Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-26T23:35:55.322Z Has data issue: false hasContentIssue false

24 - The developmental environment: effect on fluid and electrolyte homeostasis

Published online by Cambridge University Press:  08 August 2009

Mostafa A. El-Haddad
Affiliation:
University of California, Los Angeles
Michael G. Ross
Affiliation:
University of California, Los Angeles
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

Body fluid and electrolytes in adults are maintained under tight control by complex central and peripheral mechanisms. A relatively minor increase in plasma osmolality, or somewhat larger decrease in plasma volume, triggers counter-regulatory mechanisms in the hypothalamus and kidneys to restore plasma osmolality and/or plasma volume to normal values. Arginine vasopressin (AVP) synthesised in the hypothalamic paraventricular nucleus (PVN) and released into systemic circulation from the posterior pituitary plays a key role in fluid and electrolyte regulation by acting upon renal water channels to conserve water. Other important hypothalamic nuclei, namely the circumventricular organs (CVOs), which are located along the anteroventral wall of the third ventricle, are responsible for regulation of body water and salt content by modulating water and salt intake. CVOs also play a critical role in cardiovascular regulation via efferent connections with brainstem centres regulating sympathetic nervous system responses. The renin–angiotensin system (RAS) is highly expressed within brain centres regulating water and electrolytes and cardiovascular homeostasis. RAS is also highly expressed in the fetal and adult kidney, contributing to normal kidney development in the former.

Programming of water and electrolyte regulatory systems is defined as a perinatal ‘insult’ inflicted to the fetus/neonate during critical developmental period(s) which will impact on the water and electrolyte regulatory systems in the offspring. As reviewed, there are significant data demonstrating the perinatal programming of offspring hypothalamopituitary and AVP responses, renal water regulatory mechanisms, thirst and salt appetite, and blood pressure homeostasis in numerous species.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, A. M., Chai, S. Y., Sexton, P. M.et al. (1987). Angiotensin II receptors and angiotensin converting enzyme in the medulla oblongata. Hypertension, 9, III198–205.CrossRefGoogle ScholarPubMed
Arguelles, J., Lopez-Sela, P., Brime, J. I., Costales, M. and Vijande, M. (1996). Changes of blood pressure responsiveness in rats exposed in utero and perinatally to a high-salt environment. Regul. Pept., 66, 113–15.CrossRefGoogle ScholarPubMed
Atherton, J. C., Dark, J. M., Garland, H. O., Morgan, M. R. A., Pidgeon, J. and Soni, S. (1982). Changes in water and electrolyte balance, plasma volume and composition during pregnancy in the rat. J. Physiol., 330, 81–93.CrossRefGoogle ScholarPubMed
Badoer, E. (2001). Hypothalamic paraventricular nucleus and cardiovascular regulation. Clin. Exp. Pharmacol. Physiol., 28, 95–9.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Osmond, C., Golding, J., Kuh, D. and Wadsworth, M. E. (1989). Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ, 298, 564–7.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Hales, C. N., Fall, C. H., Osmond, C., Phipps, K. and Clark, P. M. (1993). Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia, 36, 62–7.CrossRefGoogle ScholarPubMed
