Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-21T11:23:35.299Z Has data issue: false hasContentIssue false

Section 2 - Potential Therapeutic Uses of Cannabinoids in Clinical Practice

Published online by Cambridge University Press:  12 October 2020

Steven James
Affiliation:
University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Abrams, D. I. et al. (2007) ‘Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial’, Neurology, 68(7), 515521. doi:10.1212/01.wnl.0000253187.66183.9c.CrossRefGoogle ScholarPubMed
Aviram, J. and Samuelly-Leichtag, G. (2017) ‘Efficacy of cannabis-based medicines for pain management: a systematic review and meta-analysis of randomized controlled trials’, Pain Physician, 20(6), E755E796.CrossRefGoogle ScholarPubMed
Bachhuber, M. A. et al. (2014) ‘Medical cannabis laws and opioid analgesic overdose mortality in the United States, 1999-2010’, JAMA Internal Medicine, 174(10), 16681673. doi:10.1001/jamainternmed.2014.4005.Google Scholar
Baron, E. P. (2018) ‘Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: an update on current evidence and cannabis science’, Headache, 58(7), 11391186. doi:10.1111/head.13345.Google Scholar
Berlach, D. M., Shir, Y. and Ware, M. A. (2006) ‘Experience with the synthetic cannabinoid nabilone in chronic noncancer pain’, Pain Medicine, 7(1), pp. 2529. doi:10.1111/j.1526-4637.2006.00085.x.CrossRefGoogle ScholarPubMed
Boehnke, K. A. et al. (2019) ‘Qualifying conditions of medical cannabis license holders in the United States’, Health Affairs, 38(2), 295302. doi:10.1377/hlthaff.2018.05266.Google Scholar
Boes, C. J. (2015) ‘Osler on migraine’, Canadian Journal of Neurological Sciences, 42(2), 144147. https://doi.org/10.1017/cjn.2015.6.CrossRefGoogle ScholarPubMed
Booth, M. (2004) Cannabis: A History. New York: St. Martin’s Press.Google Scholar
Bradford, A. C. and Bradford, W. D. (2017) ‘Medical marijuana laws may be associated with a decline in the number of prescriptions for medicaid enrollees’, Health Affairs, 36(5), 945951. doi:10.1377/hlthaff.2016.1135.CrossRefGoogle ScholarPubMed
Cooper, Z. et al. (2018) ‘Impact of co-administration of oxycodone and smoked cannabis on analgesia and abuse liability’, Neuropsychopharmacology, 43, 2046–2018. doi:10.1038/s41386-018-0011-2.CrossRefGoogle ScholarPubMed
Cupini, L. M. et al. (2006) ‘Biochemical changes in endocannabinoid system are expressed in platelets of female but not male migraineurs’, Cephalalgia, 26(3), 277281. doi:10.1111/j.1468-2982.2005.01031.x.CrossRefGoogle Scholar
Cupini, L. M. et al. (2008) ‘Degradation of endocannabinoids in chronic migraine and medication overuse headache’, Neurobiology of Disease, 30(2), 186189. doi:10.1016/j.nbd.2008.01.003.Google Scholar
Dorsey, S. G. and Morton, P. G. (2006) ‘HIV peripheral neuropathy: pathophysiology and clinical implications’, AACN Advanced Critical Care, 17(1), 3036. doi:10.1097/00044067-200601000-00004.Google Scholar
Fallon, M. T. et al. (2017) ‘Sativex oromucosal spray as adjunctive therapy in advanced cancer patients with chronic pain unalleviated by optimized opioid therapy: two double-blind, randomized, placebo-controlled phase 3 studies’, British Journal of Pain, 11(3), 119133. doi:10.1177/2049463717710042.Google Scholar
Finniss, D. G. et al. (2010) ‘Biological, clinical, and ethical advances of placebo effects’, The Lancet, 375(9715), 686695. doi:10.1016/S0140-6736(09)61706-2.CrossRefGoogle ScholarPubMed
Gaertner, J. and Schiessl, C. (2013) ‘Cancer pain management: what’s new?’, Current Pain and Headache Reports, 17(4), 328. doi:10.1007/s11916-013-0328-9.Google Scholar
Greco, R. et al. (2010) ‘The endocannabinoid system and migraine’, Experimental Neurology, 224(1), 8591. doi:10.1016/j.expneurol.2010.03.029.CrossRefGoogle ScholarPubMed
Greco, R. et al. (2018) ‘Endocannabinoid system and migraine pain: an update’, Frontiers in Neuroscience, 12,172. doi:10.3389/fnins.2018.00172.CrossRefGoogle ScholarPubMed
Haroutounian, S. et al. (2016) ‘The effect of medicinal cannabis on pain and quality-of-life outcomes in chronic pain: a prospective open-label study’, Clinical Journal of Pain, 32(12), 10361043. doi:10.1097/AJP.0000000000000364.Google Scholar
Hefner, K., Sofuoglu, M. and Rosenheck, R. (2015) ‘Concomitant cannabis abuse/dependence in patients treated with opioids for non‐cancer pain’, American Journal of Addiction, 24(6), 538545. doi:10.1111/ajad.12260.Google Scholar
Hoggart, B. et al. (2015) ‘A multicentre, open-label, follow-on study to assess the long-term maintenance of effect, tolerance and safety of THC/CBD oromucosal spray in the management of neuropathic pain’, Journal of Neurology, 262(1), 2740. doi:10.1007/s00415-014-7502-9.Google Scholar
Iqbal, Z. et al. (2018) ‘Diabetic peripheral neuropathy: epidemiology, diagnosis, and pharmacotherapy’, Clinical Therapeutics, 40(6), 828849. doi:10.1016/j.clinthera.2018.04.001.Google Scholar
Johnson, J. R. et al. (2010) ‘Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain’, Journal of Pain and Symptom Management, 39(2), 167179. doi:10.1016/j.jpainsymman.2009.06.008.Google Scholar
Johnson, J. R. et al. (2013) ‘An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics’, Journal of Pain and Symptom Management, 46(2), 207218. doi:10.1016/j.jpainsymman.2012.07.014.Google Scholar
Lichtman, A. H. et al. (2018) ‘Results of a double-blind, randomized, placebo-controlled study of nabiximols oromucosal spray as an adjunctive therapy in advanced cancer patients with chronic uncontrolled pain’, Journal of Pain and Symptom Management, 55(2), 179.e1–188.e1. doi:10.1016/j.jpainsymman.2017.09.001.Google Scholar
Livingston, M. D. et al. (2017) ‘Recreational cannabis legalization and opioid-related deaths in Colorado, 2000-2015’, American Journal of Public Health, 107(11), 18271829. doi:10.2105/AJPH.2017.304059.CrossRefGoogle ScholarPubMed
Lynch, M. E., Cesar-Rittenberg, P. and Hohmann, A. G. (2014) ‘A double-blind, placebo-controlled, crossover pilot trial with extension using an oral mucosal cannabinoid extract for treatment of chemotherapy-induced neuropathic pain’, Journal of Pain and Symptom Management, 47(1), 166173. doi:10.1016/j.jpainsymman.2013.02.018.Google Scholar
Lynch, M. E. and Ware, M. A. (2015) ‘Cannabinoids for the treatment of chronic non-cancer pain: an updated systematic review of randomized controlled trials’, Journal of Neuroimmune Pharmacology, 10(2), 293301. doi:10.1007/s11481-015-9600-6.Google Scholar
McGeeney, B. E. (2013) ‘Cannabinoids and hallucinogens for headache’, Headache, 53(3), 447458. doi:10.1111/head.12025.Google Scholar
Mücke, M. et al. (2018) ‘Cannabis-based medicines for chronic neuropathic pain in adults’, Cochrane Database of Systematic Reviews, 3, CD012182. doi:10.1002/14651858.CD012182.pub2.Google ScholarPubMed
Narang, S. et al. (2008) ‘Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy’, The Journal of Pain, 9(3), 254264. doi:10.1016/j.jpain.2007.10.018.Google Scholar
Nestler, E., Hyman, S. E. and Malenka, R. C. (eds.) (2001) Molecular Neuropharmacology. New York: McGraw-Hill.Google Scholar
Nielsen, S. et al. (2017) ‘Opioid-sparing effect of cannabinoids: a systematic review and meta-analysis’, Neuropsychopharmacology, 42(9), 17521765. doi:10.1038/npp.2017.51.CrossRefGoogle ScholarPubMed
Nurmikko, T. J. et al. (2007) ‘Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial’, Pain, 133(1–3), 210220. doi:10.1016/j.pain.2007.08.028.Google Scholar
