorier, M. (2001). Altered nephrogenesis due to maternal diabetes is associated with increased expression of IGF-II/mannose-6-phosphate receptor in the fetal kidney. Diabetes, 50, 1069–75.CrossRefGoogle ScholarPubMed
Bard, J. B. (2002). Growth and death in the developing mammalian kidney: signals, receptors and conversations. Bioessays, 24, 72–82.CrossRefGoogle ScholarPubMed
Batourina, E., Gim, S., Bello, N.et al. (2001). Vitamin A controls epithelial/mesenchymal interactions through Ret expression. Nat. Genet., 27, 74–8.CrossRefGoogle ScholarPubMed
Baum, M. and Quigley, R. (2004). Ontogeny of renal sodium transport. Semin. Perinatol., 28, 91–6.CrossRefGoogle ScholarPubMed
Bertram, C., Trowern, A. R., Copin, N., Jackson, A. A. and Whorwood, C. B. (2001). The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology, 142, 2841–53.CrossRefGoogle ScholarPubMed
Bertram, J. F., Young, R. J., Spencer, K. and Gordon, I. (2000). Quantitative analysis of the developing rat kidney: absolute and relative volumes and growth curves. Anat. Rec., 258, 128–35.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Beutler, K. T., Masilamani, S., Turban, S.et al. (2003). Long-term regulation of ENaC expression in kidney by angiotensin II. Hypertension, 41, 1143–50.CrossRefGoogle ScholarPubMed
Brenner, B. M. and Mackenzie, H. S. (1997). Nephron mass as a risk factor for progression of renal disease. Kidney Int. Suppl., 63, S124–7.Google ScholarPubMed
Burrow, C. R. (2000). Retinoids and renal development. Exp. Nephrol., 8, 219–25.CrossRefGoogle ScholarPubMed
Burrow, C. R., Devuyst, O., Li, X., Gatti, L. and Wilson, P. D. (1999). Expression of the beta2-subunit and apical localization of Na+−K+−ATPase in metanephric kidney. Am. J. Physiol., 277, F391–403.Google ScholarPubMed
Butkus, A., Earnest, L., Jeyaseelan, K.et al. (1999). Ovine aquaporin-2: cDNA cloning, ontogeny and control of renal gene expression. Pediatr. Nephrol., 13, 379–90.CrossRefGoogle ScholarPubMed
Carrapato, M. R. and Marcelino, F. (2001). The infant of the diabetic mother: the critical developmental windows. Early Pregnancy, 5, 57–8.Google ScholarPubMed
Celsi, G., Kistner, A., Aizman, R.et al. (1998). Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr. Res., 44, 317–22.CrossRefGoogle ScholarPubMed
Chan, V. S. (2004). A mechanistic perspective on the specificity and extent of COX-2 inhibition in pregnancy. Drug. Saf., 27, 421–6.CrossRefGoogle ScholarPubMed
Chellakooty, M., Skibsted, L., Skouby, S. O.et al. (2002). Longitudinal study of serum placental GH in 455 normal pregnancies: correlation to gestational age, fetal gender, and weight. J. Clin. Endocrinol. Metab., 87, 2734–9.CrossRefGoogle Scholar
Chevalier, R. L. (2004). Perinatal obstructive nephropathy. Semin. Perinatol., 28, 124–31.CrossRefGoogle ScholarPubMed
Christian, P. (2003) Micronutrients and reproductive health issues: an international perspective. J. Nutr., 133, 1969– 73S.CrossRefGoogle Scholar
Chugh, S. S., Wallner, E. I. and Kanwar, Y. S. (2003). Renal development in high-glucose ambience and diabetic embryopathy. Semin. Nephrol., 23, 583–92.CrossRefGoogle ScholarPubMed
Clifton, V. L. and Murphy, V. E. (2004). Maternal asthma as a model for examining fetal sex-specific effects on maternal physiology and placental mechanisms that regulate human fetal growth. Placenta, 25 (Suppl. A), S45–52.CrossRefGoogle ScholarPubMed
Crowe, C., Dandekar, P., Fox, M., Dhingra, K., Bennet, L. and Hanson, M. A. (1995). The effects of anaemia on heart, placenta and body weight, and blood pressure in fetal and neonatal rats. J. Physiol., 488, 515–19.CrossRefGoogle ScholarPubMed
