Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T04:40:30.615Z Has data issue: false hasContentIssue false

17 - The developmental environment and insulin resistance

Published online by Cambridge University Press:  08 August 2009

Noel H. Smith
Affiliation:
University of Cambridge
Susan E. Ozanne
Affiliation:
University of Cambridge
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

The detrimental effects of an insult during a critical period of development have been recognised for many years. In the past 15 years there have been a number of epidemiological studies which have shown that there is a relationship between early growth restriction and the subsequent development of adult degenerative diseases such as ischaemic heart disease, hypertension, type 2 diabetes and the metabolic syndrome. The mechanistic basis and the relative roles of genetic and environmental factors are unclear. However, there is growing evidence that the fetal and early environment play an important role in this relationship.

A number of different factors can result in intrauterine growth restriction (IUGR). Maternal malnutrition during pregnancy is one cause of IUGR, because of inadequate nutrient delivery to the fetus. Growth restriction in offspring can be induced by the reduction of all nutrients in the mother's diet (global food restriction) or by the reduction of specific dietary nutrients such as protein and iron. Maternal stress can lead to IUGR, and this is thought at least in part to be mediated by overexposure to glucocorticoids. Overexposure of the fetus to glucocorticoids is known to lead to reductions in birthweight. In the Western world placental insufficiency is one of the most common causes of IUGR. It is not known if all modes of growth restriction result in the same phenotypic outcomes. To investigate these forms of growth restriction, animal models mimicking each of these causes of IUGR have been developed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arner, P. (1995). Differences in lypolysis between human subcutaneous and omental adipose tissue. Ann. Med., 27, 435–8.CrossRefGoogle Scholar
Barker, D. J. P. and Hales, C. N. (1992). Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia, 35, 595–601.Google Scholar
Benediktsson, R., Lindsay, R. S., Noble, J., Sekl, J. R. and Edwards, C. R. W. (1993). Glucocorticoid exposure in utero: a new model for adult hypertension. Lancet, 341, 339–41.CrossRefGoogle ScholarPubMed
Boujendar, S., Reusens, B., Merezak, S.et al. (2002). Taurine supplementation to a low protein diet during fetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. Diabetologia, 45, 856–66.CrossRefGoogle ScholarPubMed
Brown, S. A., Rogers, L. K., Dunn, J. K., Gotto, A. M. and Patsch, W. (1990). Development of cholesterol homeostatic memory in the rat is influenced by maternal diets. Metabolism, 39, 468–73.CrossRefGoogle ScholarPubMed
Burns, S. P., Desai, M., Cohen, R. D.et al. (1997). Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J. Clin. Invest., 100, 1768–74.CrossRefGoogle ScholarPubMed
Cherif, H., Reusens, B., Ahn, M. T., Hoet, J. J. and Remacle, C. (1998). Effects of taurine on the insulin secretion of rat fetal islets from dams fed a low-protein diet. J. Endocrinol., 159, 341–8.CrossRefGoogle ScholarPubMed
Cherif, H., Reusens, B., Dahri, S. and Remacle, C. (2001). A protein-restricted diet during pregnancy alters in vitro insulin secretion from islets of fetal Wistar rats. J. Nutr., 131, 1555–9.CrossRefGoogle ScholarPubMed