Bealer, S. L., Delle, M., Skarphedinsson, J. O., Carlsson, S. and Thoren, P. (1996). Differential responses in adrenal and renal nerves to CNS osmotic stimulation. Brain Res. Bull., 39, 205–9.CrossRefGoogle ScholarPubMed
Bertram, J. F., Young, R. J., Spencer, K. and Gordon, I. (2000). Quantitative analysis of the developing rat kidney: absolute and relative volumes and growth curves. Anat. Rec., 258, 128–35.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Blair-West, J. R., Carey, K. D., Denton, D. A., Weisinger, R. S. and Shade, R. E. (1998). Evidence that brain angiotensin II is involved in both thirst and sodium appetite in baboons. Am. J. Physiol., 275, R1639–46.Google ScholarPubMed
Brooks, V. L. and Osborn, J. W. (1995). Hormonal–sympathetic interactions in long-term regulation of arterial pressure: an hypothesis. Am. J. Physiol., 268, R1343–58.Google Scholar
Brooks, V. L., Scrogin, K. E. and McKeogh, D. F. (2001). The interaction of angiotensin II and osmolality in the generation of sympathetic tone during changes in dietary salt intake: an hypothesis. Ann. NY Acad. Sci., 940, 380–94.CrossRefGoogle Scholar
Butkus, A., Albiston, A., Alcorn, D.et al. (1997). Ontogeny of angiotensin II receptors, types 1 and 2, in ovine mesonephros and metanephros. Kidney Int., 52, 628–36.CrossRefGoogle ScholarPubMed
Butkus, A., Earnest, L., Jeyaseelan, K.et al. (1999). Ovine aquaporin-2: cDNA cloning, ontogeny and control of renal gene expression. Pediatr. Nephrol., 13, 379–90.CrossRefGoogle ScholarPubMed
Calzone, W. L., Silva, C., Keefe, D. L. and Stachenfeld, N. S. (2001). Progesterone does not alter osmotic regulation of AVP. Am. J. Physiol. Regul. Integr. Comp. Physiol., 281, R2011–20.CrossRefGoogle Scholar
Celsi, G., Kistner, A., Aizman, R.et al. (1998). Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr. Res., 44, 317–22.CrossRefGoogle ScholarPubMed
Chen, Q. H., Toney, G. M. (2001). AT (1)-receptor blockade in the hypothalamic PVN reduces central hyperosmolality-induced renal sympathoexcitation. Am. J. Physiol. Regul. Integr. Comp. Physiol., 281, R1844–53.CrossRefGoogle ScholarPubMed
Crystal, S. R., and Bernstein, I. L. (1998). Infant salt preference and mother's morning sickness. Appetite., 30, 297–307.CrossRefGoogle ScholarPubMed
Davison, J. M., Valloton, M. B., and Lindheimer, M. D. (1980). Alterations in plasma osmolality (Posm) during human pregnancy. Clin. Res., 281, 442A.Google Scholar
Davison, J. M., Gilmore, E. A., Durr, J., Robertson, G. L. and Lindheimer, M. D. (1984). Altered osmotic thresholds for vasopressin secretion and thirst in human pregnancy. Am. J. Physiol., 246, F105–9.Google ScholarPubMed
Desai, M., Guerra, C., Wang, S. and Ross, M. G. (2003). Programming of hypertonicity in neonatal lambs: resetting of the threshold for vasopressin secretion. Endocrinology, 144, 4332–7.CrossRefGoogle ScholarPubMed
Doda, M. (1997). Role of different subtypes of adrenoceptors in pressor responses to catecholamines released from sympathetic nerve endings. Brain Res. Bull., 42, 51–7.CrossRefGoogle ScholarPubMed
Dodic, M., Peers, A., Coghlan, J. P.et al. (1999). Altered cardiovascular haemodynamics and baroreceptor–heart rate reflex in adult sheep after prenatal exposure to dexamethasone. Clin. Sci., 97, 103–9.Google ScholarPubMed