Cullen-McEwen, L. A., Kett, M. M., Dowling, J., Anderson, W. P. and Bertram, J. F. (2003). Nephron number, renal function, and arterial pressure in aged GDNF heterozygous mice. Hypertension, 41, 335–40.CrossRefGoogle ScholarPubMed
Martino, C. and Zamboni, L. (1966). A morphologic study of the mesonephros of the human embryo. J. Ultrastruct. Res., 16, 399–427.CrossRefGoogle ScholarPubMed
Devuyst, O., Burrow, C. R., Smith, B. L., Agre, P., Knepper, M. A. and Wilson, P. D. (1996). Expression of aquaporins-1 and -2 during nephrogenesis and in autosomal dominant polycystic kidney disease. Am. J. Physiol., 271, F169–83.Google ScholarPubMed
Cianni, Di G., Volpe, L., Lencioni, C.et al. (2003). Prevalence and risk factors for gestational diabetes assessed by universal screening. Diabetes Res. Clin. Pract., 62, 131–7.CrossRefGoogle ScholarPubMed
Franco, Carmo Pinho M., Nigro, D., Fortes, Z. B.et al. (2003). Intrauterine undernutrition: renal and vascular origin of hypertension. Cardiovasc. Res., 60, 228–34.CrossRefGoogle Scholar
Dodic, M., Samuel, C., Moritz, K.et al. (2001). Impaired cardiac functional reserve and left ventricular hypertrophy in adult sheep after prenatal dexamethasone exposure. Circ. Res., 89, 623–9.CrossRefGoogle ScholarPubMed
Dodic, M., Abouantoun, T., O'Connor, A., Wintour, E. M. and Moritz, K. M. (2002a). Programming effects of short prenatal exposure to dexamethasone in sheep. Hypertension, 40, 729–34.CrossRefGoogle Scholar
Dodic, M., Hantzis, V., Duncan, J.et al. (2002b). Programming effects of short prenatal exposure to cortisol. FASEB J., 16, 1017–26.CrossRefGoogle Scholar
Dodic, M., Moritz, K., Koukoulas, I. and Wintour, E. M. (2002c). Programmed hypertension: kidney, brain or both?Trends Endocrinol. Metab., 13, 403–8.CrossRefGoogle Scholar
Douglas-Denton, R., Moritz, K. M., Bertram, J. F. and Wintour, E. M. (2002). Compensatory renal growth after unilateral nephrectomy in the ovine fetus. J. Am. Soc. Nephrol., 13, 406–10.Google ScholarPubMed
Huyen, Duong J. P., Amri, K., Belair, M. F.et al. (2003). Spatiotemporal distribution of insulin-like growth factor receptors during nephrogenesis in fetuses from normal and diabetic rats. Cell Tissue Res., 314, 367–79.CrossRefGoogle Scholar
Fall, C. H., Yajnik, C. S., Rao, S., Davies, A. A., Brown, N. and Farrant, H. J. (2003). Micronutrients and fetal growth. J. Nutr., 133, 1747–56S.CrossRefGoogle ScholarPubMed
Glassberg, K. I. (2002). Normal and abnormal development of the kidney: a clinician's interpretation of current knowledge. J. Urol., 167, 2339–51.CrossRefGoogle ScholarPubMed
Godfrey, K. M. (2002). The role of the placenta in fetal programming: a review. Placenta, 23 (Suppl. A), S20–7.CrossRefGoogle ScholarPubMed
Hall, J. E. (2003). The kidney, hypertension, and obesity. Hypertension, 41, 625–33.CrossRefGoogle Scholar
Hebert, L. A., Greene, T., Levey, A., Falkenhain, M. E. and Klahr, S. (2003). High urine volume and low urine osmolality are risk factors for faster progression of renal disease. Am. J. Kidney Dis., 41, 962–71.CrossRefGoogle ScholarPubMed
Hogg, R. J., Furth, S., Lemley, K. V.et al. (2003). National Kidney Foundation's Kidney Disease Outcomes Quality Initiative clinical practice guidelines for chronic kidney disease in children and adolescents: evaluation, classification, and stratification. Pediatrics, 111, 1416–21.CrossRefGoogle ScholarPubMed
Holtback, U. and Aperia, A. C. (2003). Molecular determinants of sodium and water balance during early human development. Semin. Neonatol., 8, 291–9.CrossRefGoogle ScholarPubMed
Hoy, W., Kelly, A., Jacups, S.et al. (1999). Stemming the tide: reducing cardiovascular disease and renal failure in Australian Aborigines. Aust. NZ J. Med., 29, 480–3.CrossRefGoogle ScholarPubMed