Crowe, C., Dandekar, P., Fox, M., Dhingra, K., Bennet, L. and Hanson, M. A. (1995). The effects of anaemia on heart, placenta and body weight, blood pressure in fetal and neonatal rats. J. Physiol., 488, 515–19.CrossRefGoogle ScholarPubMed
Dahlgren, J., Nilsson, C., Jennische, E.et al. (2001). Prenatal cytokine exposure results in obesity and gender-specific programming. Am. J. Physiol. Endocrinol. Metab., 281, E326–34.CrossRefGoogle ScholarPubMed
Dahri, S., Snoeck, A., Reusens, B., Remacle, C. and Hoet, J. J. (1991). Islet function in offspring of mothers on low-protein diet during gestation. Diabetes, 40, 115–20.CrossRefGoogle ScholarPubMed
Desai, M., Crowther, N. J., Lucas, A. and Hales, C. N. (1996). Organ-selective growth in the offspring of protein restricted mothers. Br. J. Nutr., 76, 591–603.CrossRefGoogle ScholarPubMed
Dodic, M., May, C. N., Wintour, E. M. and Coghlan, J. P. (1998). An early prenatal exposure to excess glucocorticoid leads to hypertensive offspring in sheep. Clin. Sci. (Lond.), 94, 149–55.CrossRefGoogle Scholar
Edwards, L. J. and McMillen, I. C. (2002). Vascular endothelial dysfunction. Prog. Cardiovasc. Dis., 39, 325–42.Google Scholar
Eriksson, J. G., Forsen, T., Tuomilehto, J., Osmond, C. and Barker, D. J. P. (2000). Fetal and childhood growth and hypertension in adult life. Hypertension, 36, 790–4.CrossRefGoogle ScholarPubMed
Felt, B. T. and Lozoff, B. (1996). Brain iron and behavior of rats are not normalized by treatment of iron deficiency anemia during early development. J. Nutr., 126, 693–701.CrossRefGoogle Scholar
Frank, J. W., Saslow, S. B., Camilleri, M., Thomforde, G. M., Dinneen, S. and Rizza, R. A. (1995). Mechanism of accelerated gastric emptying of liquids and hyperglycaemia in patients with type 2 diabetes mellitus. Gastroenterology, 109, 755–65.CrossRefGoogle Scholar
Garofano, A., Czernichow, P. and Bréant, B. (1997). In utero undernutrition impairs rat β-cell development. Diabetologia, 40, 1231–4.CrossRefGoogle ScholarPubMed
Garofano, A., Czernichow, P. and Bréant, B. (1999). Effect of ageing on beta-cell mass and function in rats malnourished during the perinatal period. Diabetologia, 42, 711–18.CrossRefGoogle ScholarPubMed
Ghebremeskel, K., Bitsanis, D., Koukkou, E., Lowy, C., Poston, L. and Crawford, M. A. (1999). Saturated fat maternal diet in the pregnant rat reduces docosahexaenoic acid in liver lipids of neonate and suckling pups. Br. J. Nutr., 81, 395–404.Google Scholar
Ghosh, P., Bitsanis, D., Ghebremeskel, K., Crawford, M. A. and Poston, L. (2001). Abnormal aortic fatty acid composition and small artery function in offspring of rats fed a high fat diet in pregnancy. J. Physiol., 533, 815–22.CrossRefGoogle ScholarPubMed
Godfrey, K., Robinson, S., Barker, D. J. P., Osmond, C. and Cox, V. (1996). Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ, 312, 410–14.CrossRefGoogle ScholarPubMed
Gopalakrishnan, G. S., Gardner, D. S., Rhind, S. M.et al. (2004). Programming of adult cardiovascular function after early maternal undernutrition in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol., 287, R12–20.CrossRefGoogle Scholar
Guo, F. and Jen, K. C. L. (1995). High fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol. Behav., 57, 681–6.CrossRefGoogle ScholarPubMed
Hales, C. N. and Ozanne, S. E. (2004). Catch-up growth and obesity in male mice. Nature, 247, 411–12.Google Scholar
Hales, C. N., Desai, M., Ozanne, S. E. and Crowther, N. J. (1996). Fishing in the stream of diabetes: from measuring insulin to the control of fetal organogenesis. Biochem. Soc. Trans., 24, 341–50.CrossRefGoogle ScholarPubMed