Dodic, M., Peers, A., Moritz, K., Hantzis, V. and Wintour, E. M. (2002a). No evidence for HPA reset in adult sheep with high blood pressure due to short prenatal exposure to dexamethasone. Am. J. Physiol. Regul. Integr. Comp. Physiol., 282, R343–50.CrossRefGoogle Scholar
Dodic, M., Abouantoun, T., Connor, O' A., Wintour, E. M. and Moritz, K. M. (2002b). Programming effects of short prenatal exposure to dexamethasone in sheep. Hypertension, 40, 729–34.CrossRefGoogle Scholar
Dodic, M., Hantzis, V., Duncan, J.et al. (2002c). Programming effects of short prenatal exposure to cortisol. FASEB J., 16, 1017–26.CrossRefGoogle Scholar
Duvekot, J. J., Cheriex, E. C., Pieters, F. A. A., Menheere, P. C. A. and Peeters, L. L. H. (1993). Early pregnancy changes in hemodynamics and volume homeostatis are consecutive adjustments triggered by a primary fall in systemic vascular tone. Am. J. Obstet. Gynecol., 169, 1382–92.CrossRefGoogle Scholar
Dwyer, C. M. and Stickland, N. C. (1992). The effects of maternal undernutrition on maternal and fetal serum insulin-like growth factors, thyroid hormones and cortisol in the guinea pig. J. Dev. Physiol., 18, 303–13.Google ScholarPubMed
Edwards, L. J. and McMillen, I. C. (2001). Maternal undernutrition increases arterial blood pressure in the sheep fetus during late gestation. J. Physiol., 533, 561–70.CrossRefGoogle ScholarPubMed
El-Haddad, M. A., Chao, C. R., Ma, S. X. and Ross, M. G. (1999). Nitric oxide modulates spontaneous swallowing behavior in near-term ovine fetus. Am. J. Physiol., 277, R981–6.Google ScholarPubMed
El-Haddad, M. A., Chao, C. R., Ma, S. X. and Ross, M. G. (2000). Nitric oxide modulates angiotensin II-induced drinking behavior in the near-term ovine fetus. Am. J. Obstet. Gynecol., 182, 713–19.CrossRefGoogle ScholarPubMed
El-Haddad, M. A., Chao, C. R., Sayed, A. A., El-Haddad, H. and Ross, M. G. (2001a). Effects of central angiotensin II receptor antagonism on fetal swallowing and cardiovascular activity. Am. J. Obstet. Gynecol., 185, 828–33.CrossRefGoogle Scholar
El-Haddad, M. A., Chao, C. and Ross, M. G. (2001b). N-methyl-d-aspartame glutamate receptors mediates spontaneous and angiotensin II-stimulated fetal swallowing. J. Soc. Gynecol. Investig., 8, 62A.Google Scholar
El-Haddad, M. A., Ismail, Y., Guerra, C., Day, L. and Ross, M. G. (2003). Angiotensin II AT1 receptors mediate the high rate of both spontaneous and stimulated fetal swallowing activities in near term ovine fetus. J. Soc. Gynecol. Investig. 10, (Suppl. 2).Google Scholar
Fitzsimmons, M. D., Roberts, M. M. and Robinson, A. G. (1994). Control of posterior pituitary vasopressin content: implications for the regulation of the vasopressin gene. Endocrinology, 134, 1874–8.CrossRefGoogle ScholarPubMed
Friis, C. (1980). Postnatal development of the pig kidney: ultrastucture of the glomerulus and the proximal tubule. J. Anat., 130, 513–26.Google Scholar
Galaverna, O., Nicolaidis, S., Yao, S. Z., Sakai, R. R. and Epstein, A. N. (1995). Endocrine consequences of prenatal sodium depletion prepare rats for high need-free NaCl intake in adulthood. Am. J. Physiol., 269, R578–83.Google ScholarPubMed
Goodlin, R. C., Dobry, C. A., Anderson, J. C., Woods, R. E. and Quaife, M. (1983). Critical signs of normal plasma volume expansion during pregnancy. Am. J. Obstet. Gynecol., 145, 1001–10.CrossRefGoogle Scholar