Reynolds, J. R. (1890) ‘On the therapeutical uses and toxic effects of Cannabis indica’, The Lancet, 135(3473), 637638. doi:10.1016/S0140-6736(02)18723-X.Google Scholar
Rhyne, D. N. et al. (2016) ‘Effects of medical marijuana on migraine headache frequency in an adult population’, Pharmacotherapy, 36(5), 505510. doi:10.1002/phar.1673.Google Scholar
Rog, D. J. et al. (2005) ‘Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis’, Neurology, 65(6), 812819. doi:10.1212/01.wnl.0000176753.45410.8b.Google Scholar
Rossi, C. et al. (2008) ‘Endocannabinoids in platelets of chronic migraine patients and medication-overuse headache patients: relation with serotonin levels’, European Journal of Clinical Pharmacology, 64(1), 18. doi:10.1007/s00228-007-0391-4.Google Scholar
Russo, E. B. (2016) ‘Clinical endocannabinoid deficiency reconsidered: current research supports the theory in migraine, fibromyalgia, irritable bowel, and other treatment-resistant syndromes’, Cannabis and Cannabinoid Research, 1(1), 154165. doi:10.1089/can.2016.0009.Google Scholar
Ryan, T. (2019) ‘Osler Centenary Papers: Osler the clinician and scientist: a personal and historical perspective’, Postgraduate Medical Journal, 95(1130), 660663. doi:10.1136/postgradmedj-2019-136645.Google Scholar
Sarchielli, P. et al. (2007) ‘Endocannabinoids in chronic migraine: CSF findings suggest a system failure’, Neuropsychopharmacology, 32(6), 13841390. doi:10.1038/sj.npp.1301246.Google Scholar
Shover, C. L. et al. (2019) ‘Association between medical cannabis laws and opioid overdose mortality has reversed over time’, Proceedings of the National Academy of Sciences of the United States of America, 116(26), 1262412626. doi:10.1073/pnas.1903434116.Google Scholar
Svendsen, K. B., Jensen, T. S. and Bach, F. W. (2004) ‘Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double blind placebo controlled crossover trial’, BMJ, 329(7460), 253. doi:10.1136/bmj.38149.566979.AE.Google Scholar
Toth, C. et al. (2012) ‘An enriched-enrolment, randomized withdrawal, flexible-dose, double-blind, placebo-controlled, parallel assignment efficacy study of nabilone as adjuvant in the treatment of diabetic peripheral neuropathic pain’, Pain, 153(10), 20732082. doi:10.1016/j.pain.2012.06.024.Google Scholar
Verma, A. (2001) ‘Epidemiology and clinical features of HIV-1 associated neuropathies’, Journal of the Peripheral Nervous System, 6(1), 813. doi:10.1046/j.1529-8027.2001.006001008.x.CrossRefGoogle ScholarPubMed
Ware, M. A. et al. (2010) ‘Smoked cannabis for chronic neuropathic pain: a randomized controlled trial’, CMAJ, 182(14), E694E701. doi:10.1503/cmaj.091414.Google Scholar
Ware, M. A. et al. (2015) ‘Cannabis for the Management of Pain: Assessment of Safety Study (COMPASS)’, The Journal of Pain, 16(12), 12331242. doi:10.1016/j.jpain.2015.07.014.Google Scholar
Wen, H. and Hockenberry, J. M. (2018) ‘Association of medical and adult-use marijuana laws with opioid prescribing for medicaid enrollees’, JAMA Internal Medicine, 178(5), 673679. doi:10.1001/jamainternmed.2018.1007.Google Scholar
Whiting, P. F. et al. (2015) ‘Cannabinoids for medical use: a systematic review and meta-analysis’, JAMA: Journal of the American Medical Association, 313(24), 24562473. doi:10.1001/jama.2015.6358.CrossRefGoogle ScholarPubMed
Zajicek, J. et al. (2013) ‘Effect of dronabinol on progression in progressive multiple sclerosis (CUPID): a randomised, placebo-controlled trial’, The Lancet Neurology, 12(9), 857865. doi:10.1016/S1474-4422(13)70159-5.Google Scholar

Bibliography

Aguiar, D. C. et al. (2009) ‘Anxiolytic-like effects induced by blockade of transient receptor potential vanilloid type 1 (TRPV1) channels in the medial prefrontal cortex of rats’, Psychopharmacology, 205(2), 217225. doi:10.1007/s00213-009-1532-5.CrossRefGoogle ScholarPubMed
Aimone, J. B., Deng, W. and Gage, F. H. (2010) ‘Adult neurogenesis: integrating theories and separating functions’, Trends in Cognitive Sciences, 14(7), pp. 325337. doi:10.1016/j.tics.2010.04.003.Google Scholar
Bedse, G. et al. (2018) ‘Therapeutic endocannabinoid augmentation for mood and anxiety disorders: comparative profiling of FAAH, MAGL and dual inhibitors’, Translational Psychiatry, 8(1). doi:10.1038/s41398-018-0141-7.Google Scholar
Bergamaschi, M. M. et al. (2011) ‘Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naïve social phobia patients’, Neuropsychopharmacology, 36, 12191226. doi:10.1038/npp.2011.6.CrossRefGoogle ScholarPubMed
Bluett, R. J. et al. (2014) ‘Central anandamide deficiency predicts stress-induced anxiety: behavioral reversal through endocannabinoid augmentation’, Translational Psychiatry, 4, e408. doi:10.1038/tp.2014.53.CrossRefGoogle ScholarPubMed
Campos, A. C. et al. (2017) ‘Plastic and neuroprotective mechanisms involved in the therapeutic effects of cannabidiol in psychiatric disorders, Frontiers in Pharmacology, 8, 269. doi:10.3389/fphar.2017.00269.Google Scholar
Ceccarini, J. et al. (2013) ‘Increased ventral striatal CB1 receptor binding is related to negative symptoms in drug-free patients with schizophrenia’, NeuroImage, 79, 304312. doi:10.1016/j.neuroimage.2013.04.052.Google Scholar
Christensen, R. et al. (2007) ‘Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials’, The Lancet, 370(9600), 17061713. doi:10.1016/S0140-6736(07)61721-8.CrossRefGoogle ScholarPubMed
Colucci-D’Amato, L., Bonavita, V. and di Porzio, U. (2006) ‘The end of the central dogma of neurobiology: stem cells and neurogenesis in adult CNS, Neurological Sciences, 27, 266270. doi:10.1007/s10072-006-0682-z.Google Scholar
Crippa, J. A. et al. (2003) ‘Effects of cannabidiol (CBD) on regional cerebral blood flow’, Neuropsychopharmacology, 29(2), 417426. doi:10.1038/sj.npp.1300340.Google Scholar
Di Forti, M. et al. (2019) ‘High-potency cannabis and incident psychosis: correcting the causal assumption – authors’ reply’, The Lancet Psychiatry, 6(6), 466467. doi:10.1016/S2215-0366(19)30176-2.Google Scholar
Dubreucq, S. et al. (2012) ‘Genetic dissection of the role of cannabinoid type-1 receptors in the emotional consequences of repeated social stress in mice’, Neuropsychopharmacology, 37(8), 18851900. doi:10.1038/npp.2012.36.Google Scholar
Fay, T. (1941) ‘Observations on prolonged human refrigeration’, Anesthesiology, 2(5), 347348.Google Scholar
Gage, F. H. (2000) ‘Mammalian neural stem cells’, Science, 287(5457), 14331438. doi:10.1126/science.287.5457.1433.Google Scholar
Gallily, R., Breuer, A. and Mechoulam, R. (2000) ‘2-Arachidonylglycerol, an endogenous cannabinoid, inhibits tumor necrosis factor-α production in murine macrophages, and in mice’, European Journal of Pharmacology, 406, R5R7. doi:10.1016/s0014-2999(00)00653-1.Google Scholar
García-Arencibia, M. et al. (2007) ‘Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson’s disease: importance of antioxidant and cannabinoid receptor-independent properties’, Brain Research, 1134(1), 162170. doi:10.1016/j.brainres.2006.11.063.Google Scholar
Gee, D. G. et al. (2016) ‘Individual differences in frontolimbic circuitry and anxiety emerge with adolescent changes in endocannabinoid signaling across species’, Proceedings of the National Academy of Sciences of the United States of America, 113(16), 45004505. doi:10.1073/pnas.1600013113.Google Scholar
Ghabrash, M. F. et al. (2020) ‘Cannabidiol for the treatment of psychosis among patients with schizophrenia and other primary psychotic disorders: a systematic review with a risk of bias assessment’, Psychiatry Research, 286, 112890. doi:10.1016/j.psychres.2020.112890.Google Scholar
