Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T16:15:12.869Z Has data issue: false hasContentIssue false

28 - The developmental environment and the origins of neurological disorders

Published online by Cambridge University Press:  08 August 2009

Sandra Rees
Affiliation:
University of Melbourne
Richard Harding
Affiliation:
Monash University
Terrie Inder
Affiliation:
Murdoch Children's Research Institute
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

There is now compelling evidence that many neurological disorders which become apparent after birth have their origins during fetal life. For example, epidemiological studies have shown that cerebral palsy, a heterogeneous group of non-progressive motor impairment disorders, most frequently results from prenatal rather than perinatal or postnatal causes (Nelson and Ellenberg 1986). Minimal cerebral brain dysfunction, typified by children having general reading, writing and cognitive problems, is often associated with intrauterine growth restriction (IUGR), suggesting that the neurological problems have their origins in utero. Schizophrenia, one of the most debilitating of mental disorders, affecting about 1% of the population, cannot be accounted for entirely by genetic inheritance. On the basis of histological and neurochemical observations it has been proposed that prenatal insults result in a vulnerability of the developing brain, predisposing an individual with risk factors (seen as genetic inheritance) to develop the symptoms of schizophrenia in the teenage or young adult years (Akil and Weinberger 2000). Other disorders such as epilepsy and autism are also thought to result in part from neurodevelopmental deficits. Thus there is growing evidence that abnormal development of the brain during gestation contributes to many neurological disorders which manifest in later life.

Over the last few decades there have been major advances in our understanding of the intricate sequence of events that results in the formation of the entire nervous system from a specialised sheet of cells on the dorsal surface of the embryo.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akil, M. and Weinberger, D. (2000). Neuropathology and the neurodevelopmental model. In The Neuropathology of Schizophrenia: Progress and Interepretation (ed. Harrison, P. J. and Roberts, G. W.). Oxford: Oxford University Press, pp. 189–212.Google Scholar
Allin, M., Matsumoto, H., Santhouse, A. M.et al. (2001). Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain, 124, 60–6.CrossRefGoogle ScholarPubMed
Anagnostakis, D., Petmezakis, J., Papazissis, G., Messaritakis, J. and Matsaniotis, N. (1982). Hearing loss in low-birth-weight infants. Am. J. Dis. Child., 136, 602–4.Google ScholarPubMed
Back, S. A., Gan, X., Rosenberg, P. and Volpe, J. (1998). Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J. Neurosci., 18, 6241–53.CrossRefGoogle ScholarPubMed
Banker, B. Q. and Larroche, J. C. (1962). Periventricular leukomalacia of infancy: a form of neonatal anoxic encephalopathy. Arch. Neurol., 7, 386–410.CrossRefGoogle ScholarPubMed
Baud, O., Daire, J.-L., Dalmaz, Y.et al. (2004). Gestational hypoxia induces white matter damage in neonatal rats: a new model of periventricular leukomalacia. Brain Pathol., 14, 1–10.CrossRefGoogle ScholarPubMed
Bell, M. J. and Hallenbeck, J. M. (2002). Effects of intrauterine inflammation on developing rat brain. J. Neurosci. Res., 70, 570–9.CrossRefGoogle ScholarPubMed
