Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-21T11:19:29.405Z Has data issue: false hasContentIssue false

Section 1 - An Introduction to Cannabinoid Science

Published online by Cambridge University Press:  12 October 2020

Steven James
Affiliation:
University of California, San Diego
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Abel, E. L. (1980) Marijuana: The First Twelve Thousand Years. New York: Plenum Press.Google Scholar
Alger, B. E. and Kin, J. (2011) ‘Supply and demand for endocannabinoids’, Trends in Neurosciences, 34, 304315.Google Scholar
Anderson, S. (ed.) (2005) Making Medicines: A Brief History of Pharmacy and Pharmaceuticals. London: Pharmaceutical Press.Google Scholar
Booth, M. (2004) Cannabis: A History. New York: St. Martin’s Press.Google Scholar
Derocq, J. M. et al. (1998) ‘The endogenous cannabinoid anandamide is a lipid messenger activating cell growth via a cannabinoid receptor-independent pathway in hematopoietic cell lines’, FEBS Letters, 425(3), 419425.Google Scholar
Devane, W. A. et al. (1988) ‘Determination and characterization of a cannabinoid receptor in rat brain’, Molecular Pharmacology, 34(5), 605613.Google Scholar
Devane, W. A. et al. (1992) ‘Isolation and structure of a brain constituent that binds to the cannabinoid receptor’, Science, 258(5090), 19461949.Google Scholar
Di Marzo, V., De Petrocellis, L. and Bisogno, T. (2005). ‘The biosynthesis, fate and pharmacological properties of endocannabinoids’, Handbook of Experimental Pharmacology, 168, 147185. doi:10.1007/3-540-26573-2_5.Google Scholar
Dinh, T. P., Kathuria, S. and Piomelli, D. (2004) ‘RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol’, Molecular Pharmacology, 66(5), 12601264.Google Scholar
Gaoni, Y. and Mechoulam, R. (1964) ‘Isolation, structure and partial synthesis of an active constituent of hashish’, Journal of the American Chemical Society, 86(8), 16461647.Google Scholar
Hanus, L. et al. (2001) ‘2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor’, Proceedings of the National Academy of Sciences of the United States of America, 98, 36623665.Google Scholar
Howlett, A. C., Qualy, J. M. and Khachatrian, L. L. (1986) ‘Involvement of Gi in the inhibition adenylate cyclase by cannabimimetic drugs’, Molecular Pharmacology, 29(3), 307313.Google ScholarPubMed
Huang, S. M. et al. (2002) ‘An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors’, Proceedings of the National Academy of Sciences of the United States of America, 99, 84008405.Google Scholar
Huestis, M. A. (2005). ‘Pharmacokinetics and metabolism of the plant cannabinoids, delta9-tetrahydrocannabinol, cannabidiol and cannabinol’, Handbook of Experimental Pharmacology, 168, 657690.Google Scholar
Huestis, M. A. and Smith, M. L. (2014) ‘Cannabinoid pharmacokinetics and disposition in alternative matrices’, in Pertwee., R. G. (ed.), Handbook of Cannabis. Oxford: Oxford University Press. pp. 296318.Google Scholar
Iversen, L. (2008). The Science of Marijuana. Oxford: Oxford University Press.Google Scholar
Maccarrone, M., Dainese, E. and Oddi, S. (2010) ‘Intracellular trafficking of anandamide: new concepts for signaling’, Trends in Biochemical Sciences, 35, 601608.Google Scholar
Mead, A. P. (2014) ‘International control of cannabis’, in Pertwee, R. G. (ed.), Handbook of Cannabis. Oxford: Oxford University Press. pp. 4464.Google Scholar
Mechoulam, R. et al. (1988). ‘Enantiomeric cannabinoids: stereospecificity of psychotropic activity’, Experientia, 44(9), 762764.Google Scholar
Mechoulam, R. et al. (2014). ‘Early phytocannabinoid chemistry to endocannabinoids and beyond’, Nature Reviews Neuroscience, 15(11), 757764.Google Scholar
Munro, S., Thomas, K. L. and Abu-Shaar, M. (1993) ‘Molecular characterization of the peripheral receptor for cannabinoids’, Nature, 365(6441), 6165.Google Scholar
Nestler, E. J., Hyman, S. E. and Malenka, R. C. (2001) Molecular Neuropharmacology. A Foundation for Clinical Neuroscience. New York: McGraw-Hill Company.Google Scholar
Pacher, P. and Mechoulam, R. (2011) ‘Is lipid signaling through cannabinoid 2 receptors part of a protective system?’, Progress in Lipid Research, 50, 193211.Google Scholar
Parker, L. A. (2017) Cannabinoids and the Brain. Cambridge, MA: MIT Press. p. 29.Google Scholar
Pertwee, R. G. et al. (2005). ‘Evidence that (-)-7-hydroxy-4-dimethylheptyl-cannabidiol activates a non-CB (1), non-CB (2), non-TRPV1 target in the mouse vas deferens’, Neuropharmacology, 48(8), 11391146.Google Scholar
Porter, A. C. et al. (2002) ‘Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor’, Journal of Pharmacology and Experimental Therapeutics, 301, 10201024.Google Scholar
Potter, D. J. (2014) ‘Cannabis horticulture’, in Pertwee, R. G. (ed.), Handbook of Cannabis. Oxford: Oxford University Press. pp. 6588.CrossRefGoogle Scholar
Price, M. R. et al. (2005) ‘Allosteric modulation of the cannabinoid CB1 receptor’, Molecular Pharmacology, 68(5), 14841495. doi:10.1124/mol.105.016162.Google Scholar
Ryberg, E. et al. 2007. ‘The orphan receptor GPR55 is a novel cannabinoid receptor’, British Journal of Pharmacology, 152(7), 10921101.Google Scholar
Starowicz, K. and Przewlocka, B. (2012) ‘Modulation of neuropathic pain related behavior by the spinal endocannabinoids/endovanilloid system’, Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 367, 32863299.Google Scholar
Sugiura, T. et al. (1995) ‘Arachidonoylglycerol: a possible endogenous cannabinoid ligand in brain’, Biochemical and Biophysical Research Communications, 215, 8995.Google Scholar
Sugiura, T. et al. (2002) ‘Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible significance’, Prostaglandins, Leukotrienes and Essential Fatty Acids, 66, 173192.Google Scholar

Bibliography

Adams, I. B. and Martin, B. R. (1996) ‘Cannabis: pharmacology and toxicology in animals and humans’, Addiction, 91(11), 15851614. doi:10.1046/j.1360-0443.1996.911115852.x.CrossRefGoogle ScholarPubMed
Agurell, S. et al. (1986) ‘Pharmacokinetics and metabolism of Δ1-tetrahydrocannabinol and other cannabinoids with emphasis on man’, Pharmacological Reviews, 38(1), 2143.Google Scholar
Bartner, L. R. et al. (2018) ‘Pharmacokinetics of cannabidiol administered by 3 delivery methods at 2 different dosages to healthy dogs’, Canadian Journal of Veterinary Research, 82(3), 178183. Available at: www.ingentaconnect.com/content/cvma/cjvr/2018/00000082/00000003/art00002.Google Scholar