Giuffrida, A. et al. (2004) ‘Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms’, Neuropsychopharmacology, 29(11), 21082114. doi:10.1038/sj.npp.1300558.Google Scholar
Gobbi, G. et al. (2005) ‘Antidepressant-like activity and modulation of brain monoaminergic transmission by blockade of anandamide hydrolysis’, Proceedings of the National Academy of Sciences of the United States of America, 102(51), 1862018625. doi:10.1073/pnas.0509591102.Google Scholar
Gorzalka, B. B. and Hill, M. N. (2011) ‘Putative role of endocannabinoid signaling in the etiology of depression and actions of antidepressants’, Progress in Neuro-Psychopharmacology and Biological Psychiatry, 35(7), 15751585. doi:10.1016/j.pnpbp.2010.11.021.Google Scholar
Hill, M. N. et al. (2013) ‘Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the world trade center attacks’, Psychoneuroendocrinology, 38(12), 29522961. doi:10.1016/j.psyneuen.2013.08.004.Google Scholar
Hill, M. N. and Gorzalka, B. B. (2009) ‘Impairments in endocannabinoid signaling and depressive illness’, JAMA: Journal of the American Medical Association, 301(11), 11651166. doi:10.1001/jama.2009.369.Google Scholar
Hindley, G. et al. (2020) ‘Psychiatric symptoms caused by cannabis constituents: a systematic review and meta-analysis’, The Lancet Psychiatry, 7(4), 344353. doi:10.1016/S2215-0366(20)30074-2.Google Scholar
Hine, R. and Das, G. D. (1974) ‘Neuroembryogenesis in the hippocampal formation of the rat’, Zeitschrift für Anatomie und Entwicklungsgeschichte, 144, 173186. doi:10.1007/BF00519773.Google Scholar
Horder, J. et al. (2010) ‘Reduced neural response to reward following 7 days treatment with the cannabinoid CB 1 antagonist rimonabant in healthy volunteers’, International Journal of Neuropsychopharmacology, 13(8), 11031113. doi:10.1017/S1461145710000453.Google Scholar
Hungund, B. L. et al. (2004) ‘Upregulation of CB1 receptors and agonist-stimulated [35S]GTPγS binding in the prefrontal cortex of depressed suicide victims’, Molecular Psychiatry, 9(2), 184190. doi:10.1038/sj.mp.4001376.Google Scholar
Jacob, W. et al. (2009) ‘Endocannabinoids render exploratory behaviour largely independent of the test aversiveness: role of glutamatergic transmission’, Genes, Brain and Behavior, 8(7), 685698. doi:10.1111/j.1601-183X.2009.00512.x.Google Scholar
Jain, K. K. (2011) The Handbook of Neuroprotection. New York: Humana Press. doi:10.1007/978-1-61779-049-2.CrossRefGoogle Scholar
Kathuria, S. et al. (2003) ‘Modulation of anxiety through blockade of anandamide hydrolysis’, Nature Medicine, 9(1), 7681. doi:10.1038/nm803.Google Scholar
Klein, D. F. (2008) ‘The loss of serendipity in psychopharmacology’, JAMA: Journal of the American Medical Association, 299(9), 10631065. doi:10.1001/jama.299.9.1063.Google Scholar
Kreutz, S. et al. (2009) ‘2-Arachidonoylglycerol elicits neuroprotective effects on excitotoxically lesioned dentate gyrus granule cells via abnormal-cannabidiol-sensitive receptors on microglial cells’, Glia, 57(3), 286294. doi:10.1002/glia.20756.Google Scholar
Leweke, F. M. et al. (1999) ‘Elevated endogenous cannabinoids in schizophrenia’, NeuroReport, 10(8), 16651669. doi:10.1097/00001756-199906030-00008.Google Scholar
Magid, L. et al. (2019) ‘Role of CB2 receptor in the recovery of mice after traumatic brain injury’, Journal of Neurotrauma, 36(11), 18361846. doi:10.1089/neu.2018.6063.Google Scholar
McGuire, P. et al. (2018) ‘Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial’, American Journal of Psychiatry, 175(3), 197198. doi:10.1176/appi.ajp.2017.17030325.Google Scholar
Mechoulam, R. et al. (2014) ‘Early phytocannabinoid chemistry to endocannabinoids and beyond’, Nature Reviews Neuroscience, 15(11), 757764. doi:10.1038/nrn3811.Google Scholar
Mendelson, W. B. and Basile, A. S. (2001) ‘The hypnotic actions of the fatty acid amide, oleamide’, Neuropsychopharmacology, 25(5), S36S39. doi:10.1016/S0893-133X(01)00341-4.Google Scholar
Minichino, A. et al. (2019) ‘Measuring disturbance of the endocannabinoid system in psychosis: a systematic review and meta-analysis’, JAMA Psychiatry, 76(9), 914923. doi:10.1001/jamapsychiatry.2019.0970.CrossRefGoogle ScholarPubMed
Moreira, F. A. et al. (2008) ‘Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors’, Neuropharmacology, 54(1), 141150. doi:10.1016/j.neuropharm.2007.07.005.Google Scholar
Moreira, F. A. et al. (2012) ‘Cannabinoid type 1 receptors and transient receptor potential vanilloid type 1 channels in fear and anxiety-two sides of one coin?’, Neuroscience, 204, 186192. doi:10.1016/j.neuroscience.2011.08.046.Google Scholar
Muguruza, C. et al. (2019) ‘Endocannabinoid system imbalance in the postmortem prefrontal cortex of subjects with schizophrenia’, Journal of Psychopharmacology, 33(9), 11321140. doi:10.1177/0269881119857205.Google Scholar
Murphy, L. (2006) ‘Endocannabinoids and endocrine function’, in Onaivi, E. S., Sugiura, T and Di Marzo, V (eds.) Endocannabinoids: The Brain and Body’s Marijuana and Beyond. Boca Raton: CRC Press. pp. 467474.Google Scholar
Nissen, S. E. et al. (2008) ‘Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: The STRADIVARIUS randomized controlled trial’, JAMA: Journal of the American Medical Association, 299(13), 15471560.Google Scholar
O’Brien, L. D. et al. (2013) ‘Effect of chronic exposure to rimonabant and phytocannabinoids on anxiety-like behavior and saccharin palatability’, Pharmacology Biochemistry and Behavior, 103(3), 597602. doi:10.1016/j.pbb.2012.10.008.CrossRefGoogle ScholarPubMed
Ortega-Alvaro, A. et al. (2011) ‘Deletion of CB2 cannabinoid receptor induces schizophrenia-related behaviors in mice’, Neuropsychopharmacology, 36(7), 14891504. doi:10.1038/npp.2011.34.Google Scholar
Panikashvili, D. et al. (2001) ‘An endogenous cannabinoid (2-AG) is neuroprotective after brain injury’, Nature, 413(6855), 527531. doi:10.1038/35097089.Google Scholar
Pinto, J. V. et al. (2020) ‘Cannabidiol as a treatment for mood disorders: a systematic review’, Canadian Journal of Psychiatry, 65(4), 213217. doi:10.1177/0706743719895195.Google Scholar
Rey, A. A. et al. (2012) ‘Biphasic effects of cannabinoids in anxiety responses: CB1 and GABAB receptors in the balance of GABAergic and glutamatergic neurotransmission’, Neuropsychopharmacology, 37(12), 26242634. doi:10.1038/npp.2012.123.Google Scholar
Rubino, T. et al. (2008) ‘CB1 receptor stimulation in specific brain areas differently modulate anxiety-related behaviour’, Neuropharmacology, 54(1), 151160. doi:10.1016/j.neuropharm.2007.06.024.Google Scholar
Rubino, T., Zamberletti, E. and Parolaro, D. (2015) ‘Endocannabinoids and mental disorders’, in Pertwee, R. G. (ed.), Endocannabinoids. Springer International, pp. 261283. doi:10.1007/978-3-319-20825-1_9.Google Scholar
Sagredo, O. et al. (2007) ‘Cannabinoids and neuroprotection in basal ganglia disorders’, Molecular Neurobiology, 36(1), 8291. doi:10.1007/s12035-007-0004-3.Google Scholar
Urigüen, L. et al. (2004) ‘Impaired action of anxiolytic drugs in mice deficient in cannabinoid CB1 receptors’, Neuropharmacology, 46(7), 966973. doi:10.1016/j.neuropharm.2004.01.003.CrossRefGoogle ScholarPubMed
Urigüen, L. et al. (2009) ‘Immunodensity and mRNA expression of A2A adenosine, D2 dopamine, and CB1 cannabinoid receptors in postmortem frontal cortex of subjects with schizophrenia: effect of antipsychotic treatment’, Psychopharmacology, 206(2), 313324. doi:10.1007/s00213-009-1608-2.Google Scholar
Vadodaria, K. C. and Gage, F. H. (2014) ‘SnapShot: adult hippocampal neurogenesis’, Cell, 156(5), 1114–1114.e1. doi:10.1016/j.cell.2014.02.029.Google Scholar