Beutler, B. and Poltorak, A. (2000). Positional cloning of Lps, and the general role of toll-like receptors in the innate immune response. Eur. Cytokine Netw., 11, 143–52.Google ScholarPubMed
Bocking, A. D., Gagnon, R., White, S. E., Homan, J., Milne, K. M. and Richardson, B. S. (1988). Circulatory responses to prolonged hypoxemia in fetal sheep. Am. J. Obstet. Gynecol., 159, 1418–24.CrossRefGoogle ScholarPubMed
Bui, B. V., Rees, S. M., Loeliger, M.et al. (2002). Altered retinal function and structure after chronic placental insufficiency. Invest. Ophthalmol. Vis. Sci., 43, 805–12.Google ScholarPubMed
Cai, Z., Pan, Z., Pang, Y., Evans, O. and Rhodes, P. (2000). Cytokine induction in fetal rat brains and brain injury in neonatal rats after maternal lipopolysaccharide administration. Pediatr. Res., 47, 64–72.CrossRefGoogle ScholarPubMed
Dalitz, P., Harding, R., Rees, S. M. and Cock, M. L. (2003). Prolonged reductions in placental blood flow and cerebral oxygen delivery in preterm fetal sheep exposed to endotoxin: possible factors in white matter injury after acute infection. J. Soc. Gynecol. Investig., 10, 283–90.Google ScholarPubMed
Dammann, O. and Leviton, A. (1997). Maternal intrauterine infection, cytokines, and brain damage in the preterm newborn. Pediatr. Res., 42, 1–8.CrossRefGoogle ScholarPubMed
Debillon, T., Gras-Leguen, C., Verielle, V.et al. (2000). Intrauterine infection induces programmed cell death in rabbit periventricular white matter. Pediatr. Res., 47, 736–42.CrossRefGoogle ScholarPubMed
Deguchi, K., Mizuguchi, M. and Takashima, S. (1996). Immunohistochemical expression of tumor necrosis factor alpha in neonatal leukomalacia. Pediatr. Neurol., 14, 13–16.CrossRefGoogle ScholarPubMed
Derrick, M., Luo, N. L., Bregman, J. C.et al. (2004). Preterm fetal hypoxia–ischemia causes hypertonia and motor deficits in the neonatal rabbit: a model for human cerebral palsy? J. Neurosci., 24, 24–34.CrossRefGoogle ScholarPubMed
Dieni, S. and Rees, S. (2005). BDNF and TrkB protein expression is altered in the fetal hippocampus but not cerebellum after chronic prenatal compromise. Exp. Neurol., 192, 265–73.CrossRefGoogle Scholar
Dieni, S., Inder, T., Yoder, B.et al. (2004). The pattern of cerebral injury in a primate model of preterm birth and neonatal intensive care. J. Neuropathol. Exp. Neurol., 63, 1297–309.CrossRefGoogle Scholar
Dowdeswell, H. J., Slater, A. M., Broomhall, J. and Tripp, J. (1995). Visual deficits in children born at less than 32 weeks' gestation with and without major ocular pathology and cerebral damage. Br. J. Ophthalmol., 79, 447–52.CrossRefGoogle ScholarPubMed
Duncan, J. R., Cock, M. L., Scheerlinck, J. P.et al. (2002). White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr. Res., 52, 941–9.CrossRefGoogle ScholarPubMed
Duncan, J. R., Camm, E., Loeliger, M., Cock, M. L., Harding, R. and Rees, S. M. (2004a). Effects of umbilical cord occlusion in late gestation on the ovine fetal brain and retina. J. Soc. Gynecol. Investig., 11, 369–76.CrossRefGoogle Scholar
Duncan, J. R., Cock, M. L., Loeliger, M., Louey, S., Harding, R. and Rees, S. M. (2004b). Effects of exposure to chronic placental insufficiency on the postnatal brain and retina in sheep. J. Neuropathol. Exp. Neurol., 63, 1131–43.CrossRefGoogle Scholar
Duncan, J. R., Cock, M. L., Suzuki, K., Rees, S. M. and Harding, R. (2004c). Brain injury in the ovine fetal brain following continuous infusion of endotoxin. Pediatric Academic Societies abstract. San Francisco, USA.