Bonn-Miller, M. O. et al. (2017). ‘Labeling accuracy of cannabidiol extracts sold online’, JAMA: The Journal of the American Medical Association, 318(17), 17081709. doi:10.1001/jama.2017.11909.Google Scholar
Brenneisen, R. (2007) ‘Chemistry and analysis of phytocannabinoids and other cannabis constituents’, in Marijuana and the Cannabinoids. Totowa: Humana Press, pp. 1749. doi:10.1007/978-1-59259-947-9_2.Google Scholar
Brown, A. J. (2009) ‘Novel cannabinoid receptors’, British Journal of Pharmacology, 152(5), 567575. doi:10.1038/sj.bjp.0707481.Google Scholar
Burstein, S., Rosenfeld, J. and Wittstruck, T. (1972) ‘Isolation and characterization of two major urinary metabolites of Dgr1-tetrahydrocannabinol’, Science, 176(4033), 422423. doi:10.1126/science.176.4033.422.CrossRefGoogle Scholar
Clean Label Project (2019) https://cleanlabelproject.org/ (Accessed: December 1, 2019).Google Scholar
De Petrocellis, L. et al. (2012) ‘Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation’, Acta Physiologica, 204(2), 255266. doi:10.1111/j.1748-1716.2011.02338.x.Google Scholar
Gaoni, Y. and Mechoulam, R. (1964) ‘Isolation, structure, and partial synthesis of an active constituent of hashish’, Journal of the American Chemical Society, 86(8), 16461647. doi:10.1021/ja01062a046.Google Scholar
Gaston, T. E. et al. (2017) ‘Interactions between cannabidiol and commonly used antiepileptic drugs’, Epilepsia, 58(9), 15861592. doi:10.1111/epi.13852.Google Scholar
Geffrey, A. L. et al. (2015) ‘Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy’, Epilepsia, 56(8), 12461251. doi:10.1111/epi.13060.Google Scholar
Gonca, E. and Darıcı, F. (2015) ‘The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias’, Journal of Cardiovascular Pharmacology and Therapeutics, 20(1), 7683. doi:10.1177/1074248414532013.Google Scholar
Grayson, L. et al. (2018) ‘An interaction between warfarin and cannabidiol, a case report.’, Epilepsy & Behavior Case Reports, 9, 1011. doi:10.1016/j.ebcr.2017.10.001.Google Scholar
Greenberg, H. S. et al. (1994) ‘Short‐term effects of smoking marijuana on balance in patients with multiple sclerosis and normal volunteers’, Clinical Pharmacology & Therapeutics, 55(3), 324328. doi:10.1038/clpt.1994.33.Google Scholar
Gregg, L. C. et al. (2012). ‘Activation of type 5 metabotropic glutamate receptors and diacylglycerol lipase-α initiates 2-arachidonoylglycerol formation and endocannabinoid-mediated analgesia’, Journal of Neuroscience, 32(28), 94579468. doi:10.1523/JNEUROSCI.0013-12.2012.Google Scholar
Grotenhermen, F. (2002) ‘The medical use of cannabis in Germany’, Journal of Drug Issues, 32(2), 607634. doi:10.1177/002204260203200218.Google Scholar
Grotenhermen, F. (2003) ‘Pharmacokinetics and pharmacodynamics of cannabinoids’, Clinical Pharmacokinetics, 42(4), 327360. doi:10.2165/00003088-200342040-00003.CrossRefGoogle ScholarPubMed
Halldin, M. M. et al. (1982) ‘Urinary metabolites of delta 1-tetrahydrocannabinol in man.’, Arzneimittel-Forschung, 32(7), 764–8. Available at: www.ncbi.nlm.nih.gov/pubmed/6289845.Google Scholar
Harvey, D. J. (1999) ‘Absorption, distribution, and biotransformation of the cannabinoids’, in Marihuana and Medicine. Totowa: Humana Press, pp. 91103. doi:10.1007/978-1-59259-710-9_10.Google Scholar
Harvey, D. J. and Mechoulam, R. (1990) ‘Metabolites of cannabidiol identified in human urine’, Xenobiotica, 20(3), 303320. doi:10.3109/00498259009046849.CrossRefGoogle ScholarPubMed
Harvey, D. J., Samara, E. and Mechoulam, R. (1991) ‘Comparative metabolism of cannabidiol in dog, rat and man’, Pharmacology Biochemistry and Behavior, 40(3), 523532. doi:10.1016/0091-3057(91)90358-9.Google Scholar
Hawksworth, G. and McArdle, K. (2004) ‘Metabolism and pharmacokinetics of cannabinoids’, in Guy, G, Whittle, B and Robson, P (eds.), The Medicinal Uses of Cannabis and Cannabinoids. London: London Pharmaceutical Press. pp. 205228.Google Scholar
Hejazi, N. et al. (2006) ‘Δ9-Tetrahydrocannabinol and endogenous cannabinoid anandamide directly potentiate the function of glycine receptors’, Molecular Pharmacology, 69(3), 991997. doi:10.1124/mol.105.019174.Google Scholar
Hinz, B. and Ramer, R. (2019) ‘Anti-tumour actions of cannabinoids’, British Journal of Pharmacology, 176(10), 13841394. doi:10.1111/bph.14426.Google Scholar
Huestis, M. A. (2007) ‘Human cannabinoid pharmacokinetics’, Chemistry and Biodiversity, 4(8), 17701804. doi:10.1002/cbdv.200790152.Google Scholar
Ibeas Bih, C. et al. (2015) ‘Molecular targets of cannabidiol in neurological disorders’, Neurotherapeutics, 12(4), 699730. doi:10.1007/s13311-015-0377-3.Google Scholar
Jiang, R. et al. (2011) ‘Identification of cytochrome P450 enzymes responsible for metabolism of cannabidiol by human liver microsomes’, Life Sciences, 89(5–6), 165170. doi:10.1016/j.lfs.2011.05.018.CrossRefGoogle ScholarPubMed
Kathmann, M. et al. (2006) ‘Cannabidiol is an allosteric modulator at mu- and delta-opioid receptors’, Naunyn-Schmiedeberg’s Archives of Pharmacology, 372(5), 354361. doi:10.1007/s00210-006-0033-x.Google Scholar
Lauckner, J. et al. (2008) ‘GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current’, Proceedings of the National Academy of Sciences of the United States of America, 105(7), 26992704. Available at: www.pnas.org/content/105/7/2699.short.CrossRefGoogle ScholarPubMed
Lucas, C. J., Galettis, P. and Schneider, J. (2018) ‘The pharmacokinetics and the pharmacodynamics of cannabinoids’, British Journal of Clinical Pharmacology, 84(11), 24772482. doi:10.1111/bcp.13710.CrossRefGoogle ScholarPubMed
Mahgoub, M. et al. (2013) ‘Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors’, European Journal of Pharmacology, 720(1–3), 310319. doi:10.1016/j.ejphar.2013.10.011.Google Scholar
Martin, B. R. et al. (1991) ‘Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs’, Pharmacology Biochemistry and Behavior, 40(3), 471478. doi:10.1016/0091-3057(91)90349-7.Google Scholar
McHugh, D. et al. (2012) ‘Δ9-Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells’, British Journal of Pharmacology, 165(8), 24142424. doi:10.1111/j.1476-5381.2011.01497.x.Google Scholar
Millar, S. A. et al. (2018) ‘A systematic review on the pharmacokinetics of cannabidiol in humans’, Frontiers in Pharmacology, 9, 1365. doi:10.3389/fphar.2018.01365.CrossRefGoogle ScholarPubMed
