Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-14T19:31:55.587Z Has data issue: false hasContentIssue false

2 - Beyond transistor scaling: alternative device structures for the terascale regime

from Section I - CMOS circuits and technology limits

Published online by Cambridge University Press:  05 February 2015

Zachery A. Jacobson
Affiliation:
University of California, Berkeley
Kelin J. Kuhn
Affiliation:
Intel Corporation and Cornell University
Tsu-Jae King Liu
Affiliation:
University of California, Berkeley
Kelin Kuhn
Affiliation:
Cornell University, New York
Get access

Summary

Introduction

For more than 40 years, integrated-circuit device density has experienced exponential growth (a phenomenon known as Moore’s law [1]). As traditional CMOS transistor scaling limits are being approached, there are many technologies that are being considered to supplant or integrate with CMOS to continue scaling into the terascale (1012 devices/cm2) regime. This chapter reviews some of these future device technologies.

The scope of this chapter is confined to devices that could be direct replacements for (or complements to) to existing CMOS transistors and which are not presently mature enough for volume manufacturing (e.g., high electron mobility transistors and GaN were included, but not fully depleted silicon-on-insulator, or FinFET, devices). The use of other materials in conventional transistor structures is covered only for devices in which the basic operation of the device is vastly different than that of standard silicon-based MOS transistors (e.g., GaN-channel devices were included, but not III-V-channel MOS or germanium-channel MOS devices). Furthermore, the scope is restricted to devices based on charge transport. Although spin transport devices are of increasing interest, they would require a radical shift from the existing circuit architecture used today for CMOS technology.

Additionally, some devices were not included in this review due to other wellrecognized limitations. For example, junction gate field effect transistors (JFETs) were not included, since the primary motivation of this work is extreme scalability of devices. Similarly, although organic semiconductor devices have excellent cost scaling per unit area, their potential for miniaturization and high-performance operation is poor. Carbon-based nanoelectronic structures, such as nanotubes and graphene–nanoribbon devices, also were not included due to current concerns about their manufacturability at the terascale level of integration.

Type
Chapter
Information
CMOS and Beyond
Logic Switches for Terascale Integrated Circuits
, pp. 14 - 38
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moore, G. E., “Cramming more components onto integrated circuits.” Electronics, 114–117 (1965).
Mimura, T., “The early history of the high electron mobility transistor (HEMT).” IEEE Transactions on Microwave Theory and Techniques, 50, 780–782 (2002).CrossRefGoogle Scholar
“History of HEMTs.” Available online at: .
Dingle, R., Störmer, H. L., Gossard, A. C., & Wiegmann, W., “Electron mobilities in modulation-doped semiconductor heterojunction superlattices.” Applied Physics Letters, 33, 665–667 (1978). .CrossRefGoogle Scholar
Delagebeaudeuf, D., Delescluse, P., Etienne, P., Laviron, M., Chaplart, J., & Linh, N. T., “Two-dimensional electron gas M.E.S.F.E.T. structure.” Electronics Letters, 16, 667–668 (1980).CrossRefGoogle Scholar
Delagebeaudeuf, D. & Linh, N. T., “Charge control of the heterojunction two-dimensional electron gas for MESFET application.” IEEE Transactions on Electron Devices, 28, 790–795 (1981).CrossRefGoogle Scholar
“High electron mobility transistors (HEMTs).” Available online: .
Ok, I., Veksler, D., Hung, P. Y. et al., “Reducing Rext in laser annealed enhancement-mode In0.53Ga0.47As surface channel n-MOSFET.” In VLSI Technology Systems and Applications (VLSI-TSA), 2010 International Symposium on, pp. 38–39 (2010).
Dewey, G., Kotlyar, R., Pillarisetty, R. et al., “Logic performance evaluation and transport physics of Schottky-gate III-V compound semiconductor quantum well field effect transistors for power supply voltages (VCC) ranging from 0.5v to 1.0v.” In Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1–4 (2009).