Eklind, S., Mallard, C., Leverin, A.et al. (2001). Bacterial endotoxin sensitizes the immature brain to hypoxic-ischaemic injury. Eur. J. Neurosci., 13, 1101–6.CrossRefGoogle ScholarPubMed
Fern, R. and Moller, T. (2000). Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J. Neurosci., 20, 34–42.CrossRefGoogle ScholarPubMed
Follett, P. L., Rosenberg, P. A., Volpe, J. J. and Jensen, F. E. (2000). NBQX attenuates excitotoxic injury in developing white matter. J. Neurosci., 20, 9235–41.CrossRefGoogle ScholarPubMed
Foster, K. A., Colditz, P. B., Lingwood, B. E., Burke, C., Dunster, K. R. and Roberts, M. S. (2001). An improved survival model of hypoxia/ischemia in the piglet suitable for neuroprotection studies. Brain Res., 919, 122–31.CrossRefGoogle Scholar
Furuta, A. and Martin, L. J. (1999). Laminar segregation of the cortical plate during corticogenesis is accompanied by changes in glutamate receptor expression. J. Neurobiol., 39, 67–80.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Garnier, Y., Coumans, A., Berger, R., Jensen, A. and Hasaart, T. H. (2001). Endotoxemia severely affects circulation during normoxia and asphyxia in immature fetal sheep. J. Soc. Gynecol. Investig., 8, 134–42.CrossRefGoogle ScholarPubMed
Gluckman, P. D., Wyatt, J. S., Azzopardi, D.et al. (2005). Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet, 365, 663–70.CrossRefGoogle ScholarPubMed
Grafe, M. R. (1994). The correlation of prenatal brain damage with placental pathology. J. Neuropathol. Exp. Neurol., 53, 407–15.CrossRefGoogle ScholarPubMed
Hack, M. and Fanaroff, A. A. (1999). Outcomes of children of extremely low birthweight and gestational age in the 1990s. Early Hum. Dev., 53, 193–218.CrossRefGoogle Scholar
Harris, L. W., Sharp, T., Gartlon, J., Jones, D. N. C. and Harrison, P. J. (2003). Long term behavioural, molecular and morphological effects of neonatal NMDA receptor antagonism. Eur. J. Neurosci., 18, 1706–10.CrossRefGoogle ScholarPubMed
Haynes, R. L., Folkerth, R. D., Keefe, R.et al. (2003). Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J. Neuropathol. Exp. Neurol., 62, 441–50.CrossRefGoogle ScholarPubMed
Holling, E. E. and Leviton, A. (1999). Characteristics of cranial ultrasound white-matter echolucencies that predict disability: a review. Dev. Med. Child Neurol., 41, 136–9.CrossRefGoogle ScholarPubMed
Hopkins, R. and Lewis, S. (2000). Structural imaging findings and macroscopic pathology. In The Neuropathology of Schizophrenia: Progress and Interpretation (ed. Harrison, P. J. and Roberts, G. W.). Oxford: Oxford University Press, pp. 5–56.Google Scholar
Inder, T. E., Huppi, P. S., Warfield, S.et al. (1999). Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term. Ann. Neurol., 46, 755–60.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Inder, T. E., Mocatta, T. J., Darlow, B., Spencer, C., Volpe, J. J. and Winterbourn, C. (2002). Elevated free radical products in the cerebrospinal fluid of VLBW infants with cerebral white matter injury. Pediatr. Res., 52, 213–18.CrossRefGoogle ScholarPubMed
Inder, T. E., Anderson, N. J., Spencer, C., Wells, S. and Volpe, J. J. (2003). White matter injury in the premature infant: a comparison between serial cranial sonographic and MR findings at term. Am. J. Neuroradiol., 24, 805–9.Google Scholar
Isaacs, E. B., Lucas, A., Chong, W. K.et al. (2000). Hippocampal volume and everyday memory in children of very low birth weight. Pediatr. Res., 47, 713–20.CrossRefGoogle ScholarPubMed
Johnston, B. M., Mallard, E. C., Williams, C. and Gluckman, P. (1996). Insulin-like growth factor-1 is a potent neuronal rescue agent after hypoxic–ischemic injury in fetal lambs. J. Clin. Invest., 97, 300–8.CrossRefGoogle ScholarPubMed