Hawkins, P., Steyn, C., Ozaki, T., Saito, T., Noakes, D. E. and Hanson, M. A. (2000). Effect of maternal undernutrition in early gestation on ovine fetal blood pressure and cardiovascular reflexes. Am. J. Physiol. Regul. Integr. Comp. Physiol., 279, R340–8.CrossRefGoogle ScholarPubMed
Heasman, L., Clarke, L., Stephenson, T. J. and Symonds, M. E. (1999). The influence of maternal nutrient restriction in early to mid-pregnancy on placental and fetal development in sheep. Proc. Nutr. Soc., 58, 283–8.CrossRefGoogle Scholar
Holemans, K., Verhaeghe, J., Dequeker, J., Assche, F. A. (1996). Insulin sensitivity in adult female offspring of rats subjected to malnutrition during the perinatal period. J. Soc. Gynecol. Investig., 3, 71–7.Google ScholarPubMed
Holemans, K., Caluwarts, S., Poston, L. and Assche, F. A. (2004). Diet-induced obesity in the rat: a model for gestational diabetes mellitus. Am. J. Obs. Gynecol., 190, 858–65.CrossRefGoogle ScholarPubMed
Holness, M. J. and Sugden, M. C. (1999). Antecedent protein restriction exacerbates development of impaired insulin action after high-fat feeding. Am. J. Physiol., 276, E85–93.Google ScholarPubMed
Hughes, S. J. and Wilson, M. R. (1997). The effect of maternal protein deficiency during pregnancy and lactation on glucose tolerance and pancreatic islet function in adult rat offspring. J. Endocrinol., 27, 177–85.Google Scholar
Jansson, T. and Lambert, G. W. (1999). Effect of intrauterine growth restriction on blood pressure, glucose tolerance and sympathetic nervous system activity in the rat at 3–4 months of age. J. Hypotens., 17, 1239–48.CrossRefGoogle ScholarPubMed
Jennings, B. J., Ozanne, S. E., Dorling, M. W. and Hales, C. N. (1999). Early growth restriction determines longevity in male rats and may be related to telomere shortening in the kidney. FEBS Lett., 448, 4–9.CrossRefGoogle Scholar
Koshinaka, K., Oshida, Y., Han, Y. Q.et al. (2004). Insulin-specific reduction in skeletal muscle glucose transport in high-fat-fed rats. Metabolism, 53, 912–17.CrossRefGoogle Scholar
Koukkou, E., Ghosh, P., Lowy, C. and Poston, L. (1998). Offspring of normal and diabetic rats fed saturated fat in pregnancy demonstrate vascular dysfunction. Circulation, 86, 217–22.Google Scholar
Lane, R. H., Chandorkar, A. K., Flozak, A. S. and Simmons, R. A. (1998). Intrauterine growth retardation alters mitochondrial gene expression and function in fetal and juvenile rat skeletal muscle. Pediatr. Res., 43, 563–70.CrossRefGoogle ScholarPubMed
Langley-Evans, S. C. (1996). Intrauterine programming of hypertension in the rat: nutrient interactions. Comp. Biochem. Physiol., 114, 327–33.CrossRefGoogle ScholarPubMed
Langley-Evans, S. C., Sherman, R. C., Welham, S. J., Nwagwu, M. O., Gardner, D. S. and Jackson, A. A. (1999). Intrauterine programming of hypertension: the role of the rennin–angiotensin system. Biochem. Soc. Trans., 27, 88–93.CrossRefGoogle Scholar
Law, C. M., Barker, D. J. P., Osmond, C., Fall, C. H. and Simmonds, S. J. (1992). Early growth and abdominal fatness in adult life. J. Epidemiol. Community Health, 46, 184–6.CrossRefGoogle ScholarPubMed
Leon, D., Koupilova, I., Lithell, H. O.et al. (1996). Failure to realize growth potential in utero and adult obesity in relation to blood pressure in 50 year old Swedish men. BMJ, 312, 401–6.CrossRefGoogle Scholar
Lesage, J., Blondeau, B., Grino, M., Bréant, B. and Dupouy, J. P. (2001). Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology, 142, 1692–702.CrossRefGoogle ScholarPubMed
Lewis, R. M., Petry, C. J., Ozanne, S. E. and Hales, C. N. (2001). Effects of maternal iron restriction in the rat on blood pressure, glucose tolerance, and serum lipids in the 3-month-old offspring. Metabolism, 50, 562–7.CrossRefGoogle ScholarPubMed