Radosavljevic, M., Chu-Kung, B., Corcoran, S. et al., “Advanced high-K gate dielectric for high-performance short-channel In0.7Ga0.3As quantum well field effect transistors on silicon substrate for low power logic applications.” In Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1–4 (2009).
Kim, T.-W., Kim, D.-H., & del Alamo, J. A., “30 nm In0.7Ga0.3As inverted-type HEMTs with reduced gate leakage current for logic applications.” In Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1–4 (2009).
Kim, D.-H. & del Alamo, J. A., “Scalability of sub-100 nm InAs HEMTs on InP substrate for future logic applications.” IEEE Transactions on Electron Devices, 57, 1504–1511 (2010).CrossRefGoogle Scholar
Chung, J. W., Lee, J.-K., Piner, E. L., & Palacios, T., “Seamless on-wafer integration of Si(100) MOSFETs and GaN HEMTs.” IEEE Electron Device Letters, 30, 1015–1017 (2009).CrossRefGoogle Scholar
del Alamo, J. A., “Nanometre-scale electronics with III-V compound semiconductors.” Nature, 479, 317–323 (2011).CrossRefGoogle ScholarPubMed
Shur, M. S., “GaN-based devices.” In Electron Devices, 2005 Spanish Conference on, 15–18 (2005).
Maruska, H. P. & Tietjen, J. J., “The preparation and properties of vapor-deposited single crystalline GaN.” Applied Physics Letters, 15, 327–329 (1969).CrossRefGoogle Scholar
Khan, M. Asif, Kuznia, J. N., Bhattarai, A. R., & Olson, D. T., “Metal semiconductor field effect transistor based on single crystal GaN.” Applied Physics Letters, 62, 1786–1787 (1993).CrossRefGoogle Scholar
Khan, M. Asif, Bhattarai, A., Kuznia, J. N., & Olson, D. T., “High electron mobility transistor based on a GaN /AlxGa1-xN heterojunction.” Applied Physics Letters, 63, 1214–1215 (1993).CrossRefGoogle Scholar
Goldberger, J., He, R., Zhang, Y., Lee, S., Yan, H., Choi, H.-J., & Yang, P., “Single-crystal gallium nitride nanotubes.” Nature, 422, 599–602 (2003).CrossRefGoogle ScholarPubMed
Hu, J., Bando, Y., Golberg, D., & Liu, Q., “Gallium nitride nanotubes by the conversion of gallium oxide nanotubes.” Angewandte Chemie International Edition, 42, 3493–3497 (2003).CrossRefGoogle ScholarPubMed
Eastman, L. F. & Mishra, U. K., “The toughest transistor yet [GaN transistors].” Spectrum, IEEE, 39, 28–33 (2002).CrossRefGoogle Scholar
Nidhi, L., Dasgupta, S., Brown, D. F., Keller, S., Speck, J. S., & Mishra, U. K., “N-polar GaN-based highly scaled self-aligned MIS-HEMTs with state-of-the-art fT.LG product of 16.8 GHz-μm.” In Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1–3 (2009).
Xin, X., Shi, J., Liu, L. et al., “Demonstration of low-leakage-current low-on-resistance 600-V 5.5-A GaN/AlGaN HEMT.” IEEE Electron Device Letters, 30, 1027–1029 (2009).Google Scholar
Chang, Y. C., Chang, W. H., Chiu, H. C. et al., “Inversion-channel GaN MOSFET using atomic-layer-deposited Al2O3 as gate dielectric.” In VLSI Technology, Systems, and Applications, 2009. VLSI-TSA ’09. International Symposium on, pp. 131–132 (2009).