Johnston, M. V., Trescher, W. H., Ishida, A. and Nakajima, W. (2000). Novel treatments after experimental brain injury. Semin. Neonatol., 5, 75–86.CrossRefGoogle ScholarPubMed
Johnstone, E. C., Crow, T. J., Frith, C., Husband, J. and Kreel, L. (1976). Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet., 2, 924–6.CrossRefGoogle ScholarPubMed
Kuban, K. C. and Leviton, A. (1994). Cerebral palsy. N. Engl. J. Med., 330, 188–95.CrossRefGoogle ScholarPubMed
Leviton, A. and Dammann, O. (2002). Brain damage markers in children: neurobiological and clinical aspects. Acta Pediatr., 91, 9–13.CrossRefGoogle ScholarPubMed
Lipska, B. K., Swerdlow, N. R.Geyer, M., Jaskiw, G., Braff, D. and Weinberger, D. (1995). Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology (Berl.), 122, 35–43.CrossRefGoogle ScholarPubMed
Loeliger, M., Watson, C. S., Reynolds, J. D.et al. (2003). Extracellular glutamate levels and neuropathology in cerebral white matter following repeated umbilical cord occlusion in the near term fetal sheep. Neuroscience, 116, 705–14.CrossRefGoogle ScholarPubMed
Mallard, C., Welin, A. K., Peebles, D., Hagberg, H. and Kjellmer, L. (2003). White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochem. Res., 28, 215–23.CrossRefGoogle ScholarPubMed
Mallard, E. C., Rehn, A., Rees, S., Tolcos, M. and Copolov, D. (1999). Ventriculomegaly and reduced hippocampal volume following intrauterine growth-restriction: implications for the aetiology of schizophrenia. Schizophr. Res., 40, 11–21.CrossRefGoogle ScholarPubMed
Mattson, M. P. and Camandola, S. (2001). NF-kappaB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest., 107, 247–54.CrossRefGoogle ScholarPubMed
McDonald, J. W., Silverstein, F. S. and Johnston, M. (1988). Neurotoxicity of N-methyl-D-aspartate is markedly enhanced in developing rat central nervous system. Brain Res., 459, 200–3.CrossRefGoogle ScholarPubMed
Myers, R. E. (1977). Experimental models of perinatal brain damage: relevance to human pathology. In Intrauterine Asphyxia and the Developing Fetal Brain (ed. Gluck, L.). Chicago, IL: Year Book, pp. 37–97.Google Scholar
Naeye, R. L., Peters, E. C., Bartholomew, M. and Landis, J. (1989). Origins of cerebral palsy. Am. J. Dis. Child., 143, 1154–61.Google ScholarPubMed
Nelson, K. B. and Ellenberg, J. H. (1986). Antecedents of cerebral palsy: multivariate analysis of risk. N. Engl. J. Med., 315, 81–6.CrossRefGoogle Scholar
Nelson, K. B. and Grether, J. K. (1998). Potentially asphyxiating conditions and spastic cerebral palsy in infants of normal birth weight. Am. J. Obstet. Gynecol., 179, 507–13.CrossRefGoogle ScholarPubMed
Nitsos, I. and Rees, S. (1990). The effects of intrauterine growth retardation on the development of neuroglia in fetal guinea pigs: an immunohistochemical and an ultrastructural study. Int. J. Dev. Neurosci., 8, 233–44.CrossRefGoogle ScholarPubMed
Nitsos, I., Moss, T. J. M., Kramer, B. W.et al. (2004). Fetal and Neonatal Physiological Society abstract, Italy.
Penning, D. H., Grafe, M. R., Hammond, R., Matsuda, Y., Patrick, J. and Richardson, B. (1994). Neuropathology of the near-term and midgestation ovine fetal brain after sustained in utero hypoxemia. Am. J. Obstet. Gynecol., 170, 1425–32.CrossRefGoogle ScholarPubMed
Rees, S. and Harding, R. (1988). The effects of intrauterine growth retardation on the development of the Purkinje cell dendritic tree in the cerebellar cortex of fetal sheep: a note on the ontogeny of the Purkinje cell. Int. J. Dev. Neurosci., 6, 461–9.CrossRefGoogle ScholarPubMed
Rees, S., Bocking, A. and Harding, R. (1988). Structure of fetal sheep brain in experimental growth retardation. J. Dev. Physiol., 10, 211–24.Google ScholarPubMed
Rees, S., Stringer, M., Just, Y., Hooper, S. B. and Harding, R. (1997). The vulnerability of the fetal sheep brain to hypoxemia at mid-gestation. Dev. Brain Res., 103, 103–18.CrossRefGoogle ScholarPubMed