Hughson, M., Farris, A. B., Douglas-Denton, R., Hoy, W. E. and Bertram, J. F. (2003). Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int., 63, 2113–22.CrossRefGoogle ScholarPubMed
Jacobsen, P., Rossing, P., Tarnow, L., Hovind, P. and Parving, H. H. (2003). Birth weight: a risk factor for progression in diabetic nephropathy?J. Intern. Med., 253, 343–50.CrossRefGoogle ScholarPubMed
Kett, M. M. and Bertram, J. F. (2004). Nephron endowment and blood pressure: what do we really know?Curr. Hypertens. Rep., 6, 133–9.CrossRefGoogle ScholarPubMed
Kistner, A., Celsi, G., Vanpee, M. and Jacobson, S. H. (2000). Increased blood pressure but normal renal function in adult women born preterm. Pediatr. Nephrol., 15, 215–20.CrossRefGoogle ScholarPubMed
Knepper, M. A., Kim, G. H. and Masilamani, S. (2003). Renal tubule sodium transporter abundance profiling in rat kidney: response to aldosterone and variations in NaCl intake. Ann. NY Acad. Sci., 986, 562–9.CrossRefGoogle ScholarPubMed
Lackland, D. T., Bendall, H. E., Osmond, C., Egan, B. M. and Barker, D. J. P. (2000). Low birth weights contribute to high rates of early-onset chronic renal failure in the southeastern United States. Arch. Intern. Med., 160, 1472–6.CrossRefGoogle ScholarPubMed
Langley-Evans, S. C., Welham, S. J. and Jackson, A. A. (1999). Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci., 64, 965–74.CrossRefGoogle ScholarPubMed
Langley-Evans, S. C., Langley-Evans, A. J. and Marchand, M. C. (2003a). Nutritional programming of blood pressure and renal morphology. Arch. Physiol. Biochem., 111, 8–16.CrossRefGoogle Scholar
Langley-Evans, S. C., Fahey, A. and Buttery, P. J. (2003b). Early gestation is a critical period in the nutritional programming of nephron number in the sheep. Pediatr. Res., 53 (Suppl.), 30A.Google Scholar
Lanz, B., Kadereit, B., Ernst, S.et al. (2003). Angiotensin II regulates 11beta-hydroxysteroid dehydrogenase type 2 via AT2 receptors. Kidney Int., 64, 970–7.CrossRefGoogle ScholarPubMed
Lelievre-Pegorier, M., Vilar, J., Ferrier, M. L.et al. (1998). Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int., 54, 1455–62.CrossRefGoogle ScholarPubMed
Lisle, S. J., Lewis, R. M., Petry, C. J., Ozanne, S. E., Hales, C. N. and Forhead, A. J. (2003). Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br. J. Nutr., 90, 33–9.CrossRefGoogle ScholarPubMed
Mahieu-Caputo, D., Muller, F., Joly, D.et al. (2001). Pathogenesis of twin–twin transfusion syndrome: the renin–angiotensin system hypothesis. Fetal Diagn. Ther., 16, 241–4.CrossRefGoogle ScholarPubMed
Manning, J., Beutler, K., Knepper, M. A. and Vehaskari, V. M. (2002). Upregulation of renal BSC1 and TSC in prenatally programmed hypertension. Am. J. Physiol. Renal Physiol., 283, F202–6.CrossRefGoogle ScholarPubMed
Matsubara, M. (2004). Renal sodium handling for body fluid maintenance and blood pressure regulation. Yakugaku Zasshi, 124, 301–9.CrossRefGoogle ScholarPubMed
Merlet-Benichou, C., Gilbert, T., Muffat-Joly, M., Lelievre-Pegorier, M. and Leroy, B. (1994). Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr. Nephrol., 8, 175–80.CrossRefGoogle ScholarPubMed
Mitra, S. C., Seshan, S. V., Salcedo, J. R. and Gil, J. (2000). Maternal cocaine abuse and fetal renal arteries: a morphometric study. Pediatr. Nephrol., 14, 315–18.CrossRefGoogle ScholarPubMed
Moritz, K. M. and Wintour, E. M. (1999). Functional development of the meso- and metanephros. Pediatr. Nephrol., 13, 171–8.CrossRefGoogle ScholarPubMed