Cai, Y., Cheng, Z., Tang, W. C. W., Chen, K. J., & Lau, K. M., “Monolithic integration of enhancement-and depletion-mode AlGaN/GaN HEMTs for GaN digital integrated circuits.” In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, vol. 4, p. 774 (2005).Google Scholar
Ota, K., Endo, K., Okamoto, Y., Ando, Y., Miyamoto, H., & Shimawaki, H., “A normally-off GaN FET with high threshold voltage uniformity using a novel piezo neutralization technique.” In Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1–4 (2009).
Derluyn, J., Van Hove, M., Visalli, D. et al., “Low leakage high breakdown e-mode GaN DHFET on Si by selective removal of in-situ grown Si3N4.” In Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1–4 (2009).
Kanamura, M., Ohki, T., Kikkawa, T. et al., “Enhancement-mode GaN MIS-HEMTs with n-GaN/i-AlN/n-GaN triple cap layer and high-gate dielectrics.” IEEE Electron Device Letters, 31, 189–191 (2010).CrossRefGoogle Scholar
Im, K.-S., Ha, J.-B., Kim, K.-W. et al., “Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate.” IEEE Electron Device Letters, 31, 192–194 (2010).Google Scholar
Joh, J. & del Alamo, J. A., “Mechanisms for electrical degradation of GaN high-electron mobility transistors.” In Electron Devices Meeting, 2006. IEDM ’06. International, pp. 1–4 (2006).
Salahuddin, S. & Datta, S., “Use of negative capacitance to provide voltage amplification for low power nanoscale devices.” Nano Letters, 8, 405–410 (2008).CrossRefGoogle ScholarPubMed
Salahuddin, S. & Datta, S. “Can the subthreshold swing in a classical FET be lowered below 60 mV/decade?” In Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp. 1–4 (2008).
Rusu, A., Salvatore, G. A., Jimenez, D., & Ionescu, A. M., “Metal-ferroelectric-metal-oxide-semiconductor field effect transistor with sub-60mV/decade subthreshold swing and internal voltage amplification.” In Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 16.3.1–16.3.4 (2010).
Lee, M. H., Lin, J.-C., Wei, Y.-T., Chen, C.-W., Zhuang, H.-K., & Tang, M., “Ferroelectric negative capacitance hetero-tunnel field-effect-transistors with internal voltage amplification.” In Electron Devices Meeting, 2013, IEEE International, pp. 104–107 (2013).
Tanakamaru, S., Hatanaka, T., Yajima, R., Takahashi, M., Sakai, S., & Takeuchi, K., “A 0.5V operation, 32% lower active power, 42% lower leakage current, ferroelectric 6T-SRAM with VTH self-adjusting function for 60% larger static noise margin.” In Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1–4 (2009).
Khan, A. I., Bhowmik, D., Yu, P. et al., “Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures.” Applied Physics Letters, 99, 113501 (2011).CrossRefGoogle Scholar
Krowne, C. M., Kirchoefer, S. W., Chang, W., Pond, J. M., & Alldredge, L. M. B., “Examination of the possibility of negative capacitance using ferroelectric materials in solid state electronic devices.” Nano Letters, 11, 988–992 (2011).CrossRefGoogle ScholarPubMed
Jin, R., Song, Y., Ji, M. et al., “Characteristics of sub-100nm ferroelectric field effect transistor with high-k buffer layer.” In Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, pp. 888–891 (2008).
Aviram, A. & Ratner, M. A., “Molecular rectifiers.” Chemical Physics Letters, 29, 277–283 (1974).CrossRefGoogle Scholar
Collier, C. P., Wong, E. W., Belohradský, M. et al., “Electronically configurable molecular-based logic gates.” Science, 285, 391–394 (1999).CrossRefGoogle ScholarPubMed
Terabe, K., Hasegawa, T., Nakayama, T., & Aono, M., “Quantized conductance atomic switch.” Nature, 433, 47–50 (2005).CrossRefGoogle ScholarPubMed
Thomson, A. F., Melville, D. O. S., & Blaikie, R. J., “Nanometre-scale electrochemical switches fabricated using a plasma-based sulphidation technique.” In Nanoscience and Nanotechnology, 2006. ICONN ’06. International Conference on, (2006).