van Os, J. et al. (2002) ‘Cannabis use and psychosis: a longitudinal population-based study’, American Journal of Epidemiology, 156(4), 319327. doi:10.1093/aje/kwf043.Google Scholar
Viveros, M. P., Marco, E. M. and File, S. E. (2005) ‘Endocannabinoid system and stress and anxiety responses’, Pharmacology Biochemistry and Behavior, 81(2), 331342. doi:10.1016/j.pbb.2005.01.029.Google Scholar
Zamberletti, E., Rubino, T. and Parolaro, D. (2012) ‘The endocannabinoid system and schizophrenia: integration of evidence’, Current Pharmaceutical Design, 18(32), 49804990. doi:10.2174/138161212802884744.Google Scholar
Zhang, X. et al. (2010) ‘Endocannabinoid-like N-arachidonoyl serine is a novel pro-angiogenic mediator’, British Journal of Pharmacology, 160(7), 15831594. doi:10.1111/j.1476-5381.2010.00841.x.Google Scholar
Zhao, C., Deng, W. and Gage, F. H. (2008) ‘Mechanisms and functional implications of adult neurogenesis’, Cell, 132(4), 645660. doi:10.1016/j.cell.2008.01.033.Google Scholar
Zuardi, A. W. et al. (1993) ‘Effects of ipsapirone and cannabidiol on human experimental anxiety’, Journal of Psychopharmacology, 7(1_suppl), 8288. doi:10.1177/026988119300700112.Google Scholar
Zuardi, A. W. et al. (1995) ‘Antipsychotic effect of cannabidiol’, Journal of Clinical Psychiatry, 56(10), 485486.Google Scholar

Bibliography

Aschoff, J. (1973) ‘Circadian rhythms: influences of internal and external factors on the period measured in constant conditions’, Zeitschrift für Tierpsychologie, 49(3), 225249. doi:10.1111/j.1439-0310.1979.tb00290.x.Google Scholar
Babson, K. A., Sottile, J. and Morabito, D. (2017) ‘Cannabis, cannabinoids, and sleep: a review of the literature’, Current Psychiatry Reports, 19(4), 23. doi:10.1007/s11920-017-0775-9.Google Scholar
Barratt, E. S., Beaver, W. and White, R. (1974) ‘The effects of marijuana on human sleep patterns’, Biological Psychiatry, 8(1), 4754.Google Scholar
Basile, A., Hanus, L. and Mendelson, W. B. (1999) ‘Characterization of the hypnotic properties of oleamide’, NeuroReport, 10, 947951.Google Scholar
Bolla, K. I. et al. (2010) ‘Polysomnogram changes in marijuana users who report sleep disturbances during prior abstinence’, Sleep Medicine, 11(9), 882889. doi:10.1016/j.sleep.2010.02.013.Google Scholar
Bowles, N. P. et al. (2019) ‘0051 altered endogenous circadian rhythm of the endocannabinoid anandamide by body mass index’, Sleep, 42(Supplement_1), A21A22. doi:10.1093/sleep/zsz067.050.Google Scholar
Brooks, D. C. and Bizzi, E. (1963) ‘Brain stem electrical activity during deep sleep’, Archives Italiennes de Biologie, 101, 648665.Google Scholar
Budney, A. J. et al. (2003) ‘The time course and significance of cannabis withdrawal’, Journal of Abnormal Psychology, 112(3), 393402. doi:10.1037/0021-843X.112.3.393.Google Scholar
Burdick, J. A. et al. (1970) ‘Heart-rate variability in sleep and wakefulness’, Cardiology, 55(2), 7983. doi:10.1159/000169270.Google Scholar
Calik, M. W., Radulovacki, M. and Carley, D. W. (2014) ‘Intranodose ganglion injections of dronabinol attenuate serotonin-induced apnea in Sprague-Dawley rat’, Respiratory Physiology and Neurobiology, 190(1), 2024. doi:10.1016/j.resp.2013.10.001.Google Scholar
Carley, D. W. et al. (2002) ‘Functional role for cannabinoids in respiratory stability during sleep’, Sleep, 25(4), 388395. doi:10.1093/sleep/25.4.388.Google Scholar
Carley, D. W. et al. (2018) ‘Pharmacotherapy of apnea by cannabimimetic enhancement, the PACE clinical trial: effects of dronabinol in obstructive sleep apnea’, Sleep, 41(1), zsx184. doi:10.1093/sleep/zsx184.Google Scholar
Chou, T. C. et al. (2003) ‘Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms’, Journal of Neuroscience, 23(33), 1069110702. doi:10.1523/jneurosci.23-33-10691.2003.Google Scholar
Coccagna, G. et al. (1971) ‘Arterial pressure changes during spontaneous sleep in man’, Electroencephalography and Clinical Neurophysiology, 31(3), 277281. doi:10.1016/0013-4694(71)90098-8.Google Scholar
Cousens, K. and DiMascio, A. (1973) ‘(-)δ9 THC as an hypnotic – an experimental study of three dose levels’, Psychopharmacologia, 33(4), 355364. doi:10.1007/BF00437513.Google Scholar
Cravatt, B. F. et al. (1995) ‘Chemical characterization of a family of brain lipids that induce sleep’, Science, 268(5216), 15061509. doi:10.1126/science.7770779.Google Scholar
Dement, W. and Kleitman, N. (1957) ‘Cyclic variations in EEG during sleep and their relation to eye movements, body motility, and dreaming’, Electroencephalography and Clinical Neurophysiology, 9(4), 673690. doi:10.1016/0013-4694(57)90088-3.Google Scholar
Feinberg, I. et al. (1975) ‘Effects of high dosage delta-9-tetrahydrocannabinol on sleep patterns in man’, Clinical Pharmacology & Therapeutics, 17(4), 458466. doi:10.1002/cpt1975174458.Google Scholar
Feinberg, I. et al. (1976) ‘Effects of marijuana extract and tetrahydrocannabinol on electroencephalographic sleep patterns’, Clinical Pharmacology & Therapeutics, 19(6), 782794. doi:10.1002/cpt1976196782.Google Scholar
Hanlon, E. C. et al. (2015) ‘Circadian rhythm of circulating levels of the endocannabinoid 2 arachidonoylglycerol’, Journal of Clinical Endocrinology and Metabolism, 100(1), 220226. doi:10.1210/jc.2014-3455.Google Scholar
Jouvet, M. and Michel, F. (1959) ‘[Electromyographic correlations of sleep in the chronic decorticate and mesencephalic cat]’, Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales, 153(3), 422425.Google Scholar
Koethe, D. et al. (2009) ‘Anandamide elevation in cerebrospinal fluid in initial prodromal states of psychosis’, British Journal of Psychiatry, 194(4), 371372. doi:10.1192/bjp.bp.108.053843.Google Scholar
Lerner, R. A. et al. (1994) ‘Cerebrodiene: a brain lipid isolated from sleep-deprived cats’, Proceedings of the National Academy of Sciences of the United States of America, 91(20), 95059508. doi:10.1073/pnas.91.20.9505.Google Scholar
Liu, C. and Reppert, S. M. (2000) ‘GABA synchronizes clock cells within the suprachiasmatic circadian clock’, Neuron, 25(1), 123128. doi:10.1016/s0896-6273(00)80876-4.Google Scholar
Lu, J. et al. (2000) ‘Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep’, Journal of Neuroscience, 20(10), 38303842. doi:10.1523/jneurosci.20-10-03830.2000.CrossRefGoogle ScholarPubMed
Lu, J, Sherman, D. and Saper, C. (2006) ‘A putative flip–flop switch for control of REM sleep’, Nature, 441, 589594. doi:10.1038/nature04767.Google Scholar
Martinez-Vargas, M. et al. (2003) ‘Sleep modulates cannabinoid receptor 1 expression in the pons of rats’, Neuroscience, 117(1), 197201. doi:10.1016/S0306-4522(02)00820-5.Google Scholar
Martinez-Vargas, M. et al. (2013) ‘Does the neuroprotective role of anandamide display diurnal variations?’, International Journal of Molecular Sciences, 14(12), 2334123355. doi:10.3390/ijms141223341.Google Scholar
McCarley, R. W. (2011) ‘Neurobiology of REM sleep’, Handbook of Clinical Neurology, 98, 151171. doi:10.1016/B978-0-444-52006-7.00010-1.Google Scholar
Mendelson, W. B. et al. (1979) ‘The regulation of insulin-induced and sleep-related human growth hormone secretion: a review’, Psychoneuroendocrinology, 4(4), 341349. doi:10.1016/0306-4530(79)90017-9.Google Scholar
Mendelson, W. B. and Basile, A. (1999) ‘The hypnotic actions of oleamide are blocked by a cannabinoid receptor antagonist’, NeuroReport, 10, 32373239.Google Scholar
Mendelson, W. B. and Basile, A. S. (2001) ‘The hypnotic actions of the fatty acid amide, oleamide’, Neuropsychopharmacology, 25(5 Suppl), S36S39. doi:10.1016/S0893-133X(01)00341-4.Google Scholar