Lewis, R. M., Forhead, A. J., Petry, C. J., Ozanne, S. E. and Hales, C. N. (2002). Long-term programming of blood pressure by maternal dietary iron restriction in the rat. Brit. J. Nutr., 88, 283–90.CrossRefGoogle ScholarPubMed
Lindsay, R. S., Lindsay, R. M., Wadell, B. J. and Sekl, J. R. (1996). Prenatal glucocorticoid exposure leads to offspring hyperglycaemia in the rat; studies with the 11β-hydroxysteroid dehydrogenase inhibitor carbenoxenolone. Diabetologia, 39, 1299–305.CrossRefGoogle Scholar
Marlet-Benichou, C., Gilbert, T., Muffat-Joly, M., Lelievre-Pegorier, M. and Leroy, B. (1994). Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr. Nephrol., 8, 175–80.CrossRefGoogle Scholar
Martin, C. M., Yu, A. Y., Jiang, B. H.et al. (1998). Cardiac hypertrophy in chronically anemic fetal sheep: increased vascularization is associated with increased myocardial expression of vascular endothelial growth factor and hypoxia-inducible factor 1. Am. J. Obstet. Gynecol., 178, 527–34.CrossRefGoogle ScholarPubMed
Meier, T. I., Cook, J. A., Thomas, J. E.et al. (2004). Cloning, expression, purification, and characterization of the human class 1a phosphoinositide 3-kinase isoforms. Protein Expr. Purif., 35, 218–24.CrossRefGoogle Scholar
Nilsson, C., Larsson, B. M., Jennische, E.et al. (2001). Maternal endotoxemia results in obesity and insulin resistance in adult male offspring. Endocrinology, 142, 2622–30.CrossRefGoogle ScholarPubMed
Nishina, H., Green, L. R., McGarrigle, H. H. G., Noakes, D. E., Poston, L. and Hanson, M. A. (2003). Effect of nutritional restriction in early pregnancy on isolated femoral artery function in mid-gestation fetal sheep. J. Physiol., 553, 637–47.CrossRefGoogle ScholarPubMed
Ogata, E. S., Bussey, M. and Finley, S. (1986). Altered gas exchange, limited glucose, branched chain amino acids, and hypoinsulinism retard fetal growth in the rat. Metabolism, 35, 950–77.CrossRefGoogle ScholarPubMed
Ozanne, S. E., Smith, G. D., Tikererpae, J. and Hales, C. N. (1996a). Altered regulation of hepatic glucose output in the male offspring of protein malnourished rat dams. Am. J. Physiol., 270, E55–64.Google Scholar
Ozanne, S. E., Wang, C. L., Coleman, N. and Smith, G. D. (1996b). Altered muscle insulin sensitivity in the male offspring of protein malnourished rats. Am. J. Physiol., 271, E1128–34.Google Scholar
Ozanne, S. E., Nave, B. T., Wang, C. L., Shepherd, P. R., Prins, J. and Smith, G. D. (1997). Poor fetal nutrition causes long-term changes in expression of insulin signaling components in adipocytes. Am. J. Physiol., 273, E46–51.Google ScholarPubMed
Ozanne, S. E., Wang, C. L., Dorling, M. W. and Petry, C. J. (1999). Dissection of the metabolic actions of insulin in adipocytes from early growth retarded male rats. J. Endocrinol., 162, 313–19.CrossRefGoogle ScholarPubMed
Petrik, J., Reusens, B., Arany, C.et al. (1999). A low protein diet alters the balance of islet cell replication and apoptosis in the fetal and neonatal rat and is associated with a reduced pancreatic expression of insulin-like growth factor II. Endocrinology, 140, 4861–73.CrossRefGoogle ScholarPubMed
Petry, C. J., Ozanne, S. E., Wang, C. L. and Hales, C. N. (1997). Early protein restriction and obesity independently induce hypertension in 1-year-old rats. Clin. Sci. (Lond.), 93, 147–52.CrossRefGoogle ScholarPubMed
Petry, C. J., Dorling, M. W., Pawlak, D. B., Ozanne, S. E. and Hales, C. N. (2001). Diabetes in old rat dams fed a reduced protein diet. Int. J. Diabetes Res., 2, 139–43.CrossRefGoogle ScholarPubMed