Sakamoto, T., Banno, N., Iguchi, N. et al., “A Ta2O5 solid-electrolyte switch with improved reliability.” In VLSI Technology, 2007 IEEE Symposium on, pp. 38–39 (2007).
Sakamoto, T., Banno, N., Iguchi, N. et al., “Three terminal solid-electrolyte nanometer switch.” In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pp. 475–478 (2005).
Kaeriyama, S., Sakamoto, T., Sunamura, H., et al., “A nonvolatile programmable solid electrolyte nanometer switch.” IEEE Journal of Solid-State Circuits, 40(1), 168–176 (2005).CrossRefGoogle Scholar
Liang, C., Terabe, K., Hasegawa, T., Negishi, R., Tamura, T., & Aono, M., “Ionic–electronic conductor nanostructures: template-confined growth and nonlinear electrical transport.” Small, 1, 971–975 (2005).CrossRefGoogle ScholarPubMed
Kozicki, M. N., Gopalan, C., Balakrishnan, M., & Mitkova, M., “A low-power nonvolatile switching element based on copper-tungsten oxide solid electrolyte.” IEEE Transactions on Nanotechnology, 5, 535–544 (2006).CrossRefGoogle Scholar
Hasegawa, T., Terabe, K., Sakamoto, T., & Aono, M., “Nanoionics switching devices: atomic switches.” MRS Bulletin, 34, 929–934 (2009).CrossRefGoogle Scholar
Gopalakrishnan, K., Griffin, P. B., & Plummer, J. D., “I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q.” In Electron Devices Meeting, 2002. IEDM ’02. Digest. IEEE International, pp. 289–292 (2002).
Savio, A., Monfray, S., Charbuillet, C., & Skotnicki, T., “On the limitations of silicon for I-MOS integration.” IEEE Transactions on Electron Devices, 56, 1110–1117 (2009).CrossRefGoogle Scholar
Nematian, H., Fathipour, M., & Nayeri, M., “A novel impact ionization MOS (I-MOS) structure using a silicon-germanium/silicon heterostructure channel.” In Microelectronics, 2008. ICM 2008. International Conference on, pp. 228–231 (2008).
Abelein, U., Born, M., Bhuwalka, K. K. et al., “Improved reliability by reduction of hot-electron damage in the vertical impact-ionization MOSFET (I-MOS).” IEEE Electron Device Letters, 28, 65–67 (2007).CrossRefGoogle Scholar
Tura, A. & Woo, J., “Performance comparison of silicon steep subthreshold FETs.” IEEE Transactions on Electron Devices, 57, 1362–1368 (2010).CrossRefGoogle Scholar
Shen, C., Lin, J.-Q., Toh, E.-H., et al. “On the performance limit of impact-ionization transistors.” In Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp. 117–120 (2007).
Banerjee, S., Coleman, J., Richardson, B., & Shah, A., “A band-to-band tunneling effect in the trench transistor cell.” In VLSI Technology, 1987. Digest of Technical Papers. Symposium on, pp. 97–98 (1987).
Banerjee, S., Richardson, W., Coleman, J., & Chatterjee, A., “A new three-terminal tunnel device.” IEEE Electron Device Letters, 8, 347–349 (1987).CrossRefGoogle Scholar
Baba, T., “Proposal for surface tunnel transistors.” Japanese Journal of Applied Physics, 31 (1992).CrossRefGoogle Scholar
Reddick, W. M. & Amaratunga, G. A. J., “Silicon surface tunnel transistor.” Applied Physics Letters, 67, 494–496 (1995).CrossRefGoogle Scholar
Avci, U. E., Rios, R., Kuhn, K., & Young, I. A., “Comparison of performance, switching energy and process variations for the TFET and MOSFET in logic.” In VLSI Technology (VLSIT), 2011 Symposium on, pp. 124–125 (2012).