Handelmann, G. E. and Sayson, S. C. (1984). Neonatal exposure to vasopressin decreases vasopressin binding sites in the adult kidney. Peptides, 5, 1217–19.CrossRefGoogle ScholarPubMed
Handelmann, G. E., Russell, J. T., Gainer, H., Zerbe, R. and Bayorh, M. (1983). Vasopressin administration to neonatal rats reduces antidiuretic response in adult kidneys. Peptides, 4, 827–32.CrossRefGoogle ScholarPubMed
Hilgers, K. F., Reddi, V., Krege, J. H., Smithies, O. and Gomez, R. A. (1997). Aberrant renal vascular morphology and renin expression in mutant mice lacking angiotensin-converting enzyme. Hypertension, 29, 216–21.CrossRefGoogle ScholarPubMed
Holemans, K., Gerber, R., Meurrens, K., Clerck, F., Poston, L. and Van, Assche, F. A. (1999). Maternal food restriction in the second half of pregnancy affects vascular function but not blood pressure of rat female offspring. Br. J. Nutr., 81, 73–9.Google Scholar
Ingelfinger, J. R. and Woods, L. L. (2002). Perinatal programming, renal development, and adult renal function. Am. J. Hypertens., 15, 46–9S.CrossRefGoogle ScholarPubMed
Jones, S. E., Bilous, R. W., Flyvbjerg, A. and Marshall, S. M. (2001). Intra-uterine environment influences glomerular number and the acute renal adaptation to experimental diabetes. Diabetologia, 44, 721–8.CrossRefGoogle ScholarPubMed
Keller-Wood, M. (1994). Vasopressin responses to hyperosmolality and hypotension during ovine pregnancy. Am. J. Physiol., 266, R188–93.Google ScholarPubMed
Kingdom, J. C., Hayes, M., McQueen, J., Howatson, A. G. and Lindop, G. B. (1999). Intrauterine growth restriction is associated with persistent juxtamedullary expression of renin in the fetal kidney. Kidney Int., 55, 424–9.CrossRefGoogle ScholarPubMed
Langley-Evans, S. C. (1997). Hypertension induced by foetal exposure to a maternal low-protein diet, in the rat, is prevented by pharmacological blockade of maternal glucocorticoid synthesis. J. Hypertens., 15, 537–44.CrossRefGoogle ScholarPubMed
Langley-Evans, S. C., Phillips, G. J., Benediktsson, R.et al. (1996). Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta, 17, 169–72.CrossRefGoogle ScholarPubMed
Langley-Evans, S. C., Welham, S. J. and Jackson, A. A. (1999). Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci., 64, 965–74.CrossRefGoogle ScholarPubMed
Leizea, J. P., Gonzalez, C. G., Garcia, F. D., Patterson, A. M. and Fernandez, S. F. (1999). The effects of food restriction on maternal endocrine adaptations in pregnant rats. J. Endocrinol. Invest 22, 327–32.CrossRefGoogle ScholarPubMed
Leon, D. A. and Koupilova, I. (2001). Birth weight, blood pressure, and hypertension: epidemiological studies. In Fetal Origins of Cardiovascular and Lung Disease. (ed. Barker, D. J. P.). New York, NY: Marcel Dekker, pp. 23–48.
Lesage, J., Blondeau, B. and Grino, M., Breant, B., Dupouy, J. P. (2001). Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology, 142, 1692–702.CrossRefGoogle ScholarPubMed
Leshem, M. (1998). Salt preference in adolescence is predicted by common prenatal and infantile mineralofluid loss. Physiol. Behav., 63, 699–704.CrossRefGoogle ScholarPubMed
Lewis, K., Li, C., Perrin, M. H.et al. (2001). Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl. Acad. Sci. USA, 98, 7570–5.CrossRefGoogle ScholarPubMed
Lumbers, E. R. (1995). Functions of the renin–angiotensin system during development. Clin. Exp. Pharmacol. Physiol., 22, 499–505.CrossRefGoogle ScholarPubMed