Moore, R. Y. and Lenn, N. J. (1972) ‘A retinohypothalamic projection in the rat’, Journal of Comparative Neurology, 146(1), 114. doi:10.1002/cne.901460102.Google Scholar
Murillo-Rodríguez, E. et al. (2001) ‘Oleamide modulates memory in rats’, Neuroscience Letters, 313(1–2), 6164. doi:10.1016/S0304-3940(01)02256-X.Google Scholar
Murillo-Rodríguez, E. et al. (2006) ‘Cannabidiol, a constituent of Cannabis sativa, modulates sleep in rats’, FEBS Letters, 580(18), 43374345. doi:10.1016/j.febslet.2006.04.102.Google Scholar
Murillo-Rodriguez, E., Désarnaud, F. and Prospéro-García, O. (2006) ‘Diurnal variation of arachidonoylethanolamine, palmitoylethanolamide and oleoylethanolamide in the brain of the rat’, Life Sciences, 79(1), 3037. doi:10.1016/j.lfs.2005.12.028.CrossRefGoogle ScholarPubMed
National Academy of Sciences, Engineering, and Medicine (2017) The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research. Washington, DC: National Academies Press.Google Scholar
Navarro, L. et al. (2003) ‘Potential role of the cannabinoid receptor CB1 in rapid eye movement sleep rebound’, Neuroscience, 120(3), 855859. doi:10.1016/s0306-4522(03)00339-7.Google Scholar
Newman, A. B. et al. (2005) ‘Progression and regression of sleep-disordered breathing with changes in weight: The Sleep Heart Health Study’, Archives of Internal Medicine, 165(20), 24082413. doi:10.1001/archinte.165.20.2408.Google Scholar
Nichols, K. K. et al. (2007) ‘Identification of fatty acids and fatty acid amides in human meibomian gland secretions’, Investigative Ophthalmology and Visual Science, 48(1), 3439. doi:10.1167/iovs.06-0753.Google Scholar
Nicholson, A. N. et al. (2004) ‘Effect of Δ-9-tetrahydrocannabinol and cannabidiol on nocturnal sleep and early-morning behavior in young adults’, Journal of Clinical Psychopharmacology, 24(3), 305313. doi:10.1097/01.jcp.0000125688.05091.8f.Google Scholar
Nishino, S. (2013) ‘Neurotransmitters and neuropharmacology of sleep/wake regulations’, in Kushida, C. A (ed.), Encyclopedia of Sleep, London: Academic Press, pp. 395406. doi:10.1016/b978-0-12-378610-4.00087-5.Google Scholar
Perron, R. R., Tyson, R. L. and Sutherland, G. R. (2001) ‘Δ9-Tetrahydrocannabinol increases brain temperature and inverts circadian rhythms’, NeuroReport, 12(17), 37913794. doi:10.1097/00001756-200112040-00038.Google Scholar
Piomelli, D. et al. (2017) ‘A Guide to the National Academy of Science Report on Cannabis: An Exclusive Discussion with Panel Members’, Cannabis and Cannabinoid Research, 2(1), 155159. doi:10.1089/can.2017.29009.dpi.Google Scholar
Pivik, R. T. et al. (1972) ‘Delta-9-tetrahydrocannabinol and synhexl: effects on human sleep patterns’, Clinical Pharmacology & Therapeutics, 13(3), 426435. doi:10.1002/cpt1972133426.Google Scholar
Prasad, C. N. (2013) ‘Obstructive sleep apnea hypopnea syndrome – Indian scenario’, Perspectives in Medical Research, 1(1), 2225.Google Scholar
Reinarman, C. et al. (2011) ‘Who are medical marijuana patients? Population characteristics from nine California assessment clinics’, Journal of Psychoactive Drugs, 43(2), 128135. doi:10.1080/02791072.2011.587700.Google Scholar
Rueda-Orozco, P. E. et al. (2010) ‘Intrahippocampal administration of anandamide increases REM sleep’, Neuroscience Letters, 473(2), 158162. doi:10.1016/j.neulet.2010.02.044.Google Scholar
Sanford, A. E., Castillo, E. and Gannon, R. L. (2008) ‘Cannabinoids and hamster circadian activity rhythms’, Brain Research, 1222, 141148. doi:10.1016/j.brainres.2008.05.048.Google Scholar
Schofield, D. et al. (2006) ‘Reasons for cannabis use in psychosis’, Australian and New Zealand Journal of Psychiatry, 40(6–7), 570574. doi:10.1111/j.1440-1614.2006.01840.x.Google Scholar
Sherin, J. E. et al. (1996) ‘Activation of ventrolateral preoptic neurons during sleep’, Science, 271(5246), 216219. doi:10.1126/science.271.5246.216.Google Scholar
Shirakawa, T. et al. (2000) ‘Synchronization of circadian firing rhythms in cultured rat suprachiasmatic neurons’, European Journal of Neuroscience, 12, 28332838. doi:10.1046/j.1460-9568.2000.00170.x.Google Scholar
Sládek, M., Houdek, P. and Sumová, A. (2019) ‘Circadian profiling reveals distinct regulation of endocannabinoid system in the rat plasma, liver and adrenal glands by light-dark and feeding cycles’, Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids, 1864(12), 13. doi:10.1016/j.bbalip.2019.158533.Google Scholar
Stickgold, R. (2013) ‘Parsing the role of sleep in memory processing’, Current Opinion in Neurobiology, 23(5), 847853. doi:10.1016/j.conb.2013.04.002.Google Scholar
Tucker, M. A. et al. (2006) ‘A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory’, Neurobiology of Learning and Memory, 86(2), 241247. doi:10.1016/j.nlm.2006.03.005.Google Scholar
Valenti, M. et al. (2004) ‘Differential diurnal variations of anandamide and 2-arachidonoyl- glycerol levels in rat brain’, Cellular and Molecular Life Sciences, 61, 945950.Google Scholar
Vaughn, L. K. et al. (2010) ‘Endocannabinoid signalling: has it got rhythm?’, British Journal of Pharmacology, 160(3), 530543. doi:10.1111/j.1476-5381.2010.00790.x.Google Scholar
Wong, M. M., Brower, K. J. and Zucker, R. A. (2009) ‘Childhood sleep problems, early onset of substance use and behavioral problems in adolescence’, Sleep Medicine, 10(7), 787796. doi:10.1016/j.sleep.2008.06.015.Google Scholar

Bibliography

Abramovici, H., Lamour, S.-A. and Mammen, G. (2018) Information for Healthcare Professionals: Cannabis (marihuana, marijuana) and the cannabinoids. Ottawa: Health Canada.Google Scholar
Alhouayek, M. and Muccioli, G. G. (2014) ‘COX-2-derived endocannabinoid metabolites as novel inflammatory mediators’, Trends in Pharmacological Sciences, 35(6), 284292. doi:10.1016/j.tips.2014.03.001.Google Scholar
Blake, D. R. et al. (2006) ‘Preliminary assessment of the efficacy, tolerability and safety of a cannabis-based medicine (Sativex) in the treatment of pain caused by rheumatoid arthritis’, Rheumatology, 45(1), 5052. doi:10.1093/rheumatology/kei183.Google Scholar
Blumstein, G. W. et al. (2014) ‘Effect of delta-9-tetrahydrocannabinol on mouse resistance to systemic Candida albicans infection’, PLoS ONE, 9(7), e103288. doi:10.1371/journal.pone.0103288.Google Scholar
Bredt, B. M. et al. (2002) ‘Short-term effects of cannabinoids on immune phenotype and function in HIV-1-infected patients’, The Journal of Clinical Pharmacology, 42(S1), 82S89S. doi:10.1002/j.1552-4604.2002.tb06007.x.Google Scholar
Cabral, G. A. et al. (1991) ‘Chronic marijuana smoke alters alveolar macrophage morphology and protein expression’, Pharmacology Biochemistry and Behavior, 40(3), 643649. doi:10.1016/0091-3057(91)90376-D.Google Scholar
Cabral, G. A. et al. (1995) ‘Anandamide inhibits macrophage-mediated killing of tumor necrosis factor-sensitive cells’, Life Sciences, 56(23–24), 20652072. doi:10.1016/0024-3205(95)00190-H.Google Scholar
Carlisle, S. J. et al. (2002) ‘Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation’, International Immunopharmacology, 2(1), 6982. doi:10.1016/S1567-5769(01)00147-3.Google Scholar
Chao, C. et al. (2008) ‘Recreational drug use and T lymphocyte subpopulations in HIV-uninfected and HIV-infected men’, Drug and Alcohol Dependence, 94(1–3), 165171. doi:10.1016/j.drugalcdep.2007.11.010.Google Scholar
Chiurchiù, V. et al. (2013) ‘Distinct modulation of human myeloid and plasmacytoid dendritic cells by anandamide in multiple sclerosis’, Annals of Neurology, 73(5), 626636. doi:10.1002/ana.23875.Google Scholar