Moreno-Navarrete, J. M. et al. (2012) ‘The L-α-lysophosphatidylinositol/GPR55 system and its potential role in human obesity.’, Diabetes, 61(2), 281291. doi:10.2337/db11-0649.Google Scholar
Newmeyer, M. N. et al. (2016) ‘Free and glucuronide whole blood cannabinoids’ pharmacokinetics after controlled smoked, vaporized, and oral cannabis administration in frequent and occasional cannabis users: identification of recent cannabis intake’, Clinical Chemistry, 62(12), 15791592. doi:10.1373/clinchem.2016.263475.Google Scholar
Ohlsson, A. et al. (1986) ‘Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration’, Biological Mass Spectrometry, 13(2), 7783. doi:10.1002/bms.1200130206.Google Scholar
O’Sullivan, S. E. (2007) ‘Cannabinoids go nuclear: evidence for activation of peroxisome proliferator-activated receptors’, British Journal of Pharmacology, 152(5), 576582. doi:10.1038/sj.bjp.0707423.Google Scholar
Penumarti, A. and Abdel-Rahman, A. A. (2014) ‘The novel endocannabinoid receptor GPR18 is expressed in the rostral ventrolateral medulla and exerts tonic restraining influence on blood pressure’, Journal of Pharmacology and Experimental Therapeutics, 349(4), 2938. doi:10.1124/jpet.113.209213.Google Scholar
Pertwee, RG. et al. (2010) ‘International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2’, Pharmacological Reviews, 62(4), 588631. doi:10.1124/pr.110.003004.588.Google Scholar
Pistis, M. and O’Sullivan, S. E. (2017) ‘The role of nuclear hormone receptors in cannabinoid function’, Advances in Pharmacology, 80, 291328. doi:10.1016/bs.apha.2017.03.008.Google Scholar
Ramer, R. et al. (2013) ‘COX-2 and PPAR-γ confer cannabidiol-induced apoptosis of human lung cancer cells’, Molecular Cancer Therapeutics, 12(1), 6982. doi:10.1158/1535-7163.MCT-12-0335.CrossRefGoogle ScholarPubMed
Russo, E. B. et al. (2005). ‘Agonistic properties of cannabidiol at 5-HT1a receptors’, Neurochemical Research, 30(8), 10371043. doi:10.1007/s11064-005-6978-1.Google Scholar
Ryberg, E. et al. (2009) ‘The orphan receptor GPR55 is a novel cannabinoid receptor’,British Journal of Pharmacology, 152(7), 10921101. doi:10.1038/sj.bjp.0707460.Google Scholar
Sagredo, O. et al. (2007) ‘Cannabinoids and neuroprotection in basal ganglia disorders’, Molecular Neurobiology, 36(1), 8291. doi:10.1007/s12035-007-0004-3.Google Scholar
Sagredo, O. et al. (2011) ‘Neuroprotective effects of phytocannabinoid-based medicines in experimental models of Huntington’s disease’, Journal of Neuroscience Research, 89(9), 15091518. doi:10.1002/jnr.22682.Google Scholar
Stinchcomb, A. L. et al. (2004) ‘Human skin permeation of Δ 8-tetrahydrocannabinol, cannabidiol and cannabinol’, Journal of Pharmacy and Pharmacology, 56(3), 291297. doi:10.1211/0022357022791.Google Scholar
Stout, S. M. and Cimino, N. M. (2014) ‘Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review’, Drug Metabolism Reviews, 46(1), 8695. doi:10.3109/03602532.2013.849268.Google Scholar
Xiong, W. et al. (2012) ‘Cannabinoids suppress inflammatory and neuropathic pain by targeting α3 glycine receptors’, Journal of Experimental Medicine, 209(6), 11211134. doi:10.1084/jem.20120242.CrossRefGoogle ScholarPubMed
Yamaori, S. et al. (2010) ‘Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes’, Biochemical Pharmacology, 79(11), 16911698. doi:10.1016/j.bcp.2010.01.028.Google Scholar

Bibliography

Ahluwalia, J. et al. (2003) ‘Anandamide regulates neuropeptide release from capsaicin-sensitive primary sensory neurons by activating both the cannabinoid 1 receptor and the vanilloid receptor 1 in vitro’, European Journal of Neuroscience, 17(12), 26112618. https://doi.org/10.1046/j.1460-9568.2003.02703.x.CrossRefGoogle Scholar
Alger, B. E. (2002). ‘Retrograde signalling in the regulation of synaptic transmission: focus on endocannabinoids’, Progress in Neurobiology, 68(4), 247286.Google Scholar
Basavarajappa, B. S. (2017) ‘Cannabinoid receptors and their signaling mechanisms’, in Murillo-Rodríguez, E (ed.), The Endocannabinoid System: Genetics, Biochemistry, Brain Disorders, and Therapy. London: Academic Press. pp. 2562.Google Scholar
Cantini, G. et al. (2010) ‘Peroxisome-proliferator-activated receptor gamma (PPARγ) is required for modulating endothelial inflammatory response through a nongenomic mechanism’, European Journal of Cell Biology, 89(9), 645653. https://doi.org/10.1016/j.ejcb.2010.04.002.Google Scholar
Carman, C. V and Benovic, J. L. (1998) ‘G-protein-coupled receptors: turn-ons and turn-offs’, Current Opinion in Neurobiology, 8(3), 335344.Google Scholar
Christopoulos, A. and Kanakin, T. (2002). ‘G protein-coupled receptor allosterism and complexing’, Pharmacological Reviews, 54(2), 323374.Google Scholar
Collins, S., Caron, M. G. and Lefkowitz, R. J. (1992) ‘From ligand binding to gene expression: new insights into the regulation of G-protein-coupled receptors’, Trends in Biochemical Sciences, 17(1), 3739. https://doi.org/10.1016/0968-0004(92)90425-9.Google Scholar
Cravatt, B. F. et al. (1996) ‘Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides’, Nature, 384(6604), 8387. https://doi.org/10.1038/384083a0.Google Scholar
Davis, G. W. and Goodman, C. S. (1998) ‘Synapse-specific control of synaptic efficacy at the terminals of a single neuron’, Nature, 392(6671), 8286. doi:10.1038/32176.Google Scholar
Davis, G. W. and Murphey, R. K. (1994) ‘Retrograde signaling and the development of transmitter release properties in the invertebrate nervous system’, Journal of Neurobiology, 25(6), 740756. https://doi.org/10.1002/neu.480250612.Google Scholar
De Petrocellis, L. et al. (2011). ‘Effects of cannabinoids and cannabinoid‐enriched Cannabis extracts on TRP channels and endocannabinoid metabolic enzymes’, British Journal of Pharmacology, 163, 14791494.Google Scholar
Devane, W. A. (1994) ‘New dawn of cannabinoid pharmacology’, Trends in Pharmacological Sciences, 15(2), 4041. https://doi.org/10.1016/0165-6147(94)90106-6.Google Scholar
Devane, W. A. et al. (1988) ‘Determination and characterization of a cannabinoid receptor in rat brain’, Molecular Pharmacology, 34(5), 605613.Google Scholar
Devane, W. A. et al. (1992) ‘Isolation and structure of a brain constituent that binds to the cannabinoid receptor’, Science, 258(5090), 19461949. https://doi.org/10.1126/science.1470919.Google Scholar