McKinley, M. J., Denton, D. A. and Weisinger, R. S. (1978). Sensors for antidiuresis and thirst: osmoreceptors or CSF sodium detectors?Brain Res., 141, 89–103.CrossRefGoogle ScholarPubMed
McKinley, M. J., Allen, A., Clevers, J., Denton, D. A. and Mendelsohn, F. A. (1986). Autoradiographic localization of angiotensin receptors in the sheep brain. Brain Res., 375, 373–6.CrossRefGoogle ScholarPubMed
McKinley, M. J., Allen, A. M., May, C. N.et al. (2001). Neural pathways from the lamina terminalis influencing cardiovascular and body fluid homeostasis. Clin. Exp. Pharmacol. Physiol., 28, 990–2.CrossRefGoogle ScholarPubMed
McKinley, M. J., Albiston, A. L., Allen, A. M.et al. (2003). The brain renin-angiotensin system: location and physiological roles. Int. J. Biochem. Cell Biol., 35, 901–18.CrossRefGoogle ScholarPubMed
Metcalfe, J. and Parer, J. T. (1966). Cardiovascular changes during pregnancy in ewes. Am. J. Physiol., 210, 821–5.Google ScholarPubMed
Moritz, K. M. and Wintour, E. M. (1999). Functional development of the meso- and metanephros. Pediatr. Nephrol., 13, 171–8.CrossRefGoogle ScholarPubMed
Moritz, K. M., Johnson, K., Douglas-Denton, R., Wintour, E. M. and Dodic, M. (2002). Maternal glucocorticoid treatment programs alterations in the renin–angiotensin system of the ovine fetal kidney. Endocrinology., 143, 4455–63.CrossRefGoogle ScholarPubMed
Mouw, D. R., Vander, A. J. and Wagner, J. (1978). Effects of prenatal and early postnatal sodium deprivation on subsequent adult thirst and salt preference in rats. Am. J. Physiol., 234, F59–63.Google ScholarPubMed
Nicolaidis, S., Galaverna, O. and Metzler, C. H. (1990). Extracellular dehydration during pregnancy increases salt appetite of offspring. Am. J. Physiol., 258, R281–3.Google ScholarPubMed
Niimura, F., Labosky, P. A., Kakuchi, J.et al. (1995).Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J. Clin. Invest., 96, 2947–54.CrossRefGoogle ScholarPubMed
Nwagwu, M. O., Cook, A. and Langley-Evans, S. C. (2000). Evidence of progressive deterioration of renal function in rats exposed to a maternal low-protein diet in utero. Br. J. Nutr., 83, 79–85.Google ScholarPubMed
Oldfield, B. J., Davern, P. J., Giles, M. E., Allen, A. M., Badoer, E. and McKinley, M. J. (2001). Efferent neural projections of angiotensin receptor (AT1) expressing neurones in the hypothalamic paraventricular nucleus of the rat. J. Neuroendocrinol., 13, 139–46.CrossRefGoogle ScholarPubMed
Ortiz, L. A., Quan, A., Weinberg, A. and Baum, M. (2001). Effect of prenatal dexamethasone on rat renal development. Kidney Int., 59, 1663–9.CrossRefGoogle ScholarPubMed
Osborn, J. W. (1997). Hormones as long-term error signals for the sympathetic nervous system: importance of a new perspective. Clin. Exp. Pharmacol. Physiol., 24, 109–15.CrossRefGoogle ScholarPubMed
Ramirez, B. A., Wang, S., Kallichanda, N. and Ross, M. G. (2002). Chronic in utero plasma hyperosmolality alters hypothalamic arginine vasopressin synthesis and pituitary arginine vasopressin content in newborn lambs. Am. J. Obstet. Gynecol., 187, 191–6.CrossRefGoogle ScholarPubMed
Ravelli, A. C., Meulen, J. H., Michels, R. P.et al. (1998). Glucose tolerance in adults after prenatal exposure to famineLancet, 351, 173–7.CrossRefGoogle Scholar
Regina, S., Lucas, R., Miraglia, S. M., Zaladek, G. F. and Machado, C. T. (2001). Intrauterine food restriction as a determinant of nephrosclerosis. Am. J. Kidney Dis., 37, 467–76.Google ScholarPubMed