Moritz, K. M., Johnson, K., Douglas-Denton, R., Wintour, E. M. and Dodic, M. (2002a). Maternal glucocorticoid treatment programs alterations in the renin–angiotensin system of the ovine fetal kidney. Endocrinology, 143, 4455–63.CrossRefGoogle Scholar
Moritz, K. M., Wintour, E. M. and Dodic, M. (2002b). Fetal uninephrectomy leads to postnatal hypertension and compromised renal function. Hypertension, 39, 1071–6.CrossRefGoogle Scholar
Moritz, K. M., Dodic, M. and Wintour, E. M. (2003). Kidney development and the fetal programming of adult disease. Bioessays, 25, 212–20.CrossRefGoogle ScholarPubMed
Nelson, R. G. (2003). Intrauterine determinants of diabetic kidney disease in disadvantaged populations. Kidney Int. Suppl., 83, S13–16.CrossRefGoogle Scholar
Nelson, R. G., Morgenstern, H. and Bennett, P. H. (1998). Intrauterine diabetes exposure and the risk of renal disease in diabetic Pima Indians. Diabetes, 47, 1489–93.CrossRefGoogle ScholarPubMed
Ortiz, L. A., Quan, A., Weinberg, A. and Baum, M. (2001). Effect of prenatal dexamethasone on rat renal development. Kidney Int., 59, 1663–9.CrossRefGoogle ScholarPubMed
Ortiz, L. A., Quan, A., Zarzar, F., Weinberg, A. and Baum, M. (2003). Prenatal dexamethasone programs hypertension and renal injury in the rat. Hypertension, 41, 328–34.CrossRefGoogle ScholarPubMed
Paixao, A. D., Maciel, C. R., Teles, M. B. and Figueiredo-Silva, J. (2001). Regional Brazilian diet-induced low birth weight is correlated with changes in renal hemodynamics and glomerular morphometry in adult age. Biol. Neonate, 80, 239–46.CrossRefGoogle ScholarPubMed
Parving, H. H., Andersen, S., Jacobsen, P.et al. (2004). Angiotensin receptor blockers in diabetic nephropathy: renal and cardiovascular end points. Semin. Nephrol., 24, 147–57.CrossRefGoogle ScholarPubMed
Pham, T. D., MacLennan, N. K., Chiu, C. T., Laksana, G. S., Hsu, J. L. and Lane, R. H. (2003). Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol., 285, R962–70.CrossRefGoogle ScholarPubMed
Sawdy, R. J., Lye, S., Fisk, N. M. and Bennett, P. R. (2003). A double-blind randomized study of fetal side effects during and after the short-term maternal administration of indomethacin, sulindac, and nimesulide for the treatment of preterm labor. Am. J. Obstet. Gynecol., 188, 1046–51.CrossRefGoogle ScholarPubMed
Silver, L. E., Decamps, P. J., Korst, L. M., Platt, L. D. and Castro, L. C. (2003). Intrauterine growth restriction is accompanied by decreased renal volume in the human fetus. Am. J. Obstet. Gynecol., 188, 1320–5.CrossRefGoogle ScholarPubMed
Sobngwi, E., Boudou, P., Mauvais-Jarvis, F.et al. (2003). Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet, 361, 1861–5.CrossRefGoogle ScholarPubMed
Strube, Y. N., Beard, J. L. and Ross, A. C. (2002) Iron deficiency and marginal vitamin A deficiency affect growth, hematological indices and the regulation of iron metabolism genes in rats. J. Nutr., 132, 3607–15.CrossRefGoogle ScholarPubMed
Tabacova, S., Little, R., Tsong, Y., Vega, A. and Kimmel, C. A. (2003). Adverse pregnancy outcomes associated with maternal enalapril antihypertensive treatment. Pharmacoepidemiol. Drug. Saf., 12, 633–46.CrossRefGoogle ScholarPubMed
Broek, N. (2003). Anaemia and micronutrient deficiencies. Br. Med. Bull., 67, 149–60.CrossRefGoogle ScholarPubMed
Vanderheyden, T., Kumar, S. and Fisk, N. M. (2003). Fetal renal impairment. Semin. Neonatol., 8, 279–89.CrossRefGoogle ScholarPubMed
Vasarhelyi, B., Dobos, M., Reusz, G. S., Szabo, A. and Tulassay, T. (2000). Normal kidney function and elevated natriuresis in young men born with low birth weight. Pediatr. Nephrol., 15, 96–100.Google ScholarPubMed