Chiurchiù, V., Leuti, A. and Maccarrone, M. (2015) ‘Cannabinoid signaling and neuroinflammatory diseases: a melting pot for the regulation of brain immune responses’, Journal of Neuroimmune Pharmacology, 10(2), 268280. doi:10.1007/s11481-015-9584-2.Google Scholar
Daul, C. B. and Heath, R. G. (1975) ‘The effect of chronic marihuana usage on the immunological status of rhesus monkeys’, Life Sciences, 17(6), 875881. doi:10.1016/0024-3205(75)90438-5.Google Scholar
Eisenstein, T. K. and Meissler, J. J. (2015) ‘Effects of cannabinoids on T-cell function and resistance to infection’, Journal of Neuroimmune Pharmacology, 12(2), 204216. doi:10.1007/s11481-015-9603-3.Google Scholar
Friedman, H., Klein, T. and Specter, S. (1991) ‘Immunosuppression by marijuana and components’, in Ader, R, Felten, D. L. and Cohen, H (eds.), Psychoneuroimmunology, 2nd ed. New York: Academic Press. pp. 931953. doi:10.1016/b978-0-12-043780-1.50041-5.Google Scholar
Graham, E. S. et al. (2010) ‘Detailed characterisation of CB2 receptor protein expression in peripheral blood immune cells from healthy human volunteers using flow cytometry’, International Journal of Immunopathology and Pharmacology, 23(1), 2534. doi:10.1177/039463201002300103.Google Scholar
Haynes, B. F., Soderberg, K. A. and Fauci, A. S. (2017) ‘Introduction to the immune system’, in Fauci, A. S. and Langford, C. A. (eds.), Harrison’s Rheumatology, 4th ed. New York: McGraw-Hill. pp. 246.Google Scholar
Jackson, A. R., Nagarkatti, P. and Nagarkatti, M. (2014) ‘Anandamide attenuates Th-17 cell-mediated delayed-type hypersensitivity response by triggering IL-10 production and consequent microRNA induction’, PLoS ONE, 9(4), e93954. doi:10.1371/journal.pone.0093954.Google Scholar
Klein, T. W. et al. (2003) ‘The cannabinoid system and immune modulation’, Journal of Leukocyte Biology, 74(4), 486496. doi:10.1189/jlb.0303101.Google Scholar
Lahat, A., Lang, A. and Shomron, B. H. (2012) ‘Impact of cannabis treatment on the quality of life, weight and clinical disease activity in inflammatory bowel disease patients: a pilot prospective study’, Digestion, 85(1), 18. doi:10.1159/000332079.Google Scholar
Lal, S. et al. (2011) ‘Cannabis use amongst patients with inflammatory bowel disease’, European Journal of Gastroenterology and Hepatology, 23(10), 891896. doi:10.1097/MEG.0b013e328349bb4c.Google Scholar
Malfait, A. M. et al. (2000) ‘The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis’, Proceedings of the National Academy of Sciences of the United States of America, 97(17), 95619566. doi:10.1073/pnas.160105897.Google Scholar
Marquéz, L. et al. (2009) ‘Ulcerative colitis induces changes on the expression of the endocannabinoid system in the human colonic tissue’, PLoS ONE, 4(9), e6893. doi:10.1371/journal.pone.0006893.Google Scholar
McHugh, D. et al. (2008) ‘Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2’, Molecular Pharmacology, 73(2), 441450. doi:10.1124/mol.107.041863.Google Scholar
McHugh, D. et al. (2012) ‘Δ9-Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells’, British Journal of Pharmacology, 165(8), 24142424. doi:10.1111/j.1476-5381.2011.01497.x.Google Scholar
Molina, P. E. et al. (2015) ‘Behavioral, metabolic, and immune consequences of chronic alcohol or cannabinoids on HIV/AIDS: studies in the non-human primate SIV model’, Journal of Neuroimmune Pharmacology, 10(2), 217232. doi:10.1007/s11481-015-9599-8.Google Scholar
Molina-Holgado, F. et al. (2002) ‘Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures’, Journal of Neuroscience Research, 67(6), 829836. doi:10.1002/jnr.10165.Google Scholar
Naftali, T. and Häuser, W. (2014) ‘Cannabis induces a clinical response in patients with Crohn’s disease: a prospective placebo-controlled study’, Forschende Komplementärmedizin, 21(2), 133134. doi:10.1159/000362829.Google Scholar
National Academy of Sciences, Engineering, and Medicine (2017) The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research. Washington, DC: National Academies Press.Google Scholar
Newton, C. A., Klein, T. W. and Friedman, H. (1994) ‘Secondary immunity to Legionella pneumophila and Th1 activity are suppressed by delta-9-tetrahydrocannabinol injection’, Infection and Immunity, 62(9), 40154020. doi:10.1128/iai.62.9.4015-4020.1994.Google Scholar
Piomelli, D. et al. (2017) ‘A Guide to the National Academy of Science Report on Cannabis: An Exclusive Discussion with Panel Members’, Cannabis and Cannabinoid Research, 2(1), 155159. doi:10.1089/can.2017.29009.dpi.Google Scholar
Reiss, C. S. (2010) ‘Cannabinoids and viral infections’, Pharmaceuticals, 3(6), 18731886. doi:10.3390/ph3061873.Google Scholar
Richardson, D. et al. (2008) ‘Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis’, Arthritis Research and Therapy, 10(2), 114. doi:10.1186/ar2401.Google Scholar
Rockwell, C. E. et al. (2006) ‘Interleukin-2 suppression by 2-arachidonyl glycerol is mediated through peroxisome proliferator-activated receptor γ independently of cannabinoid receptors 1 and 2’, Molecular Pharmacology, 70(1), 101111. doi:10.1124/mol.105.019117.Google Scholar
Shay, A. H. et al. (2003) ‘Impairment of antimicrobial activity and nitric oxide production in alveolar macrophages from smokers of marijuana and cocaine’, The Journal of Infectious Diseases, 187(4), 700704. doi:10.1086/368370.Google Scholar
Smith, F. L. et al. (1998) ‘Characterization of Δ9-tetrahydrocannabinol and anandamide antinociception in nonarthritic and arthritic rats’, Pharmacology Biochemistry and Behavior, 60(1), 183191. doi:10.1016/S0091-3057(97)00583-2.Google Scholar
Sompayrac, L. (2012) ‘Lecture 1: An overview’, in How the Immune System Works, 4th ed. Chichester: John Wiley & Sons, Ltd. pp. 112.Google Scholar
Specter, S., Lancz, G. and Goodfellow, D. (1991) ‘Suppression of human macrophage function in vitro by δ 9-tetrahydrocannabinol’, Journal of Leukocyte Biology, 50(5), 423426. doi:10.1002/jlb.50.5.423.Google Scholar
Tanasescu, R. and Constantinescu, C. S. (2010) ‘Cannabinoids and the immune system: an overview’, Immunobiology, 215(8), 588597. doi:10.1016/j.imbio.2009.12.005.Google Scholar
Thucydides (430 BC) History of The Peloponnesian War. Translated by R. Crawley in 1874. Public Domain.Google Scholar
Wang, T. et al. (2008) ‘Adverse effects of medical cannabinoids: a systematic review’, CMAJ, 178(13), 16691678. doi:10.1503/cmaj.071178.Google Scholar
Weiss, A. and Friedenberg, F. (2015) ‘Patterns of cannabis use in patients with inflammatory bowel disease: a population based analysis’, Drug and Alcohol Dependence, 156, 8489. doi:10.1016/j.drugalcdep.2015.08.035.Google Scholar
Yeshurun, M. et al. (2015) ‘Cannabidiol for the prevention of graft-versus-host-disease after allogeneic hematopoietic cell transplantation: results of a phase II study’, Biology of Blood and Marrow Transplantation, 21(10), 17701775. doi:10.1016/j.bbmt.2015.05.018.Google Scholar

Bibliography

Alshaarawy, O. and Elbaz, H. A. (2016) ‘Cannabis use and blood pressure levels’, Journal of Hypertension, 34(8), 15071512. doi:10.1097/HJH.0000000000000990.Google Scholar
Barber, A. J., Gardner, T. W. and Abcouwer, S. F. (2011) ‘The significance of vascular and neural apoptosis to the pathology of diabetic retinopathy’, Investigative Ophthalmology and Visual Science, 52(2), 11561163. doi:10.1167/iovs.10-6293.Google Scholar
Ben-Shabat, S. et al. (1998) ‘An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity’, European Journal of Pharmacology, 353(1), 2331. doi:10.1016/S0014-2999(98)00392-6.Google Scholar