Roberts, T. J., Nijland, M. J. M., Curran, M. and Ross, M. G. (1999). Maternal 1-deamino-8-D-arginine-vasopressin-induced sequential decreases in plasma sodium concentration: ovine fetal renal responses. Am. J. Obstet. Gynecol., 180, 82–90.CrossRefGoogle ScholarPubMed
Robinson, A. G., Roberts, M. M., Evron, W. A., Verbalis, J. G. and Sherman, T. G. (1990). Hyponatremia in rats induces downregulation of vasopressin synthesis. J. Clin. Invest., 86, 1023–9.CrossRefGoogle ScholarPubMed
Ross, M. G., Ervin, M. G., Leake, R. D., Humme, J. A. and Fisher, D. A. (1986). Continuous ovine fetal hemorrhage: sensitivity of plasma and urine arginine vasopressin. Am. J. Physiol., 251, E464–9.Google ScholarPubMed
Ross, M. G., Sherman, D. J., Ervin, M. G., Castro, R. and Humme, J. (1988). Maternal dehydration–rehydration: fetal plasma and urinary responses. Am. J. Physiol., 255, E674–9.Google ScholarPubMed
Ross, M. G., Agnew, C., Fujino, Y., Ervin, M. and Day, L. (1992). Concentration thresholds for fetal swallowing and vasopressin secretion. Am. J. Physiol., 262, R1057–63.Google ScholarPubMed
Ross, M. G., Kullama, L. K., Ogundipe, A., Chan, K. and Ervin, M. G. (1994). Central angiotensin II stimulation of ovine fetal swallowing. J. Appl. Physiol., 76, 1340–5.CrossRefGoogle ScholarPubMed
Ross, M. G., Kullama, L. K., Ogundipe, A., Chan, K. and Ervin, M. G. (1995). Ovine fetal swallowing response to intracerebroventricular hypertonic saline. J. Appl. Physiol., 78, 2267–71.CrossRefGoogle ScholarPubMed
Schutz, S., Le, Moullec, J. M., Corvol, P. and Gasc, J. M. (1996). Early expression of all the components of the renin–angiotensin system in human development. Am. J. Pathol., 149, 2067–79.Google ScholarPubMed
Scrogin, K. E., Grygielko, E. T. and Brooks, V. L. (1999). Osmolality: a physiological long-term regulator of lumbar sympathetic nerve activity and arterial pressure. Am. J. Physiol., 276, R1579–86.Google ScholarPubMed
Seki, K., Aibiki, M. and Ogura, S. (1997). 3.5% hypertonic saline produces sympathetic activation in hemorrhaged rabbits. J. Auton. Nerv. Syst., 64, 49–56.CrossRefGoogle ScholarPubMed
Sherman, D. J., Ross, M. G., Day, L. and Ervin, M. G. (1990). Fetal swallowing: correlation of electromyography and esophageal fluid flow. Am. J. Physiol., 258, R1386–94.Google ScholarPubMed
Sherman, R. C. and Langley-Evans, S. C. (2000). Antihypertensive treatment in early postnatal life modulates prenatal dietary influences upon blood pressure in the rat. Clin. Sci. 98, 269–75.CrossRefGoogle ScholarPubMed
Solhaug, M. J., Bolger, P. M. and Jose, P. A. (2004). The developing kidney and environmental toxins. Pediatrics, 113, 1084–91.Google ScholarPubMed
Thrasher, T. N., Jones, R. G., Keil, L. C., Brown, C. J. and Ramsay, D. J. (1980). Drinking and vasopressin release during ventricular infusions of hypertonic solutions. Am. J. Physiol., 238, R340–5.Google ScholarPubMed
Toney, G. M., Chen, Q. H., Cato, M. J. and Stocker, S. D. (2003). Central osmotic regulation of sympathetic nerve activity. Acta Physiol. Scand., 177, 43–55.CrossRefGoogle ScholarPubMed
Trowern, A. R., Bertram, C. and Whorwood, C. B. (2000). The intra-uterine environment programmes hypertension. Fetal and Neonatal Physiological Society 27th Annual Meeting, 35.Google Scholar
Tsuchida, S., Matsusaka, T., Chen, X.et al. (1998). Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J. Clin. Invest., 101, 755–60.CrossRefGoogle ScholarPubMed