Reinisch, J. M., Simon, N. G., Karwo, W. G. and Gandelman, R. (1978). Prenatal exposure to prednisone in humans and animals retards intrauterine growth, Science, 202, 436–8.CrossRefGoogle ScholarPubMed
Rosso, P. and Kava, R. (1980). Effects of food restriction on cardiac output and blood flow to the uterus and placenta in the pregnant rat. J. Nutr., 110, 2350–4.CrossRefGoogle ScholarPubMed
Selak, M. A., Storey, B. T., Peterside, I. and Simmons, R. A. (2003). Impaired oxidative phosphorylation in skeletal muscle of intrauterine growth-retarded rats. Am. J. Physiol. Endocrinol. Metab., 285, E130–7.CrossRefGoogle ScholarPubMed
Shepard, T. H., Mackler, B. and Finch, C. A. (1980). Reproductive studies in the iron-deficient rat. Teratology, 22, 329–34.CrossRefGoogle ScholarPubMed
Shepherd, P. R., Crowther, N. J., Desai, M., Hales, C. N. and Ozanne, S. E. (1997). Altered adipocyte proteins in the offspring of protein malnourished rats. Br. J. Nutr., 78, 121–9.CrossRefGoogle ScholarPubMed
Shepherd, P. R., Withers, D. J. and Siddle, K. (1998). Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J., 333, 471–90.CrossRefGoogle ScholarPubMed
Simmons, R. A., Templeton, L. J. and Gertz, S. J. (2001). Intrauterine growth retardation leads to the development of type 2 diabetes in the rat. Diabetes, 50, 2279–86.CrossRefGoogle ScholarPubMed
Snoeck, A., Remacle, C., Reusens, B. and Hoet, J. J. (1990). Effect of a low protein diet during pregnancy on the fetal rat endocrine pancreas. Biol. Neonate, 57, 107–18.CrossRefGoogle ScholarPubMed
Stewart, P. M., Rogerson, F. M. and Mason, J. I. (1995). Type 2 11β-hydroxysteroid dehydrogenase messenger RNA and activity in human placenta and fetal membranes: its relationship to birth weight and putative role in fetal steroidogenesis. J. Clin. Endcrinol. Metab., 80, 885–90.Google Scholar
Stoffers, D. A., Desai, B. M., DeLeon, D. D. and Simmons, R. A. (2003). Neonatal exendin-4 prevents the development of diabetes in the intrauterine growth retarded rat. Diabetes, 52, 734–40.CrossRefGoogle ScholarPubMed
Tokunaga, H., Yoneda, Y. and Kuriyama, K. (1983). Streptozotocin-induced elevation of pancreatic taurine content and suppressive effect of taurine on insulin secretion. Eur. J. Pharmacol., 87, 237–43.CrossRefGoogle ScholarPubMed
Unterman, T., Lascon, R., Gotway, M.et al. (1990). Circulating levels of insulin-like growth factor binding protein-1 (IGFBP-1) and hepatic mRNA are increased in the small for gestational age fetal rat. Endocrinology, 127, 2035–7.CrossRefGoogle Scholar
Vickers, M. H., Breier, B. H., Cutfield, W. S., Hofman, P. L. and Gluckman, P. D. (2000). Fetal origins of hyperphagia, obesity, and hypertension and its postnatal amplification by hypercaloric nutrition. Am. J. Physiol. Endocrinol. Metab., 279, E83–7.CrossRefGoogle ScholarPubMed
Vickers, M. H., Breier, B. H., McCarthy, D. and Gluckman, P. D. (2003). Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am. J. Physiol. Regul. Integr. Comp. Physiol., 285, R271–3.CrossRefGoogle ScholarPubMed
Virkamäki, A., Ueki, K. and Kahn, C. R. (1999). Protein–protein interaction in insulin signalling and the molecular mechanisms of insulin resistance. J. Clin. Invest., 103, 931–43.CrossRefGoogle Scholar
Vonnahme, K. A., Hess, B. W., Hansen, T. R.et al. (2003). Maternal undernutrition from early- to mid-gestation leads to growth retardation, cardiac ventricular hypertrophy, and increased liver weight in the fetal sheep. Biol. Reprod., 69, 133–40.CrossRefGoogle ScholarPubMed
Wigglesworth, J. S. (1974). Fetal growth retardation. Animal model: uterine vessel ligation in the pregnant rat. Am. J. Pathol., 77, 347–50.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×