Appenzeller, J., Lin, Y.-M., Knoch, J., & Avouris, P., “Band-to-band tunneling in carbon nanotube field-effect transistors.” Physics Review Letters, 93, 196805 (2004).CrossRefGoogle ScholarPubMed
Nayfeh, O. M., Chleirigh, C. N., Hennessy, J., Gomez, L., Hoyt, J. L., & Antoniadis, D. A., “Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions.” IEEE Electron Device Letters, 29, 1074–1077 (2008).CrossRefGoogle Scholar
Vandenberghe, W., Verhulst, A. S., Groeseneken, G., Soree, B., & Magnus, W., “Analytical model for point and line tunneling in a tunnel field-effect transistor.” In Simulation of Semiconductor Processes and Devices, 2008. SISPAD 2008. International Conference on, pp. 137–140 (2008).
Lu, Y., Bangsaruntip, S., Wang, X., Zhang, L., Nishi, Y., & Dai, H., “DNA functionalization of carbon nanotubes for ultrathin atomic layer deposition of high κ dielectrics for nanotube transistors with 60 mV/decade switching.” Journal of the American Chemical Society, 128, 3518–3519 (2006).CrossRefGoogle ScholarPubMed
Choi, W. Y., Park, B.-G., Lee, J. D., & Liu, T.-J. K., “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec.” IEEE Electron Device Letters, 28, 743–745 (2007).CrossRefGoogle Scholar
Mayer, F., Le Royer, C., Damlencourt, J.-F. et al., “Impact of SOI, Si1-xGexOI and GeOI substrates on CMOS compatible tunnel FET performance.” In Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp. 1–5 (2008).
Jeon, K., Loh, W.-Y., Patel, P. et al., “Si tunnel transistors with a novel silicided source and 46mV/dec swing.” In VLSI Technology (VLSIT), 2010 Symposium on, pp. 121–122 (2010).
Leonelli, D., Vandooren, A., Rooyackers, R. et al., “Performance enhancement in multi gate tunneling field effect transistors by scaling the fin-width.” Japanese Journal of Applied Physics, 49 (2010).CrossRefGoogle Scholar
Kim, S. H., Kam, H., Hu, C., & Liu, T.-J. K., “Germanium-source tunnel field effect transistors with record high ION/IOFF.” In VLSI Technology, 2009 Symposium on, pp. 178–179 (2009).
Dewey, G., Chu-Kung, B., Boardman, J. et al., “Fabrication, characterization, and physics of III-V heterojunction tunneling field effect transistors (H-TFET) for steep sub-threshold swing.” In Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 785–788 (2011).
Mookerjea, S., Mohata, D., Mayer, T., Narayanan, V., & Datta, S., “Temperature-dependent I-V characteristics of a vertical In0.53Ga0.47As tunnel FET.” IEEE Electron Device Letters, 31, 564–566 (2010).CrossRefGoogle Scholar
Avci, U. E., Hasan, S., Nikonov, D. E., Rios, R., Kuhn, K., & Young, I. A., “Understanding the feasibility of scaled III-V TFET for logic by bridging atomistic simulations and experimental results.” In VLSI Technology (VLSIT), 2012 Symposium on, pp. 183–184 (2012).
Mookerjea, S., Krishnan, R., Datta, S., & Narayanan, V., “On enhanced Miller capacitance effect in interband tunnel transistors.” IEEE Electron Device Letters, 30, 1102–1104 (2009).CrossRefGoogle Scholar
Mookerjea, S., Krishnan, R., Datta, S., & Narayanan, V., “Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation.” IEEE Transactions on Electron Devices, 56, 2092–2098 (2009).CrossRefGoogle Scholar
Wan, J., Le Royer, C., Zaslavsky, A., & Cristoloveanu, S., “SOI TFETs: suppression of ambipolar leakage and low-frequency noise behavior.” In Proceedings of the 2010 European Solid-State Device Research Conference (ESSDERC), pp. 341–344 (2010).