Rees, S., Breen, S., Loeliger, M., McCrabb, G. and Harding, R. (1999). Hypoxemia near mid-gestation has long-term effects on fetal brain development. J. Neuropathol. Exp. Neurol., 58, 932–45.CrossRefGoogle ScholarPubMed
Rehn, A. E., Loeliger, M., Hardie, N. A., Rees, S. M., Dieni, S. and Shepherd, R. K. (2002). Chronic placental insufficiency has long-term effects on auditory function in the guinea pig. Hear. Res., 166, 159–65.CrossRefGoogle ScholarPubMed
Rehn, A. E., Buuse, M., Copolov, D., Briscoe, T., Lambert, G. and Rees, S. (2004). An animal model of chronic placental insufficiency: relevance to neurodevelopmental disorders including schizophrenia. Neuroscience, 129, 381–91.CrossRefGoogle ScholarPubMed
Rice, J. E. III, Vannucci, R. C. and Brierley, J. B. (1981). The influence of immaturity on hypoxic–ischemic brain damage in the rat. Ann. Neurol., 9, 131–41.CrossRefGoogle ScholarPubMed
Rivkin, M. (1997). Hypoxic–ischemic brain injury in the term newborn: neuropathology, clinical aspects, and neuroimaging. Clin. Perinatol., 24, 607–25.CrossRefGoogle ScholarPubMed
Romero, R., Chaiworapongsa, T. and Espinoza, J. (2003). Micronutrients and intrauterine infection, preterm birth and the fetal inflammatory response syndrome. J. Nutr., 133, 1668–73S.CrossRefGoogle ScholarPubMed
Rothwell, N. J. and Strijbos, P. J. (1995). Cytokines in neurodegeneration and repair. Int. J. Dev. Neurosci., 13, 179–85.CrossRefGoogle Scholar
Salafia, C. M., Minior, V. K., Lopez-Zeno, J. A., Whittington, S. S., Pezzullo, J. C. and Vintzileos, A. M. (1995). Relationship between placental histologic features and umbilical cord blood gases in preterm gestations. Am. J. Obstet. Gynecol., 173, 1058–64.CrossRefGoogle ScholarPubMed
Stys, P. K., Waxman, S. G. and Ransom, B. R. (1991). Reverse operation of the Na(+)–Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian CNS white matter. Ann. NY Acad. Sci., 639, 328–32.CrossRefGoogle ScholarPubMed
Volpe, J. J. (2001). Neurology of the Newborn, 4th edn. Philadelphia, PA: Saunders.Google Scholar
Williams, C., Gunn, A. J., Mallard, C. and Gluckman, P. (1992). Outcome after ischaemia in the developing sheep brain: an electroencephalographic and histological study. Ann. Neurol., 31, 14–21.CrossRefGoogle ScholarPubMed
Williams, G., Dardzinsky, B., Buckalew, A. and Smith, M. (1997). Modest hypothermia preserves cerebral energy metabolism during hypoxia–ischemia and correlates with brain damage: a 31P nuclear magnetic resonance study in unanesthetized neonatal rats. Pediatr. Res., 42, 700–8.CrossRefGoogle ScholarPubMed
Yan, E., Castillo-Melendez, M., Nicholls, T., Hirst, J. and Walker, D. (2004). Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pediatr. Res., 55, 855–63.CrossRefGoogle ScholarPubMed
Yoon, B. H., Romero, R., Kim, C.et al. (1995). Amniotic fluid interleukin-6: a sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal morbidity. Am. J. Obstet. Gynecol., 172, 960–70.CrossRefGoogle ScholarPubMed
Yoon, B. H., Romero, R., Yang, S. H.et al. (1996). Interleukin-6 concentrations in umbilical cord plasma are elevated in neonates with white matter lesions associated with periventricular leukomalacia. Am. J. Obstet. Gynecol., 174, 1433–40.CrossRefGoogle ScholarPubMed
Yoon, B. H., Jun, J. K., Romero, R.et al. (1997a). Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha), neonatal brain white matter lesions, and cerebral palsy. Am. J. Obstet. Gynecol., 177, 19–26.CrossRefGoogle Scholar
Yoon, B. H., Kim, C. J., Romero, R.et al. (1997b). Experimentally induced intrauterine infection causes fetal brain white matter lesions in rabbits. Am. J. Obstet. Gynecol., 177, 797–802.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×