Bouskila, J. et al. (2016) ‘A comparative analysis of the endocannabinoid system in the retina of mice, tree shrews, and monkeys’, Neural Plasticity, 2016, 3127658. doi:10.1155/2016/3127658.Google Scholar
Carlisle, S. J. et al. (2002) ‘Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation’, International Immunopharmacology, 2(1), 6982. doi:10.1016/S1567-5769(01)00147-3.Google Scholar
Caterina, M. J. et al. (1997) ‘The capsaicin receptor: a heat-activated ion channel in the pain pathway’, Nature, 389, 816824.Google Scholar
Chen, J. et al. (2005) ‘Finding of endocannabinoids in human eye tissues: implications for glaucoma’, Biochemical and Biophysical Research Communications, 330(4), 10621067. doi:10.1016/j.bbrc.2005.03.095.Google Scholar
Chen, M. et al. (2019) ‘Immune regulation in the aging retina’, Progress in Retinal and Eye Research, 69, 159172. doi:10.1016/j.preteyeres.2018.10.003.Google Scholar
Cooler, P. and Gregg, J. M. (1977) ‘Effect of delta-9-tetrahydrocannabinol on intraocular pressure in humans’, Southern Medical Journal, 70(8), 951954. doi:10.1097/00007611-197708000-00016.Google Scholar
Derocq, J.-M. et al. (1998) ‘The endogenous cannabinoid anandamide is a lipid messenger activating cell growth via a cannabinoid receptor-independent pathway in hematopoietic cell lines’, FEBS Letters, 425(3), 419425. doi:10.1016/S0014-5793(98)00275-0.Google Scholar
El-Remessy, A. B. et al. (2006) ‘Neuroprotective and blood-retinal barrier-preserving effects of cannabidiol in experimental diabetes’, American Journal of Pathology, 168(1), 235244. doi:10.2353/ajpath.2006.050500.Google Scholar
Flom, M. C., Adams, A. J. and Jones, R. T. (1975) ‘Marijuana smoking and reduced pressure in human eyes: drug action or epiphenomenon?’, Investigative Ophthalmology, 14(1), 5255.Google Scholar
Green, K. and Kim, K. (1976) ‘Mediation of ocular tetrahydrocannabinol effects by adrenergic nervous system’, Experimental Eye Research, 23(4), 443448. doi:10.1016/0014-4835(76)90173-1.Google Scholar
Green, K., Wynn, H. and Bowman, K. A. (1978) ‘A comparison of topical cannabinoids on intraocular pressure’, Experimental Eye Research, 27(2), 239246. doi:10.1016/0014-4835(78)90092-1.Google Scholar
Hampson, A. J. et al. (1998) ‘Cannabidiol and (-)Δ9-tetrahydrocannabinol are neuroprotective antioxidants’, Proceedings of the National Academy of Sciences of the United States of America, 95(14), 82688273. doi:10.1073/pnas.95.14.8268.Google Scholar
Hepler, R. S. and Frank, I. R. (1971) ‘Marihuana smoking and intraocular pressure’, JAMA: The Journal of the American Medical Association, 217(10), 1392. doi:10.1001/jama.217.10.1392c.Google Scholar
Jager, R. D., Mieler, W. F. and Miller, J. W. (2008) ‘Age-related macular degeneration’, New England Journal of Medicine, 358(24), 2606. doi:10.1056/NEJMra0801537.Google Scholar
Katona, I. (2015) ‘Cannabis and endocannabinoid signaling in epilepsy’, Handbook of Experimental Pharmacology, 231, 285316. doi:10.1007/978-3-319-20825-1_10.Google Scholar
Kauppinen, A. et al. (2016) ‘Inflammation and its role in age-related macular degeneration’, Cellular and Molecular Life Sciences, 73(9), 17651786. doi:10.1007/s00018-016-2147-8.Google Scholar
Kokona, D. et al. (2016) ‘Endogenous and synthetic cannabinoids as therapeutics in retinal disease’, Neural Plasticity, 2016, 8373020. doi:10.1155/2016/8373020.Google Scholar
Kokona, D. and Thermos, K. (2015) ‘Synthetic and endogenous cannabinoids protect retinal neurons from AMPA excitotoxicity in vivo, via activation of CB1 receptors: involvement of PI3K/Akt and MEK/ERK signaling pathways’, Experimental Eye Research, 136, 4558. doi:10.1016/j.exer.2015.05.007.Google Scholar
Leske, M. C. (2002) ‘Incident open-angle glaucoma and blood pressure’, Archives of Ophthalmology, 120(7), 954. doi:10.1001/archopht.120.7.954.Google Scholar
López, A. et al. (2018) ‘Cannabinoid CB2 receptors in the mouse brain: Relevance for Alzheimer’s disease’, Journal of Neuroinflammation, 15(1), 158. doi:10.1186/s12974-018-1174-9.Google Scholar
Matias, I. et al. (2006) ‘Changes in endocannabinoid and palmitoylethanolamide levels in eye tissues of patients with diabetic retinopathy and age-related macular degeneration’, Prostaglandins, Leukotrienes, and Essential Fatty Acids, 75(6), 413418. doi:10.1016/j.plefa.2006.08.002.Google Scholar
McPartland, J. M. et al. (2006) ‘Evolutionary origins of the endocannabinoid system’, Gene, 370(1–2), 6474. doi:10.1016/j.gene.2005.11.004.Google Scholar
Merritt, J. C., Crawford, W. J. and Alexander, P. C. (1980) ‘Effect of marihuana on intraocular and blood pressure in glaucoma’, Ophthalmology, 87(3), 222228. doi:10.1016/s0161-6420(80)35258-5.Google Scholar
Molina-Holgado, F. et al. (2002) ‘Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures’, Journal of Neuroscience Research, 67(6), 829836. doi:10.1002/jnr.10165.Google Scholar
Nowak, J. Z. (2006) ‘Age-related macular degeneration (AMD): pathogenesis and therapy’, Pharmacological Reports, 58(3), 353363.Google Scholar
Porcella, A. et al. (1998) ‘Cannabinoid receptor CB1 mRNA is highly expressed in the rat ciliary body: implications for the antiglaucoma properties of marihuana’, Molecular Brain Research, 58(1–2), 240245. doi:10.1016/S0169-328X(98)00105-3.Google Scholar
Porcella, A. et al. (2000) ‘The human eye expresses high levels of CB1 cannabinoid receptor mRNA and protein’, European Journal of Neuroscience, 12(3), 11231127. doi:10.1046/j.1460-9568.2000.01027.x.Google Scholar
Rapino, C. et al. (2017) ‘Neuroprotection by (endo)cannabinoids in glaucoma and retinal neurodegenerative diseases’, Current Neuropharmacology, 16(7), 959970. doi:10.2174/1570159x15666170724104305.Google Scholar
Russo, E. B. et al. (2004) ‘Cannabis improves night vision: a case study of dark adaptometry and scotopic sensitivity in kif smokers of the Rif mountains of northern Morocco’, Journal of Ethnopharmacology, 93(1), 99104. doi:10.1016/j.jep.2004.03.029.CrossRefGoogle ScholarPubMed
Sakamoto, K. et al. (2014) ‘Activation of the TRPV1 channel attenuates N-methyl-d-aspartic acid-induced neuronal injury in the rat retina’, European Journal of Pharmacology, 733(1), 1322. doi:10.1016/j.ejphar.2014.03.035.Google Scholar
Schwitzer, T. et al. (2015) ‘The cannabinoid system and visual processing: a review on experimental findings and clinical presumptions’, European Neuropsychopharmacology, 25(1), 100112. doi:10.1016/j.euroneuro.2014.11.002.Google Scholar
Stamer, W. D. et al. (2001) ‘Cannabinoid CB1 receptor expression, activation and detection of endogenous ligand in trabecular meshwork and ciliary process tissues’, European Journal of Pharmacology, 431(3), 277286. doi:10.1016/S0014-2999(01)01438-8.Google Scholar
Straiker, A. et al. (1999a) ‘Cannabinoid CB1 receptors and ligands in vertebrate retina: localization and function of an endogenous signaling system’, Proceedings of the National Academy of Sciences of the United States of America, 96(25), 1456514570. doi:10.1073/pnas.96.25.14565.Google Scholar
Straiker, A. J. et al. (1999b) ‘Localization of cannabinoid CB1 receptors in the human anterior eye and retina’, Investigative Ophthalmology and Visual Science, 40(10), 24422448.Google Scholar
Wei, Y., Wang, X. and Wang, L. (2009) ‘Presence and regulation of cannabinoid receptors in human retinal pigment epithelial cells’, Molecular Vision, 15, 12431251.Google Scholar
West, M. E. (1991) ‘Cannabis and night vision’, Nature, 351, 703704.Google Scholar