Krishnamohan, T., Kim, D., Raghunathan, S., & Saraswat, K., “Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and <60 mV/dec subthreshold slope.” In Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp. 1–3 (2008).
Kim, D., Lee, Y., Cai, J. et al., “Low power circuit design based on heterojunction tunneling transistors (HETTs).” In Proceedings of the 14th ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 219–224 (2009).
Kuhn, K. J., Avci, U., Cappellani, A. et al., “The ultimate CMOS device and beyond.” In Electron Devices Meeting (IEDM), 2012 IEEE International pp. 171–174, (2012).
Lepselter, M. P. & Sze, S. M., “SB-IGFET: an insulated-gate field-effect transistor using Schottky barrier contacts for source and drain.” Proceedings of the IEEE, 56, 1400–1402 (1968).CrossRefGoogle Scholar
Larson, J. M. & Snyder, J. P., “Overview and status of metal S/D Schottky-barrier MOSFET technology.” IEEE Transactions on Electron Devices, 53, 1048–1058 (2006).CrossRefGoogle Scholar
Connelly, D., Faulkner, C., & Grupp, D. E., “Optimizing Schottky S/D offset for 25-nm dual-gate CMOS performance.” IEEE Electron Device Letters, 24, 411–413 (2003).CrossRefGoogle Scholar
Connelly, D., Clifton, P., Faulkner, C., & Grupp, D. E., “Ultra-thin-body fully depleted SOI metal source/drain n-MOSFETs and ITRS low-standby-power targets through 2018.” In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pp. 972–975 (2005).
Chen, H.-W., Ko, C.-H., Wang, T.-J., Ge, C.-H., Wu, K., & Lee, W.-C., “Enhanced performance of strained CMOSFETs using metallized source/drain extension (M-SDE).” In VLSI Technology, 2007 IEEE Symposium on, pp. 118–119 (2007).
Connelly, D., Faulkner, C., Clifton, P. A., & Grupp, D. E., “Fermi-level depinning for low-barrier Schottky source/drain transistors.” Applied Physics Letters, 88, 012105–012105-3 (2006).CrossRefGoogle Scholar
Connelly, D., Clifton, P., Faulkner, C., Owens, J., & Wetzel, J., “Self-aligned low-Schottky barrier deposited metal S/D MOSFETs with Si3N4 M/Si passivation.” Device Research Conference, pp. 83–84 (2008).
Tao, M., Agarwal, S., Udeshi, D., Basit, N., Maldonado, E., & Kirk, W. P., “Low Schottky barriers on n-type silicon (001).” Applied Physics Letters, 83, 2593–2595 (2003).CrossRefGoogle Scholar
Vega, R. A. & Liu, T.-J. K., “DSS MOSFET with tunable SDE regions by fluorine pre-silicidation ion implant.” IEEE Electron Device Letters, 31, 785–787 (2010).CrossRefGoogle Scholar
Vega, R. A. & Liu, T.-J. K., “Dopant-segregated Schottky junction tuning with fluorine pre-silicidation ion implant.” IEEE Transactions on Electron Devices, 57, 1084–1092 (2010).CrossRefGoogle Scholar
Kinoshita, A., Tsuchiya, Y., Yagishita, A., Uchida, K., & Koga, J., “Solution for high-performance Schottky-source/drain MOSFETs: Schottky barrier height engineering with dopant segregation technique.” In VLSI Technology, 2004. Digest of Technical Papers. 2004 Symposium on, pp. 168–169 (2004).
Qiu, Z., Zhang, Z., Ostling, M., & Zhang, S.-L., “A comparative study of two different schemes to dopant segregation at NiSi/Si and PtSi/Si interfaces for Schottky barrier height lowering.” IEEE Transactions on Electron Devices, 55, 396–403 (2008).CrossRefGoogle Scholar
Kaneko, A., Yagishita, A., Yahashi, K. et al., “High-performance FinFET with dopant-segregated Schottky source/drain.” In Electron Devices Meeting, 2006. IEDM ’06. IEEE International, pp. 1–4 (2006).