Vehaskari, V. M., Aviles, D. H. and Manning, J. (2001). Prenatal programming of adult hypertension in the rat. Kidney Int., 59, 238–45.CrossRefGoogle ScholarPubMed
Vehaskari, V. M., Stewart, T., Lafont, D., Soyez, C., Seth, D. and Manning, J. (2004). Kidney angiotensin and angiotensin receptor expression in prenatally programmed hypertension. Am. J. Physiol. Renal. Physiol., 287, F262–7.CrossRefGoogle ScholarPubMed
Verkman, A. S. (2002). Physiological importance of aquaporin water channels. Ann. Med., 34, 192–200.CrossRefGoogle ScholarPubMed
Vilar, J., Lalou, C., Duong, V. H.et al. (2002). Midkine is involved in kidney development and in its regulation by retinoids. J. Am. Soc. Nephrol., 13, 668–76.Google ScholarPubMed
Wei, L. N. (2004). Retinoids and receptor interacting protein 140 (RIP140) in gene regulation. Curr. Med. Chem., 11, 1527–32.CrossRefGoogle Scholar
Welham, S. J., Wade, A. and Woolf, A. S. (2002). Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of rat metanephrogenesis. Kidney Int., 61, 1231–42.CrossRefGoogle ScholarPubMed
Whorwood, C. B., Firth, K. M., Budge, H. and Symonds, M. E. (2001). Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expression of the glucocorticoid receptor, 11beta-hydroxysteroid dehydrogenase isoforms, and type 1 angiotensin II receptor in neonatal sheep. Endocrinology, 142, 2854–64.CrossRefGoogle ScholarPubMed
Wilcoxon, J. S., Schwartz, J., Aird, F. and Redei, E. E. (2003). Sexually dimorphic effects of maternal alcohol intake and adrenalectomy on left ventricular hypertrophy in rat offspring. Am. J. Physiol. Endocrinol. Metab., 285, E31–9.CrossRefGoogle ScholarPubMed
Wild, S., Roglic, G., Green, A., Sicree, R. and King, H. (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047–53.CrossRefGoogle ScholarPubMed
Wintour, E. M., Earnest, L., Alcorn, D., Butkus, A., Shandley, L. and Jeyaseelan, K. (1998). Ovine AQP1: cDNA cloning, ontogeny, and control of renal gene expression. Pediatr. Nephrol., 12, 545–53.CrossRefGoogle ScholarPubMed
Wintour, E. M., Dodic, M., Johnston, H., Moritz, K. and Peers, A. (1999). Kidney and urinary tract. In Fetal Medicine: Basic Science and Clinical Practice (ed. Rodeck, C. H. and Whittle, M. J.). London: Churchill Livingstone, pp. 155–71.Google Scholar
Wintour, E. M., Moritz, K. M., Johnson, K., Ricardo, S., Samuel, C. S. and Dodic, M. (2003). Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J. Physiol., 549, 929–35.CrossRefGoogle ScholarPubMed
Wood, S. L., Jick, H. and Sauve, R. (2003). The risk of stillbirth in pregnancies before and after the onset of diabetes. Diabet. Med., 20, 703–7.CrossRefGoogle ScholarPubMed
Woods, L. L. (1999). Neonatal uninephrectomy causes hypertension in adult rats. Am. J. Physiol., 276, R974–8.Google ScholarPubMed
Woods, L. L., Ingelfinger, J. R., Nyengaard, J. R. and Rasch, R. (2001a). Maternal protein restriction suppresses the newborn renin–angiotensin system and programs adult hypertension in rats. Pediatr. Res., 49, 460–7.CrossRefGoogle Scholar
Woods, L. L., Weeks, D. A. and Rasch, R. (2001b). Hypertension after neonatal uninephrectomy in rats precedes glomerular damage. Hypertension, 38, 337–42.CrossRefGoogle Scholar
Woods, L. L., Weeks, D. A. and Rasch, R. (2004). Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int., 65, 1339–48.CrossRefGoogle ScholarPubMed
Yang, J., Mori, K., Li, J. Y. and Barasch, J. (2003). Iron, lipocalin, and kidney epithelia. Am. J. Physiol. Renal Physiol., 285, F9–18.CrossRefGoogle ScholarPubMed
Zimanyi, M. A., Bertram, J. F. and Black, M. J. (2004.) Does a nephron deficit in rats predispose to salt-sensitive hypertension?Kidney Blood Press. Res., 27, 239–47.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×