Zhao, D. et al. (2014) ‘The association of blood pressure and primary open-angle glaucoma: a meta-analysis’, American Journal of Ophthalmology, 158(3), 615.e9–627.e9. doi:10.1016/j.ajo.2014.05.029.Google Scholar
Zhong, L. et al. (2005) ‘CB2 cannabinoid receptors in trabecular meshwork cells mediate JWH015-induced enhancement of aqueous humor outflow facility’, Investigative Ophthalmology and Visual Science, 46(6), 19881992. doi:10.1167/iovs.04-0651.Google Scholar

Bibliography

Ali, A. and Akhtar, N. (2015) ‘The safety and efficacy of 3% Cannabis seeds extract cream for reduction of human cheek skin sebum and erythema content’, Pakistan Journal of Pharmaceutical Sciences, 28(4), 13891395.Google Scholar
Ambrożewicz, E. et al. (2018) ‘Pathophysiological alterations of redox signaling and endocannabinoid system in granulocytes and plasma of psoriatic patients’, Cells, 7(10), 159. doi:10.3390/cells7100159.Google Scholar
Appendino, G. et al. (2008) ‘Antibacterial cannabinoids from Cannabis sativa: a structure-activity study’, Journal of Natural Products, 71(8), 14271430. doi:10.1021/np8002673.Google Scholar
Bíró, T. et al. (2009) ‘Novel perspectives and therapeutic opportunities’, Trends in Pharmacological Sciences, 30(8), 411420. doi:10.1016/j.tips.2009.05.004.The.Google Scholar
Brunner, T. F. (1977) ‘Marijuana in ancient Greece and Rome? The literary evidence’, Journal of Psychoactive Drugs, 9(3), 221225. doi:10.1080/02791072.1977.10472052.Google Scholar
Callaway, J. et al. (2005) ‘Efficacy of dietary hempseed oil in patients with atopic dermatitis’, Journal of Dermatological Treatment, 16(2), 8794. doi:10.1080/09546630510035832.Google Scholar
Clark, R. A. F., Nicol, N. and Adinoff, A. D. (1990) ‘Atopic dermatitis’, in Sams, W. M. and Lynch, P. J. (eds.), Principles and Practice of Dermatology. New York: Churchill Livingstone. pp. 365380.Google Scholar
De Petrocellis, L. et al. (2012) ‘Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation’, Acta Physiologica, 204(2), 255266. doi:10.1111/j.1748-1716.2011.02338.x.Google Scholar
Del Río, C. et al. (2018) ‘The endocannabinoid system of the skin. A potential approach for the treatment of skin disorders’, Biochemical Pharmacology, 122–133. doi:10.1016/j.bcp.2018.08.022.Google Scholar
Gaffal, E. et al. (2013) ‘Cannabinoid 1 receptors in keratinocytes modulate proinflammatory chemokine secretion and attenuate contact allergic inflammation’, The Journal of Immunology, 190(10), 49294936. doi:10.4049/jimmunol.1201777.Google Scholar
Karsak, M. et al. (2007) ‘Attenuation of allergic contact dermatitis through the endocannabinoid system’, Science, 316(5830), 14941497. doi:10.1126/science.1142265.Google Scholar
Klein, T. W. and Cabral, G. A. (2006) ‘Cannabinoid-induced immune suppression and modulation of antigen-presenting cells’, Journal of Neuroimmune Pharmacology, 1(1), 5064. doi:10.1007/s11481-005-9007-x.Google Scholar
Krueger, J. G. and Bowcock, A. (2005) ‘Psoriasis pathophysiology: current concepts of pathogenesis’, Annals of the Rheumatic Diseases, 64(Suppl 2), ii30–ii36. doi:10.1136/ard.2004.031120.Google Scholar
Lavery, M. J. et al. (2016) ‘Pruritus: an overview. What drives people to scratch an itch?’, Ulster Medical Journal, 85(3), 167173.Google Scholar
Maccarrone, M. et al. (2003) ‘The endocannabinoid system in human keratinocytes: evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase’, Journal of Biological Chemistry, 278(36), 3389633903.Google Scholar
Martini, M. C. and Marks, J. G. (1990) ‘Contact dermatitis and contact urticaria’, in Sams, W. M. and Lynch, P. J. (eds.), Principles and Practice of Dermatology. New York: Churchill Livingstone. pp. 389402.Google Scholar
Norooznezhad, A. H. and Norooznezhad, F. (2017) ‘Cannabinoids: possible agents for treatment of psoriasis via suppression of angiogenesis and inflammation’, Medical Hypotheses, 99, 1518. doi:10.1016/j.mehy.2016.12.003.Google Scholar
Ogawa, E. et al. (2018) ‘Pathogenesis of psoriasis and development of treatment’, The Journal of Dermatology, 45(3), 264272. doi:10.1111/1346-8138.14139.Google Scholar
Pappas, A. et al. (2009) ‘Sebum analysis of individuals with and without acne’, Dermato-Endocrinology, 1(3), 157161. doi:10.4161/derm.1.3.8473.Google Scholar
Ramot, Y. et al. (2013) ‘A novel control of human keratin expression: cannabinoid receptor 1-mediated signaling down-regulates the expression of keratins K6 and K16 in human keratinocytes in vitro and in situ’, PeerJ, 1, e40. doi:10.7717/peerj.40.Google Scholar
Ryberg, E. et al. (2009) ‘The orphan receptor GPR55 is a novel cannabinoid receptor’, British Journal of Pharmacology, 152(7), 10921101. doi:10.1038/sj.bjp.0707460.Google Scholar
Sams, W. M. (1990) ‘Structure and function of skin’, in Sams, W. M. and Lynch, P. J. (eds.), Principles and Practice of Dermatology. New York: Churchill Livingstone. pp. 314.Google Scholar
Scheau, C. et al. (2020) ‘Cannabinoids in the pathophysiology of skin inflammation’, Molecules, 25(3), 652. doi:10.3390/molecules25030652.Google Scholar
Shi, V. Y. et al. (2015) ‘Role of sebaceous glands in inflammatory dermatoses’, Journal of the American Academy of Dermatology, 73(5), 856863. doi:10.1016/j.jaad.2015.08.015.Google Scholar
Ständer, S., Reinhardt, H. W. and Luger, T. A. (2006) ‘Topische cannabinoidagonisten. Eine effektive, neue möglichkeit zur behandlung von chronischem pruritus’, Der Hautarzt, 57(9), 801807. doi:10.1007/s00105-006-1180-1.Google Scholar
Szántó, M. et al. (2019) ‘Activation of TRPV3 inhibits lipogenesis and stimulates production of inflammatory mediators in human sebocytes—a putative contributor to dry skin dermatoses’, Journal of Investigative Dermatology, 139(1), 250253. doi:10.1016/j.jid.2018.07.015.Google Scholar
Szepietowski, J. C., Szepietowski, T. and Reich, A. (2005) ‘Efficacy and tolerance of the cream containing structured physiological lipids with endocannabinoids in the treatment of uremic pruritus: a preliminary study’, Acta Dermatovenerologica Croatica, 13(2), 97103.Google Scholar
Telek, A. et al. (2007) ‘Inhibition of human hair follicle growth by endo- and exocannabinoids’, FASEB Journal, 21(13), 35343541. doi:10.1096/fj.06-7689com.Google Scholar
Tóth, K. F. et al. (2019) ‘Cannabinoid signaling in the skin: therapeutic potential of the “c(ut)annabinoid” system’, Molecules, 24(5), 156. doi:10.3390/molecules24050918.Google Scholar
White, P. A. (1990) ‘Eczematous reaction patterns’, in Sams, W. M. and Lynch, P. J. (eds.), Principles and Practice of Dermatology. New York: Churchill Livingstone. pp. 381388.Google Scholar
Wilkinson, J. D. and Williamson, E. M. (2007) ‘Cannabinoids inhibit human keratinocyte proliferation through a non-CB1/CB2 mechanism and have a potential therapeutic value in the treatment of psoriasis’, Journal of Dermatological Science, 45(2), 8792. doi:10.1016/j.jdermsci.2006.10.009.Google Scholar
Yosipovitch, G., Rosen, J. D. and Hashimoto, T. (2018) ‘Itch: From mechanism to (novel) therapeutic approaches’, Journal of Allergy and Clinical Immunology, 142(5), 13751390. doi:10.1016/j.jaci.2018.09.005.Google Scholar
Zanolli, M. D. (1990) ‘Psoriasis and Reiter’s disease’, in Sams, W. M. and Lynch, P. J. (eds.), Principles and Practice of Dermatology. New York: Churchill Livingstone. pp. 307324.Google Scholar
Zygmunt, P. M. et al. (1999) ‘Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide’, Nature, 74(9), 452457. doi:10.1038/22761.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×