Devane, W. A. and Axelrod, J. (1994) ‘Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes’, Proceedings of the National Academy of Sciences of the United States of America, 91(14), 66986701. https://doi.org/10.1073/pnas.91.14.6698.Google Scholar
Dinh, T. P., Kathuria, S. and Piomelli, D. (2004) ‘RNA interference suggests a primary role for monoacylglycerol lipase in the degradation of the endocannabinoid 2-arachidonoylglycerol’, Molecular Pharmacology, 66(5), 12601264.Google Scholar
Duan, S. Z., Usher, M. G. and Mortensen, R. M. (2009) ‘PPARs: the vasculature, inflammation and hypertension’, Current Opinion in Nephrology and Hypertension, 18(2), 128133. https://doi.org/10.1097/MNH.0b013e328325803b.Google Scholar
Elphick, M. R. and Egertova, M. (2001) ‘The neurobiology and evolution of cannabinoid signalling’, Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1407), 381408. https://doi.org/10.1098/rstb.2000.0787.CrossRefGoogle ScholarPubMed
Gaoni, Y. and Mechoulam, R. (1964) ‘Isolation, structure, and partial synthesis of an active constituent of hashish’, Journal of the American Chemical Society, 86(8), 16461647. https://doi.org/10.1021/ja01062a046.Google Scholar
Hanus, L. et al. (2001) ‘2-arachidonyl glyceryl ether, an endogenous agonist of the cannabinoid CB1 receptor’, Proceedings of the National Academy of Sciences of the United States of America, 98, 36623665.Google Scholar
Henstridge, C. M., et al. (2009) ‘The GPR55 ligand L-α-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation’, FASEB Journal, 23(1), 183193. https://doi.org/10.1096/fj.08-108670.Google Scholar
Hermanson, D. J. et al. (2013) ‘Substrate-selective COX-2 inhibition decreases anxiety via endocannabinoid activation’, Nature Neuroscience, 16(9), 12911298. doi:10.1038/nn.3480.Google Scholar
Höller, C., Freissmuth, M. and Nanoff, C. (1999) ‘G proteins as drug targets’, Cellular and Molecular Life Sciences CMLS, 55(2), 257270. https://doi.org/10.1007/s000180050288.Google Scholar
Howlett, A. C. (1998) ‘The CB1cannabinoid receptor in the brain’, Neurobiology of Disease, 5(6), 405416. https://doi.org/10.1006/nbdi.1998.0215.Google Scholar
Huang, S. M. et al. (2002) ‘An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors’, Proceedings of the National Academy of Sciences of the United States of America, 99, 84008405.Google Scholar
Kreitzer, A. C. and Regehr, W. G. (2001) ‘Retrograde inhibition of presynaptic calcium influx by endogenous cannabinoids at excitatory synapses onto Purkinje cells’, Neuron, 29, 717727. https://doi.org/10.1016/S0896-6273(01)00246-X.Google Scholar
Lauckner, J. E. et al. (2008) ‘GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current’, Proceedings of the National Academy of Sciences of the United States of America, 105(7), 26992704. https://doi.org/10.1073/pnas.0711278105.Google Scholar
Llano, I., Leresche, N. and Marty, A. (1991) ‘Calcium entry increases the sensitivity of cerebellar purkinje cells to applied GABA and decreases inhibitory synaptic currents’, Neuron, 6(4), 565574. doi:10.1016/0896-6273(91)90059-9.Google Scholar
Mackie, K. (2005) ‘Distribution of cannabinoid receptors in the central and peripheral nervous system’, Handbook of Experimental Pharmacology, 168(1), 299325. https://doi.org/10.1007/3-540-26573-2_10.Google Scholar
Mackie, K. (2008) ‘Cannabinoid receptors: where they are and what they do’, Journal of Neuroendocrinology, 20(s1), 1014. https://doi.org/10.1111/j.1365-2826.2008.01671.x.Google Scholar
Maresz, K. et al. (2005) ‘Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli’, Journal of Neurochemistry, 95(2), 437445. https://doi.org/10.1111/j.1471-4159.2005.03380.x.CrossRefGoogle ScholarPubMed
Matsuda, L. A. et al. (1990). ‘Structure of a cannabinoid receptor and functional expression of the cloned cDNA’, Nature, 346, 561564.Google Scholar
McPartland, J. M. et al. (2006a) ‘Cannabinoid receptors in invertebrates’, Journal of Evolutionary Biology, 19(2), 366373. https://doi.org/10.1111/j.1420-9101.2005.01028.x.Google Scholar
McPartland, J. M. et al. (2006b) ‘Evolutionary origins of the endocannabinoid system’, Gene, 370(1–2), 6474. https://doi.org/10.1016/j.gene.2005.11.004.CrossRefGoogle ScholarPubMed
Mechoulam, R. et al. (1995) ‘Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors’, Biochemical Pharmacology, 50(1), 8390. https://doi.org/10.1016/0006-2952(95)00109-D.CrossRefGoogle ScholarPubMed
Mechoulam, R. and Parker, L. A. (2013) ‘The endocannabinoid system and the brain’, Annual Review of Psychology, 64, 2147. https://doi.org/10.1146/annurev-psych-113011-143739.Google Scholar
Michalik, L. et al. (2006) ‘International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors’, Pharmacological Reviews, 58(4), 726741. doi:10.1124/pr.58.4.5.Google Scholar
Morales, P., Reggio, P. H. and Jagerovic, N. (2017) ‘An overview on medicinal chemistry of synthetic and natural derivatives of cannabidiol’. Frontiers in Pharmacology, 8, 422. https://doi.org/10.3389/fphar.2017.00422.Google Scholar
Moriconi, A. et al. (2010) ‘GPR55: current knowledge and future perspectives of a purported cannabinoid receptor’, Current Medicinal Chemistry, 17(14), 14111429. https://doi.org/10.2174/092986710790980069.Google Scholar
Munro, S., Thomas, K. L. and Abu-Shaar, M. (1993) ‘Molecular characterization of the peripheral receptor for cannabinoids’, Nature, 365(6441), 6165.Google Scholar
Neubig, R. R. et al. (2003) ‘International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology’, Pharmacological Reviews, 55, 597606.Google Scholar
Nguyen, T. et al. (2018) ‘Allosteric modulation: an alternative approach targeting the cannabinoid CB1 receptor’, Medical Research Reviews, 37(3), 441474. https://doi.org/10.1002/med.21418.CrossRefGoogle Scholar
Onaivi, E. S. et al. (2002) ‘Endocannabinoids and cannabinoid receptor genetics’, Progress in Neurobiology, 66(5), 307344. https://doi.org/10.1016/S0301-0082(02)00007-2.Google Scholar
Onaivi, E. S. et al. (2012) ‘CNS effects of CB2 cannabinoid receptors: beyond neuro-immuno-cannabinoid activity’, Journal of Psychopharmacology, 26(1), 92103.Google Scholar
Pacher, P. and Mechoulam, R. (2011) ‘Is lipid signaling through cannabinoid 2 receptors part of a protective system?’, Progress in Lipid Research, 50, 193211.Google Scholar