Vehaskari, V. M., Aviles, D. H. and Manning, J. (2001). Prenatal programming of adult hypertension in the rat. Kidney Int., 59, 238–45.CrossRefGoogle ScholarPubMed
Wang, S., Chen, J., Kallichanda, N., Azim, A., Calvario, G. and Ross, M. G. (2003). Prolonged prenatal hypernatremia alters neuroendocrine and electrolyte homeostasis in neonatal sheep. Exp. Biol. Med., 228, 41–5.CrossRefGoogle ScholarPubMed
Weiss, M. L., Claassen, D. E., Hirai, T. and Kenney, M. J. (1996). Nonuniform sympathetic nerve responses to intravenous hypertonic saline infusion. J. Auton. Nerv. Syst., 57, 109–15.CrossRefGoogle ScholarPubMed
Wintour, E. M., Alcorn, D., Butkus, A.et al. (1996). Ontogeny of hormonal and excretory function of the meso- and metanephros in the ovine fetus. Kidney Int., 50, 1624–33.CrossRefGoogle ScholarPubMed
Wintour, E. M., Alcorn, D. and Rockell, M. D. (1998). Development and function of the fetal kidney. In Fetus and Neonate: Physiology and Clinical Applications (ed. Brace, R. A., Hanson, M. A., and Rodeck, C. H.). Cambridge: Cambridge University Press, pp. 3–56.
Wintour, E. M., Moritz, K. M., Johnson, K., Ricardo, S., Samuel, C. S. and Dodic, M. (2003). Reduced nephron number in adult sheep, hypertensive as a result of prenatal glucocorticoid treatment. J. Physiol. 549, 929–35.CrossRefGoogle ScholarPubMed
Wirth, J. B. and Epstein, A. N. (1976). Ontogeny of thirst in the infant rat. Am. J. Physiol., 230, 188–98.Google ScholarPubMed
Woods, L. L., Ingelfinger, J. R., Nyengaard, J. R. and Rasch, R. (2001). Maternal protein restriction suppresses the newborn renin–angiotensin system and programs adult hypertension in rats. Pediatr. Res., 49, 460–7.CrossRefGoogle ScholarPubMed
Wright, W. A. and Kutscher, C. L. (1977). Vasopressin administration in the first month of life: effects on growth and water metabolism in hypothalamic diabetes insipidus rats. Pharmacol. Biochem. Behav., 6, 505–9.CrossRefGoogle ScholarPubMed
Xu, Z. and Ross, M. G. (2000). Appearance of central dipsogenic mechanisms induced by dehydration in near-term rat fetus. Brain Res. Dev. Brain Res., 121, 11–18.CrossRefGoogle ScholarPubMed
Xu, Z., Glenda, C., Day, L., Yao, J. and Ross, M. G. (2000). Osmotic threshold and sensitivity for vasopressin release and fos expression by hypertonic NaCl in ovine fetus. Am. J. Physiol. Endocrinol. Metab., 279, E1207–15.CrossRefGoogle ScholarPubMed
Xu, Z., Nijland, M. J. and Ross, M. G. (2001). Plasma osmolality dipsogenic thresholds and c-fos expression in the near-term ovine fetus. Pediatr. Res., 49, 678–85.CrossRefGoogle ScholarPubMed
Zehnder, T. J., Valego, N. K., Schwartz, J., White, A. and Rose, J. C. (1995). Regulation of bioactive and immunoreactive ACTH secretion by CRF and AVP in sheep fetuses. Am. J. Physiol., 269, E1076–82.Google ScholarPubMed
Zhao, X., Nijland, M. J., Ervin, M. G. and Ross, M. G. (1998). Regulation of hypothalamic arginine vasopressin messenger ribonucleic acid and pituitary arginine vasopressin content in fetal sheep: effects of acute tonicity alterations and fetal maturation. Am. J. Obstet. Gynecol., 179, 899–905.CrossRefGoogle ScholarPubMed
Zhu, B. and Herbert, J. (1997). Angiotensin II interacts with nitric oxide–cyclic GMP pathway in the central control of drinking behaviour: mapping with c-fos and NADPH-diaphorase. Neuroscience, 79, 543–53.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×