Chin, Y. K., Pey, K.-L., Singh, N. et al., “Dopant-segregated Schottky silicon-nanowire MOSFETs with gate-all-around channels.” IEEE Electron Device Letters, 30, 843–845 (2009).CrossRefGoogle Scholar
Petersen, K. E., “Dynamic micromechanics on silicon: techniques and devices.” IEEE Transactions on Electron Devices, 25, 1241–1250 (1978).CrossRefGoogle Scholar
Joshi, V., Khieu, C., Smith, C. G. et al., “A CMOS compatible back end MEMS switch for logic functions.” In Interconnect Technology Conference (IITC), 2010 International, pp. 1–3 (2010).
Pott, V., Kam, H., Nathanael, R., Jeon, J., Alon, E., & Liu, T.-J. K., “Mechanical computing redux: relays for integrated circuit applications.” Proceedings of the IEEE, 98, 2076–2094 (2010).CrossRefGoogle Scholar
Kam, H., Lee, D. T., Howe, R. T., & King, T.-J., “A new nano-electro-mechanical field effect transistor (NEMFET) design for low-power electronics.” In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pp. 463–466 (2005).
Lee, J.-O., Kim, M.-W., Ko, S.-D. et al., “3-terminal nanoelectromechanical switching device in insulating liquid media for low voltage operation and reliability improvement.” In Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1–4 (2009).
Kam, H., Pott, V., Nathanael, R., Jeon, J., Alon, E., & Liu, T.-J. K., “Design and reliability of a micro-relay technology for zero-standby-power digital logic applications.” In Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1–4 (2009).
Chen, F., Spencer, M., Nathanael, R. et al., “Demonstration of integrated micro-electro-mechanical switch circuits for VLSI applications.” In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, pp. 150–151 (2010).
Nathanael, R., Pott, V., Kam, H., Jeon, J., & Liu, T.-J. K., “4-terminal relay technology for complementary logic.” In Electron Devices Meeting (IEDM), 2009 IEEE International, pp. 1–4 (2009).
Chen, I.-R., Hutin, L., Park, C. et al., “Scaled micro-relay structure with low strain gradient for reduced operating voltage.” In Electrochemical Society (ECS) Meeting, 221st, p. 867 (2012).
Kam, H., Liu, T.-J. K., Stojanović, V., & Marković, D. , “Design, optimization, and scaling of MEM relays for ultra-low-power digital logic.” IEEE Transactions on Electron Devices, 58, 236–250 (2011).CrossRefGoogle Scholar
Spencer, M., Chen, F., Wang, C. C. et al., “Demonstration of integrated micro-electro-mechanical relay circuits for VLSI applications.” IEEE Journal of Solid-State Circuits, 46, 308–320 (2011).CrossRefGoogle Scholar
Fariborzi, H., Chen, F., Stojanovic, V.,, Nathanael, R., Jeon, J., & Liu, T.-J. K., “Design and demonstration of micro-electro-mechanical relay multipliers.” In Solid State Circuits Conference (A-SSCC), 2011 IEEE Asian, pp. 117–120 (2011).
Dadgour, H., Cassell, A. M., & Banerjee, K., “Scaling and variability analysis of CNT-based NEMS devices and circuits with implications for process design.” In Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pp. 1–4 (2008).
Dadgour, H. F. & Banerjee, K., “Hybrid NEMS-CMOS integrated circuits: a novel strategy for energy-efficient designs.” Computers & Digital Techniques, IET, 3, 593–608 (2009).CrossRefGoogle Scholar
Abele, N., Fritschi, R., Boucart, K., Casset, F., Ancey, P., & Ionescu, A. M., “Suspended-gate MOSFET: bringing new MEMS functionality into solid-state MOS transistor.” In Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pp. 479–481 (2005).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×