Parker, L. A. (2017) Cannabinoids and the Brain. Cambridge, MA: MIT Press.Google Scholar
Pertwee, R. G. (1999) ‘Evidence for the presence of CB1 cannabinoid receptors on peripheral neurones and for the existence of neuronal non-CB1 cannabinoid receptors’, Life Sciences, 65(6–7), 597605. https://doi.org/10.1016/S0024-3205(99)00282-9.Google Scholar
Pertwee, R. G. et al. (2010) ‘International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2’, Pharmacological Reviews, 62(4), 588631. https://doi.org/10.1124/pr.110.003004Google Scholar
Pertwee, R.G. and Ross, R. A. (2002) ‘Cannabinoid receptors and their ligands’, Prostaglandins, Leukotrienes and Essential Fatty Acids, 66(2–3), 101121. https://doi.org/10.1054/plef.2001.0341Google Scholar
Piomelli, D. (2003) ‘The molecular logic of endocannabinoid signalling’, Nature Reviews Neuroscience, 4(11), 873884. https://doi.org/10.1038/nrn1247.Google Scholar
Pitler, T. A. and Alger, B. E. (1992) ‘Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells’, Journal of Neuroscience, 12, 41224132. doi:10.1523/JNEUROSCI.12-10-04122.1992.Google Scholar
Porter, A. C. et al. (2002) ‘Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor’, Journal of Pharmacology and Experimental Therapeutics, 301, 10201024.Google Scholar
Regehr, W. G., Carey, M. R. and Best, A. R. (2009) ‘Activity-dependent regulation of synapses by retrograde messengers’, Neuron, 63(2), 154170. https://doi.org/10.1016/j.neuron.2009.06.021.Google Scholar
Rodbell, M. (1997) ‘The complex regulation of receptor-coupled G-proteins’, Advances in Enzyme Regulation, 37, 427435. https://doi.org/10.1016/S0065-2571(96)00020-9.Google Scholar
Sawzdargo, M. et al. (1999) ‘Identification and cloning of three novel human G protein-coupled receptor genes GPR52, PsiGPR53 and GPR55: GPR55 is extensively expressed in human brain’, Brain Research. Molecular Brain Research, 64(2), 193198. doi:10.1016/s0169-328x(98)00277-0.Google Scholar
Starowicz, K., Nigam, S. and Di Marzo, V. (2007) ‘Biochemistry and pharmacology of endovanilloids’, Pharmacology & Therapeutics, 114(1), 1333. https://doi.org/10.1016/j.pharmthera.2007.01.005.Google Scholar
Sugiura, T. et al. (2002) ‘Biosynthesis and degradation of anandamide and 2-arachidonoylglycerol and their possible significance’, Prostaglandins, Leukotrienes and Essential Fatty Acids, 66, 173192.Google Scholar
Sylantyev, S. et al. (2013) ‘Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses’, Proceedings of the National Academy of Sciences of the United States of America, 110(13), 51935198. doi:10.1073/pnas.1211204110.Google Scholar
Williams, J. H. (1996) ‘Retrograde messengers and long-term potentiation: a progress report’, Journal of Lipid Mediators and Cell Signalling, 14(1–3), 331339.Google Scholar
Yates, M. L. and Barker, E. L. (2009) ‘Inactivation and biotransformation of the endogenous cannabinoids anandamide and 2-arachidonoylglycerol’, Molecular Pharmacology, 76(1), 1117.Google Scholar
Zoerner, A. A. et al. (2011) ‘Quantification of endocannabinoids in biological systems by chromatography and mass spectrometry: a comprehensive review from an analytical and biological perspective’, Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids, 1811(11), 706-723.Google Scholar

Bibliography

Barann, M. et al. (2002) ‘Direct inhibition by cannabinoids of human 5-HT 3 A receptors: probable involvement of an allosteric modulatory site’, British Journal of Pharmacology, 137(5), 589596. doi:10.1038/sj.bjp.0704829.Google Scholar
Ben-Shabat, S. et al. (1998) ‘An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity’, European Journal of Pharmacology, 353(1), 2331. doi:10.1016/S0014-2999(98)00392-6.Google Scholar
Berman, J. S., Symonds, C. and Birch, R. (2004) ‘Efficacy of two cannabis based medicinal extracts for relief of central neuropathic pain from brachial plexus avulsion: results of a randomised controlled trial’, Pain, 112(3), 299306. doi:10.1016/j.pain.2004.09.013.Google Scholar
Brenneisen, R. et al. (1996) ‘The effect of orally and rectally administered delta 9-tetrahydrocannabinol on spasticity: a pilot study with 2 patients.’, International Journal of Clinical Pharmacology and Therapeutics, 34(10), 446452. Available at: www.ncbi.nlm.nih.gov/pubmed/8897084.Google ScholarPubMed
Devinsky, O. et al. (2016) ‘Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial’, The Lancet Neurology, 15(3), 270278. doi:10.1016/S1474-4422(15)00379-8.Google Scholar
Devinsky, O. et al. (2017) ‘Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome’, New England Journal of Medicine, 376(21), 20112020. doi:10.1056/NEJMoa1611618.Google Scholar
Devinsky, O. et al. (2018) ‘Effect of cannabidiol on drop seizures in the Lennox-Gastaut syndrome’, New England Journal of Medicine, 378, 18881897.Google Scholar
Fabre, L. F. and McLendon, D. (1981) ‘The efficacy and safety of nabilone (a synthetic cannabinoid) in the treatment of anxiety’, The Journal of Clinical Pharmacology, 21(S1), 377S-382S. doi:10.1002/j.1552-4604.1981.tb02617.x.Google Scholar
Farrar, J. T. et al. (2008) ‘Validity, reliability, and clinical importance of change in a 0–10 numeric rating scale measure of spasticity: a post hoc analysis of a randomized, double-blind, placebo-controlled trial’, Clinical Therapeutics, 30(5), 974985. doi:10.1016/j.clinthera.2008.05.011.Google Scholar
Fleuren, J. F. M. et al. (2010) ‘Stop using the Ashworth Scale for the assessment of spasticity’, Journal of Neurology, Neurosurgery and Psychiatry, 81(1), 4652. doi:10.1136/jnnp.2009.177071.Google Scholar
Frank, B. et al. (2008) ‘Comparison of analgesic effects and patient tolerability of nabilone and dihydrocodeine for chronic neuropathic pain: randomised, crossover, double blind study’, BMJ, 336(7637), 199201. doi:10.1136/bmj.39429.619653.80.Google Scholar
Fraser, G. A. (2009) ‘The use of a synthetic cannabinoid in the management of treatment-resistant nightmares in posttraumatic stress disorder (PTSD)’, CNS Neuroscience and Therapeutics, 15(1), 8488. doi:10.1111/j.1755-5949.2008.00071.x.Google Scholar
Gaston, T. E. and Szaflarski, J. P. (2018) ‘Cannabis for the treatment of epilepsy: an update’, Current Neurology and Neuroscience Reports, 18(11), 19. doi:10.1007/s11910-018-0882-y.Google Scholar
Gloss, D. and Vickrey, B. (2011) ‘Cannabinoids for epilepsy’, Cochrane Database of Systematic Reviews, 3, CD009270. doi:10.1002/14651858.CD009270.pub3.Google Scholar
Guindon, J. and Beaulieu, P. (2006) ‘Antihyperalgesic effects of local injections of anandamide, ibuprofen, rofecoxib and their combinations in a model of neuropathic pain’, Neuropharmacology, 50(7), 814823. doi:10.1016/j.neuropharm.2005.12.002.Google Scholar
Hill, K. P. et al. (2017) ‘Nabilone pharmacotherapy for cannabis dependence: a randomized, controlled pilot study’, The American Journal on Addictions, 26(8), 795801. doi:10.1111/ajad.12622.Google Scholar
Hornby, P. J. (2001) ‘Central neurocircuitry associated with emesis’, American Journal of Medicine, 111(8 Suppl 1), 106112. doi:10.1016/s0002-9343(01)00849-x.Google Scholar
Koppel, B. S. et al. (2014) ‘Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: Report of the Guideline Development Subcommittee of the American Academy of Neurology’, Neurology, 82(17), 15561563. doi:10.1212/WNL.0000000000000363.Google Scholar
Lemberger, L. and Rowe, H. (1975) ‘Clinical pharmacology of nabilone, a cannabinol derivative’, Clinical Pharmacology & Therapeutics, 18(6), 720726. doi:10.1002/cpt1975186720.Google Scholar
Lutge, E. E., Gray, A. and Siegfried, N. (2013) ‘The medical use of cannabis for reducing morbidity and mortality in patients with HIV/ AIDS’, Cochrane Database of Systematic Reviews, 4, CD005175. doi:10.1002/14651858.CD005175.pub3.Google Scholar
Marshall, K. S., Gowing, L. and Ali, R. (2011) ‘Pharmacotherapies for cannabis withdrawal’, Cochrane Database of Systematic Reviews, 1, CD008940. doi:10.1002/14651858.CD008940.Google Scholar
McLoughlin, B. C. et al. (2014) ‘Cannabis and schizophrenia’, Cochrane Database of Systematic Reviews, 10, CD004837. doi:10.1002/14651858.CD004837.pub3.Google Scholar
Meiri, E. et al. (2007) ‘Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting’, Current Medical Research and Opinion, 23(3), 533543. doi:10.1185/030079907X167525.Google Scholar
Novotna, A. et al. (2011) ‘A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols*(Sativex ®), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis’, European Journal of Neurology, 18(9), 11221131. doi:10.1111/j.1468-1331.2010.03328.x.Google Scholar
Nurmikko, T. J. et al. (2007) ‘Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial’, Pain, 133(1–3), 210220. doi:10.1016/j.pain.2007.08.028.Google Scholar
Pamplona, F. A., Da Silva, L. R. and Coan, A. C. (2018) ‘Potential clinical benefits of CBD-rich cannabis extracts over purified CBD in treatment-resistant epilepsy: observational data meta-analysis’, Frontiers in Neurology, 9, 759. doi:10.3389/fneur.2018.00759.Google Scholar
Pinsger, M. et al. (2006) ‘Nutzen einer add-on-therapie mit dem synthetischen cannabinomimetikum nabilone bei patienten mit chronischen schmerzzuständen – Eine randomisierte kontrollierte studie’, Wiener Klinische Wochenschrift, 118(11–12), 327335. doi:10.1007/s00508-006-0611-4.Google Scholar
Sallan, S. E. et al. (1980) ‘Antiemetics in patients receiving chemotherapy for cancer — a randomized comparison of delta-9-tetrahydrocannabinol and prochlorperazine’, New England Journal of Medicine, 302, 135138. doi:10.1056/NEJM198001173020302.Google Scholar
Skrabek, R. Q. et al. (2008) ‘Nabilone for the treatment of pain in fibromyalgia’, The Journal of Pain, 9(2), 164173. doi:10.1016/j.jpain.2007.09.002.Google Scholar
Smith, L. A. and Jess, C. E. (2011) ‘Cannabinoids for nausea and vomiting in cancer patients receiving chemotherapy’, Cochrane Database of Systematic Reviews, 11, CD009464. doi:10.1002/14651858.CD009464.Google Scholar
Sticht, M. A. et al. (2016) ‘Endocannabinoid regulation of nausea is mediated by 2-arachidonoylglycerol (2-AG) in the rat visceral insular cortex’, Neuropharmacology, 102, 92102. doi:10.1016/j.neuropharm.2015.10.039.Google Scholar
Szaflarski, J. P. et al. (2018) ‘Long-term safety and treatment effects of cannabidiol in children and adults with treatment-resistant epilepsies: expanded access program results’, Epilepsia, 59(8), 15401548. doi:10.1111/epi.14477.Google Scholar
Thiele, E. A. et al. (2018) ‘Cannabidiol in patients with seizures associated with Lennox-Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo-controlled phase 3 trial’, The Lancet, 391(10125), 10851096. doi:10.1016/S0140-6736(18)30136-3.Google Scholar
Tramèr, M. R. et al. (2001) ‘Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review’, British Medical Journal, 323(7303), 1621.Google Scholar
United Nations Office on Drugs and Crime (2014) World Drug Report 2014 (United Nations publication, Sales No. E.14.XI.7).Google Scholar
Van Sickle, M. D. et al. (2005) ‘Neuroscience: identification and functional characterization of brainstem cannabinoid CB2 receptors’, Science, 310(5746), 329332. doi:10.1126/science.1115740.Google Scholar
Wade, D. T. et al. (2004) ‘Do cannabis-based medicinal extracts have general or specific effects on symptoms in multiple sclerosis? A double-blind, randomized, placebo-controlled study on 160 patients’, Multiple Sclerosis Journal, 10(4), 434441. doi:10.1191/1352458504ms1082oa.Google Scholar
Wade, D. T. et al. (2010) ‘Meta-analysis of the efficacy and safety of Sativex (nabiximols), on spasticity in people with multiple sclerosis’, Multiple Sclerosis Journal, 16(6), 707714. doi:10.1177/1352458510367462.Google Scholar
Walitt, B. et al. (2016) ‘Cannabinoids for fibromyalgia’, Cochrane Database of Systematic Reviews, 7, CD011694. doi:10.1002/14651858.CD011694.pub2.Google Scholar
Ward, A. and Holmes, B. (1985) ‘Nabilone: a preliminary review of its pharmacological properties and therapeutic use’, Drugs, 30(2), 127144. doi:10.2165/00003495-198530020-00002.Google Scholar
Ware, M. A. et al. (2010) ‘The effects of nabilone on sleep in fibromyalgia: results of a randomized controlled trial’, Anesthesia and Analgesia, 110(2), 604610. doi:10.1213/ANE.0b013e3181c76f70.Google Scholar
Ware, M. A., Daeninck, P. and Maida, V. (2008) ‘A review of nabilone in the treatment of chemotherapy-induced nausea and vomiting’, Therapeutics and Clinical Risk Management, 4(1), 99107. doi:10.2147/tcrm.s1132.Google Scholar
Whiting, P. F. et al. (2015) ‘Cannabinoids for medical use: a systematic review and meta-analysis’, JAMA: Journal of the American Medical Association, 313(24), 24562473. doi:10.1001/jama.2015.6358.Google Scholar

Bibliography

Allsop, D. J. et al. (2014) ‘Nabiximols as an agonist replacement therapy during cannabis withdrawal: a randomized clinical trial’, JAMA Psychiatry, 71(3), 281291. doi:10.1001/jamapsychiatry.2013.3947.Google Scholar
Andréasson, S. et al. (1987) ‘Cannabis and schizophrenia. A longitudinal study of Swedish conscripts’, The Lancet, 330(8574), 14831486. doi:10.1016/S0140-6736(87)92620-1.Google Scholar
Anthony, J. C., Warner, L. A. and Kessler, R. C. (1997) ‘Comparative epidemiology of dependence on tobacco, alcohol, controlled substances, and inhalants: basic findings from the National Comorbidity Survey.’, in Marlatt, G. A. and VandenBos, G. R. (eds.), Addictive Behaviors: Readings on Etiology, Prevention, and Treatment. Washington: American Psychological Association, pp. 339. doi:10.1037/10248-001.Google Scholar
Arseneault, L. et al. (2004) ‘Causal association between cannabis and psychosis: examination of the evidence’, British Journal of Psychiatry, 184(2), 110117. doi:10.1192/bjp.184.2.110.Google Scholar
Campbell, V. A. (2001) ‘Tetrahydrocannabinol-induced apoptosis of cultured cortical neurones is associated with cytochrome c release and caspase-3 activation’, Neuropharmacology, 40(5), 702709. doi:10.1016/S0028-3908(00)00210-0.Google Scholar
Chait, L. D. and Zacny, J. P. (1992) ‘Reinforcing and subjective effects of oral Δ9-THC and smoked marijuana in humans’, Psychopharmacology, 107(2–3), 255262. doi:10.1007/BF02245145.Google Scholar
Chen, J. et al. (1990) ‘Δ9-Tetrahydrocannabinol produces naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of conscious, freely-moving rats as measured by intracerebral microdialysis’, Psychopharmacology, 102(2), 156162. doi:10.1007/BF02245916.Google Scholar
Chiarlone, A. et al. (2014) ‘A restricted population of CB1 cannabinoid receptors with neuroprotective activity’, Proceedings of the National Academy of Sciences of the United States of America, 111(22), 82578262. doi:10.1073/pnas.1400988111.Google Scholar
Compton, D. R., Dewey, W. L. and Martin, B. R. (1990) ‘Cannabis dependence and tolerance production’, Advances in Alcohol and Substance Abuse, 9(1–2), 129147. doi:10.1080/J251v09n01_08.Google Scholar
Cooper, Z. D. et al. (2013) ‘A human laboratory study investigating the effects of quetiapine on marijuana withdrawal and relapse in daily marijuana smokers’, Addiction Biology, 18(6), 9931002. doi:10.1111/j.1369-1600.2012.00461.x.Google Scholar
Dalton, W. S. et al. (1976) ‘Influence of cannabidiol on delta-9-tetrahydrocannabinol effects’, Clinical Pharmacology & Therapeutics, 19(3), 300309. doi:10.1002/cpt1976193300.Google Scholar
Di Chiara, G. and Imperato, A. (1988) ‘Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats’, Proceedings of the National Academy of Sciences of the United States of America, 85(14), 52745278. doi:10.1073/pnas.85.14.5274.Google Scholar
Diana, M. et al. (1998) ‘Mesolimbic dopaminergic decline after cannabinoid withdrawal’, Proceedings of the National Academy of Sciences of the United States of America, 95(17), 1026910273. doi:10.1073/pnas.95.17.10269.Google Scholar
Downer, E. J. and Campbell, V. A. (2010) ‘Phytocannabinoids, CNS cells and development: a dead issue?’, Drug and Alcohol Review, 29(1), 9198. doi:10.1111/j.1465-3362.2009.00102.x.Google Scholar
Drug Enforcement Administration (2016). Title 21 United States Code (USC) Controlled Substances Act. Available at: www.deadiversion.usdoj.gov/21cfr/21usc/812.htm (Accessed: May 26, 2020).Google Scholar
D’Souza, D.C. et al. (2004) ‘The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis’, Neuropsychopharmacology, 29, 15581572. doi:10.1038/sj.npp.1300496.Google Scholar
Gardner, E. (2014) ‘Cannabinoids and addiction’, in Pertwee, R, (ed)., Handbook of Cannabis. Oxford: Oxford University Press, pp. 173188.Google Scholar
Georgotas, A. and Zeidenberg, P. (1979) ‘Observations on the effects of four weeks of heavy marihuana smoking on group interaction and individual behavior’, Comprehensive Psychiatry, 20(5), 427432. doi:10.1016/0010-440X(79)90027-0.Google Scholar
Gorelick, D. A. et al. (2013) ‘Tolerance to effects of high-dose oral Δ9-tetrahydrocannabinol and plasma cannabinoid concentrations in male daily cannabis smokers’, Journal of Analytical Toxicology, 37(1), 1116. doi:10.1093/jat/bks081.Google Scholar
Greenwich Biosciences (2018) Epidiolex® (cannabidiol). Carlsbad, CA: Greenwich Biosciences, Inc. Available at: www.epidiolexhcp.com/themes/custom/epidiolex_hcp/files/factsheet.pdf (Accessed: May 30, 2020).Google Scholar
Hall, K. E. et al. (2018) ‘Mental health-related emergency department visits associated with cannabis in Colorado’, Academic Emergency Medicine, 25(5), 526537. doi:10.1111/acem.13393.Google Scholar
Hampson, A. J. et al. (1998) ‘Cannabidiol and (−)Δ9-tetrahydrocannabinol are neuroprotective antioxidants’, Proceedings of the National Academy of Sciences of the United States of America, 95(14), 82688273. https://doi.org/10.1073/pnas.95.14.8268.Google Scholar
Haney, M. (2005) ‘The marijuana withdrawal syndrome: diagnosis and treatment’, Current Psychiatry Reports, 7(5), 360366. doi:10.1007/s11920-005-0036-1.Google Scholar
Haney, M. et al. (1997) ‘Factors influencing marijuana self-administration by humans’, Behavioural Pharmacology, 8(2–3), 101112.Google Scholar
Haney, M. et al. (1999) ‘Abstinence symptoms following oral THC administration to humans’, Psychopharmacology, 141(4), 385394. doi:10.1007/s002130050848.Google Scholar
Haney, M. et al. (2013) ‘Nabilone decreases marijuana withdrawal and a laboratory measure of marijuana relapse’, Neuropsychopharmacology, 38(8), 15571565. doi:10.1038/npp.2013.54.Google Scholar
Haney, M. et al. (2016) ‘Oral cannabidiol does not alter the subjective, reinforcing or cardiovascular effects of smoked cannabis’, Neuropsychopharmacology, 41(8), 19741982. doi:10.1038/npp.2015.367.Google Scholar
Hayakawa, K. et al. (2007) ‘Repeated treatment with cannabidiol but not Δ9-tetrahydrocannabinol has a neuroprotective effect without the development of tolerance’, Neuropharmacology, 52(4), 10791087. doi:10.1016/j.neuropharm.2006.11.005.Google Scholar
Hoffman, D. et al. (1975) ‘On the carcinogenicity of marijuana smoke’, in Runekles, V. C. (ed.), Recent Advances in Phytochemistry. New York: Plenum Press. pp. 6381.Google Scholar
Jones, R. T., Benowitz, N. and Bachman, J. (1976) ‘Clinical studies of cannabis tolerance and dependence’, Annals of the New York Academy of Sciences, 282(1), 221239. doi:10.1111/j.1749-6632.1976.tb49901.x.Google Scholar
Justinova, Z. et al. (2004) ‘The opioid antagonist naltrexone reduces the reinforcing effects of Δ9-tetrahydrocannabinol (THC) in squirrel monkeys’, Psychopharmacology, 173(1), 186194. doi:10.1007/s00213-003-1693-6.Google Scholar
Jutras-Aswad, D. et al. (2009) ‘Neurobiological consequences of maternal cannabis on human fetal development and its neuropsychiatric outcome’, European Archives of Psychiatry and Clinical Neuroscience, 259(7), 395412. doi:10.1007/s00406-009-0027-z.Google Scholar
Lankenau, S. E. et al. (2018) ‘Health conditions and motivations for marijuana use among adult medical marijuana patients and non-patient marijuana users’, Drug and Alcohol Review, 37(2), 237246. doi:10.1111/dar.12534.Google Scholar
Large, M. et al. (2011) ‘Cannabis use and earlier onset of psychosis: a systematic meta-analysis’, Archives of General Psychiatry, 68(6), 555561.Google Scholar
Levin, F. R. et al. (2011) ‘Dronabinol for the treatment of cannabis dependence: a randomized, double-blind, placebo-controlled trial’, Drug and Alcohol Dependence, 116(1–3), 142150. doi:10.1016/drugalcdep.2010.12.010.Google Scholar
McKinney, D. L. et al. (2008) ‘Dose-related differences in the regional pattern of cannabinoid receptor adaptation and in vivo tolerance development to Δ9-tetrahydrocannabinol’, Journal of Pharmacology and Experimental Therapeutics, 324(2), 664673. doi:10.1124/jpet.107.130328.Google Scholar
Montanari, L. et al. (2017) ‘Cannabis use among people entering drug treatment in Europe: a growing phenomenon?’, European Addiction Research, 23(3), 113121. doi:10.1159/000475810.Google Scholar
Monte, A. A., Zane, R. D. and Heard, K. J. (2015) ‘The implications of marijuana legalization in Colorado’, JAMA: Journal of the American Medical Association, 313(3), 241242. doi:10.1001/jama.2014.17057.Google Scholar
Moore, T. H. et al. (2007) ‘Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review’, Lancet, 370(9584), 319328. doi:10.1016/S0140-6736(07)61162-3.Google Scholar
National Institute on Drug Abuse (2019) Monitoring the Future Survey: High School and Youth Trends, Revised December 2019. Available at www.drugabuse.gov/publications/drugfacts/monitoring-future-survey-high-school-youth-trends (Accessed: June 8, 2020).Google Scholar
Piomelli, D. et al. (2018) ‘Cannabis and the opioid crisis’, Cannabis and Cannabinoid Research, 3(1), 108116. doi:10.1089/can.2018.29011.rtl.Google Scholar
Sachs, J., McGlade, E. and Yurgelun-Todd, D. (2015) ‘Safety and toxicology of cannabinoids’, Neurotherapeutics, 12(4), 735746. doi:10.1007/s13311-015-0380-8.Google Scholar
Schierenbeck, T. et al. (2008) ‘Effect of illicit recreational drugs upon sleep: cocaine, ecstasy and marijuana’, Sleep Medicine Reviews, 12(5), 381389. doi:10.1016/j.smrv.2007.12.004.Google Scholar
Serpell, M. G., Notcutt, W. and Collin, C. (2013) ‘Sativex long-term use: an open-label trial in patients with spasticity due to multiple sclerosis’, Journal of Neurology, 260(1), 285295. doi:10.1007/s00415-012-6634-z.Google Scholar
Solowij, N. et al. (2011) ‘Does cannabis cause lasting brain damage?’ in Castle, D, Murray, R. M and D’Souza, D. C. (eds.), Marijuana and Madness, 2nd ed. Cambridge: Cambridge University Press, pp. 103–113. doi:10.1017/CBO9780511706080.010.Google Scholar
Stephens, R. S., Roffman, R. A. and Curtin, L. (2000) ‘Comparison of extended versus brief treatments for marijuana use’, Journal of Consulting and Clinical Psychology, 68(5), 898908. doi:10.1037/0022-006X.68.5.898.Google Scholar
Tanda, G., Pontieri, F. E. and Di Chiara, G. (1997) ‘Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common μ1 opioid receptor mechanism’, Science, 276(5321), 20482050. doi:10.1126/science.276.5321.2048.Google Scholar
Trigo, J. M. et al. (2016) ‘Effects of fixed or self-titrated dosages of Sativex on cannabis withdrawal and cravings’, Drug and Alcohol Dependence, 161, 298306. doi:10.1016/j.drugalcdep.2016.02.020.Google Scholar
US Food and Drug Administration (2019). ‘Scientific Data and Information about Products Containing Cannabis or Cannabis-Derived Compounds; Public Hearing May 31, 2019’. Available at: www.fda.gov/news-events/fda-meetings-conferences-and-workshops/scientific-data-and-information-about-products-containing-cannabis-or-cannabis-derived-compounds (Accessed: May 27, 2020).Google Scholar
US Food and Drug Administration (2020). FDA and Cannabis: Research and Drug Approval Process. Available at: www.fda.gov/news-events/public-health-focus/fda-and-cannabis-research-and-drug-approval-process (Accessed: May 26, 2020).Google Scholar
van Os, J. et al. (2002) ‘Cannabis use and psychosis: a longitudinal population-based study’, American Journal of Epidemiology, 156(4), 319327. doi:10.1093/aje/kwf043.Google Scholar
Villares, J. (2007) ‘Chronic use of marijuana decreases cannabinoid receptor binding and mRNA expression in the human brain’, Neuroscience, 145(1), 323334. doi:10.1016/j.neuroscience.2006.11.012.Google Scholar
Wang, G. S. et al. (2018) ‘Marijuana and acute health care contacts in Colorado’, Preventive Medicine, 104, 2430. doi:10.1016/j.ypmed.2017.03.022.Marijuana.Google Scholar
Wikler, A. (1976) ‘Aspects of tolerance to and dependence on cannabis’, Annals of the New York Academy of Sciences, 282(1), 126147. doi:10.1111/j.1749-6632.1976.tb49893.x.Google Scholar
Yücel, M. et al. (2008) ‘Regional brain abnormalities associated with long-term heavy cannabis use’, Archives of General Psychiatry, 65(6), 694701. doi:10.1001/archpsyc.65.6.694.Google Scholar
Zammit, S. et al. (2002) ‘Self reported cannabis use as a risk factor for schizophrenia in Swedish conscripts of 1969: historical cohort study’, British Medical Journal, 325(7374), 11991201. doi:10.1136/bmj.325.7374.1199.Google Scholar
Zammit, S. et al. (2008) ‘Effects of cannabis use on outcomes of psychotic disorders: systematic review’, British Journal of Psychiatry, 193(5), 357363. doi:10.1192/bjp.bp.107.046375.Google Scholar
Zuardi, A. W. et al. (1982) ‘Action of cannabidiol on the anxiety and other effects produced by Δ9-THC in normal subjects’, Psychopharmacology, 76(3), 245250.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×